Building an Active Content Warehouse
	Serge Abiteboul
	Benjamin Nguyen
	Gabriela Ruberg

	INRIA-Futurs, LRI, Xyleme
	UVSQ, INRIA-Futurs
	Federal U. Rio, INRIA-Futurs

CHAPTER OUTLINE
Non-quantitative content represents a large part of the information available nowadays, such as Web pages, emails, metadata about photos, etc. In order to manage this new type of information, we introduce the concept of content warehousing; the management of loosely structured data. The construction and maintenance of a content warehouse is an intricate task involving many aspects such as feeding, cleaning, and enriching semi-structured data. In this chapter, we introduce the Acware (for Active Content WAREhouse) specification language, whose goal is to help all sorts of users to organize content in a simple manner. The problem we are faced with is the following: the data is semi-structured, and the operations to be executed on this data can be of any sort. Therefore we base our approach on XML, to represent the data, and Web Services, as generic components that can be tailored to specific applicative needs. In particular, we discuss the specification of mappings between the warehouse data and the parameters/results of services that are used to acquire and enrich the content. From the implementation point of view, an Acware specification of a content warehouse is compiled into a set of Active XML documents, i.e., XML documents with embedded Web service calls. These Active XML documents are then used to build and maintain the warehouse using the Active XML runtime environment. We illustrate the approach with a particular application drawn from micro-biology and developed in the context of the French RNTL e.dot project.
Topics covered:
- XML Data Warehousing

- Complex Data Warehouse Foundations, Design and Architecture

- Complex Data integration

- Maintenance and administration of complex data

INTRODUCTION
The management of non-quantitative content (emails, legal documents, Customer Relationship Management information, news articles, analysis reports, meta-data about audio/video/photos, and many more) that originates from various heterogeneous environments is a key issue for companies. In particular, with the broadening use of information retrieved from the World Wide Web by many applications, the integration of unstructured and unsure information with structured, proprietary data has sparked a lot of research these last years. This chapter deals with this difficulty, and proposes a model and system to simplify this task. More precisely, we propose a model to design a (Web) Content Warehouse and tools to build and maintain it.

The focus of this chapter is non-quantitative information, since the field of data warehousing is vast. Therefore the processing of quantitative information with traditional warehousing techniques is beyond the scope of this paper. Let us introduce the term Content Warehouse (CW) (Abiteboul, 2003). We call Content Warehouse any (large) amount of non-quantitative information. The information need not be structured, and need not originate from a well established source. This contrasts with traditional data warehouses (Buneman, Davidson et al., 2003);Hammer, Garcia-Molina et al., 1995), whose sources are known, have a regular format, and whose data model is usually either relational or multidimensional. Many issues arise when building a content warehouse. First, it is necessary to identify and capture relevant content. This is achieved using standard services provided by ETL (Extract, Transform and Load) tools, search engines or Web crawlers that return flows of documents. The content is extremely diverse, ranging from structured (e.g., relational and Excel tables) to very unstructured data (e.g., plain text and HTML pages), and it needs to be cleaned, classified, transformed and enriched in order to be properly used. Designing such a warehouse requires, besides the specification of the data organization, the definition of meta-data information that enables users to understand the information better and exploit the warehouse. Furthermore, the construction of the warehouse involves the use of processing tools such as crawlers and classifiers. The originality of our approach is that we view all these tools as Web services (W3C, 2002). We will motivate further down this approach. Moreover, as content and user requirements evolve in time, a content warehouse must be maintained in order to reflect this evolution. This may be achieved, or at least facilitated, by the modularity of the architecture of the system. Therefore, the connection between the warehouse data and the services used to build and maintain it, is a key aspect of this approach.

In this chapter, we address the problem of designing, constructing and maintaining a content warehouse. We will discuss the following topics:
· A state of the art: we start the chapter with an overview of papers and systems on the topic of warehousing loosely structured data;
· A declarative warehouse specification language: we have defined a language that enables users to build the specification of an active (sometimes know as dynamic) warehouse. The Acware (for Active content warehouse) language supports the description of both warehouse data and meta-data, and also provides the necessary means to define how Web services operate on the warehouse in order to perform processing tasks such as feeding, classification, and transformation. The language uses XML types to describe both content elements and the interface of services;

· A compiler and execution platform: we have defined and implemented the Acware compiler. Starting from a warehouse specification, it generates an original instance of the warehouse, namely a set of Active XML (Abiteboul, Benjelloun et al., 2004) documents possibly containing some initial content. Active XML is a language based on the embedding of Web service calls inside XML documents. The warehouse is then constructed and maintained by the Active XML (AXML) system (Abiteboul, Benjalloun et al., 2002;Active XML), which, in particular, controls the activation of service calls;
· A library of basic Web services for warehouse construction: we have identified and implemented a set of useful Web services for feeding, monitoring, classifying, and enriching a warehouse. Building on new developments of AXML, we discuss pull and push services as well as synchronous and asynchronous ones. We also discuss services to monitor warehouse evolution, based on a representation of XML changes (Nguyen, Abiteboul, et al., 2001).
Organization

This chapter is organized as follows. We begin with a state of the art. Then we discuss our views on content warehousing. The next section deals with the data and service models we propose. The following section addresses the problem of connecting Web services to a content warehouse, and finally we describe the Acware architecture and mentions basic services we implemented with regards to two particular applications: building a content warehouse for food risk assessment. We close the chapter with a conclusion.
STATE OF THE ART
General Overview
The warehousing of Web data, and in particular XML warehousing (Nassis, Rajugan, et al., 2004), has stirred up both academia and industry in the last years. The data materialization approach of Web warehousing is opposed to the virtual integration approach that has been adopted by a number of works related to the problem of integrating heterogeneous data sources, such as (Draper, Halevy et al., 2001;Garcia-Molina, Papakonstantinou, 2000;Halevy, Ives et al., 2004). One of the first incursions in this area is the WIND (Warehouse of INternet Data) (Faulstich, Spiliopoulou et al., 1997) system, in which most of the translation and integration efforts are performed during the query processing, a key difference with the warehousing approach we follow, where integration of the information is immediate. To this regard, WIND has more of a mediator approach.
Web Warehousing
An important task of building and maintaining a content warehouse is to discover and gather relevant information. For many applications, most of the potential content has to be found on the Web then extracted from it. In this context, content warehousing turns into Web archiving (Abiteboul, Cobena et al., 2002). This technique involves defining the perimeter of Web pages of interest to crawl and accessing the selected pages (Cho, Garcia-Molina, 2000;Pokorný, 2001), as well as calculating their importance (Abiteboul, Preda et al., 2003) and monitoring their evolution in time (Marian, Abiteboul et al., 2001;Nguyen, Abiteboul et al., 2001). In the domain of Web news, Maria and Silva (Maria, Silva, 2000) propose a system to generate subject-oriented data collections by exploiting a learning method called Support Vector Machines to classify text documents from news Websites. Once relevant Web pages are retrieved, data transformations are often required to extract their content and finally convert it to the warehouse data format. In the XML context, the use of XSLT files that encode data transformation rules (Myllymaki, 2002) is generally widespread. It is worth noting that Web crawling consists of a time-consuming process, and usually requires optimization techniques such as crawling parallelization (Cho, Garcia-Molina, 2002), and accessing some information, such as the hidden web, is difficult (Raghavan, Garcia-Molina, 2001).
Relevant Technologies

One may also remark that, although Web content is heterogeneous, XML is becoming the standard used to represent and store Web information (Mignet, Barbosa et al., 2003). This is an important observation, since it will simplify the process of feeding a content warehouse. Where once many different wrappers were needed for each standard (such as .pdf, relational data, .doc, etc…), the widespread use of XML leads us to envision that the difficulty residing in the integration of Web data is no longer the wrapping, but rather the mappings of the sources to the right location in the content warehouse, which can easily be done using XSLT, as we will show below. In (Rusu, Rahaya et al., 2005), Rusu et al. detail data cleaning and summarization in a systematic approach feeding data from XML sources into an XML data warehouse. Data cleaning is performed by analyzing and solving several types of schema and data level conflicts, while the data summarization process involves creating dimensions and collecting interesting facts from the data.
As we have just seen, XML is used to store the data. However, the tools used to process it are usually proprietary tools, written in specific application languages. We believe that all content warehouses have specific tasks in common (such as feeding, cleaning, etc…). The recent interest in Web Services has drawn us to the conclusion that many of the previous complicated tasks can be encapsulated and integrated using the latest technologies and standards (SOAP, 2003;UDDI;WSDL, 2003). There are many different sorts of web services available, some are synchronous, meaning that an answer is received immediately (or at any case within a minute) after the call is issued. Others are asynchronous. The latter can be of two types: some services that have a long processing time will be invoked, and will return their results later. Others will periodically send information to the warehouse, continuously feeding it with data. These different sorts of services can all be simply integrated by using the Active XML platform (Active XML). The whole point of this chapter is to show how the construction of a warehouse of XML data, using Web services to process the data, can be done in a simple and declarative way. In the rest of this chapter we will sometimes refer to Web services simply as services.
Multidimensional Data

Similarly to (Hümmer, Bauer et al., 2003), (Zhu, Bornhövd et al., 2000) propose a warehousing framework based on the “Metadata-based Integration model for data X-change” (MIX) with a strong emphasis on converting Web data into a multidimensional model (star schema). In (Hümmer, Bauer et al., 2003), multidimensional data is described by a family of XML document templates (called an XCube) that is used to exchange data cubes over a network. XCube enables users to efficiently download consistent chunks of warehouse data from Web servers, as well as to retrieve schema information in order to select relevant warehouse data cubes. This technique is used to avoid unnecessary data transfers. Multidimensional analysis is also used in (Golfarelli, Rizzi et al., 2001) to build data marts from XML data sources, where fact schemas (defined according to a Dimensional Fact Model) are semi-automatically generated from the DTDs of the XML data sources.

Graphical Design Tools

Graphical tools are often used to design XML data warehouses, such as in the DAWAX (DAta WArehouse for XML) system (Baril, Bellahsene, 2003), which is based on a view mechanism for regular XML data. In (Baril, Bellahsene, 2003), the warehouse is defined as a set of materialized views, and subsequently XML documents are filtered and transformed according to user requirements. XML to relational mappings defined on DAWAX views are then used to store the warehouse in a relational DBMS. Views are also used by Pokorný in (Pokorný, 2001), which focuses on capturing data warehousing semantics for collections of XML data, and proposes a framework to model XML-star schemas. The traditional data-warehouse dimensions are defined as views over the XML-warehouse, using the pattern matching capabilities of XML query languages (Pokorný, 2002).

Content warehousing is also related to the design of Web applications. The Web Modeling Language (WebML) (Ceri, Fraternali et al., 2003) consists of a high-level notation for specifying complex, data-intensive Web sites. The focus of WebML is to define the structure of Web pages and the topology of links between them. This language contributes to the development of services that can feed a content warehouse, since it enables the publication of generic specifications of Web content.

Active Databases

Research on active databases, such as (Widom, Ceri, 1996), is also related to the topic of content warehousing. However, the context is no longer relational or object-oriented databases, but instead semi-structured content warehouses: Where active databases define rules and use triggers to activate SQL operations on relational data, a content warehouse invokes Web services; these Web services may be programs written in any language, that perform complex tasks, using an input produced by a query on the warehouse, and producing a result to be stored in it. Thus, one of the specific difficulties of our setting is interfacing services and data.

Commercial Tools

Warehousing Packages
Actual Commercial warehousing tools, such as Oracle9i Warehouse Builder and IBM DB2 Warehouse Manager, discard key aspects of content warehousing, such as semi-structured data and continuous feeding services. For instance data loaders, which take a long time to process, and return their results incrementally, are not supported. Moreover, they do not enable users to intuitively connect the warehouse schema with its feeding workflows. This glue is hard-coded in stored procedures that can be sequentially composed and triggered by the database system.
WebSuite (Beeri, Elber et al., 1998) proposes independent modules that can be combined to tackle complex tasks related to Web warehousing. However, WebSuite does not provide a uniform way of specifying the warehouse and, in our opinion, lacks some high level mechanism for the automatic cooperation between different modules.
In Data View Builder, an application included in the BEA WebLogic package for data integration(BEA), Web services can be used as data sources for feeding the warehouse. However, this functionality is limited to the construction of views over Web service results to populate the warehouse. On the contrary, in our setting, connecting a Web service involves building not only an view over the service result to populate the warehouse but also a view over the warehouse content to provide input to the Web service. Moreover, unlike our declarative approach, Web service invocation is performed through procedural language programming in (BEA) .
E.T.L. Tools
Off-the-shelf tools for extracting, transforming and loading (ETL) data into a warehouse, such as Business Objects Data Integrator, Reveleus, and iSoft Amadea, are outstanding machinery for dealing with relational or multidimensional data. These tools emphasize the specification of workflows in a very procedural manner, thus producing complicated load scripts. We see such ETL tools as complementary to our approach, as they can be used for feeding data into an Acware warehouse.
Web Service Development

In order to develop Web service applications, our experience has shown us that the simplest method is to write traditional java programs. Once deployed on a Tomcat web server via AXIS (AXIS) , these programs are automatically transformed into web services and the WSDL files are generated automatically. Let us stress that the development of Web services using this method has barely any overhead compared to writing and executing the Java application.
CONTENT WAREHOUSING
In this section, we discuss the notion of content warehousing. As we will see, an important distinction with classical warehouses is that it manages “content” and not only numerical data. In this chapter, we focus on the management of content, given that the many proven techniques for the management of numerical data (Widom, 1995) are beyond its scope. To illustrate our purpose, we will use the running example of the e.dot (e.dot, 2003-2005) warehouse.
The e.dot warehouse
Our case example will be the e.dot project (e.dot is a RNTL project financed by the French ministry of Research). This warehouse is used by biology experts who analyze food risk. Some of the warehouse information comes from relational databases managed by e.dot industrial partners. Some other information comes from domain ontologies developed at Institut National de Recherche en Agronomie. Finally, the warehouse must also be fed with information discovered and retrieved from the Web. To this end, the Web information is analyzed, classified, enriched and stored in the warehouse, once proper links to the relational and ontological information have been constructed. The warehouse was built using the Acware system, described in the next sections.
Content Warehouse

The problem we tackle is to provide an integrated view over distributed, autonomous and heterogeneous sources of content. Let us first explain what we mean by content. Let us make more precise the notion of content.

We introduce the term content, meaning any form of interesting information. A content element is the primary unit of information, but its scale is not fixed. Content elements may be documents, fragments of documents, relational tuples, or any relevant piece of information. For instance, a content element may be an email, a portion of email such as the subject field, or a collection of emails, i.e. an email folder. Some elements may stay in their original formats, such as PDF files, while other will be transformed.

 Secondly, we deal with warehousing. Warehousing is one aspect of data integration, which traditionally has two approaches: (i) mediation, where the integration remains virtual, and (ii) warehousing, where the data is stored in the integration system. Both approaches present advantages. In the warehousing approach information is fetched ahead of time. In contrast, in the mediation approach information may be cleaned and enriched before the arrival of a query. In this chapter, we adopt the warehousing approach. Our warehouse is organized logically according to a global schema. This is the organization that a user sees, while browsing or querying the warehouse.

On the Web, content has less structure. Quite often it is stored in semi-structured or very loosely structured format, such as HTML or XML. This motivates the use of XML, the Web standard for data exchange and a semi-structured data model, as the core data model to describe content (Abiteboul, Buneman et al., 2000). With XML, one can capture plain text just as well as it is possible to capture very structured information such as relations. XML is also convenient for managing meta-data, an essential component of such contexts.

Why use Web services ?
As we just mentioned, XML is the standard for data exchange on the Web, and we use it as the core format for representing information. We also want to see all processing performed in the context of the warehouse as Web services based on Web standards such as SOAP (Rusu, Rahaya et al., 2005), WSDL (WSDL, 2003) and UDDI (UDDI). Web services are the new, simple way, of integrating of applications. As we mentioned, it is possible to build a Web service for virtually no cost, if the program is an independent Java (or C++) application. For instance, the process of feeding information into the warehouse, a focused crawler program, is provided by the corresponding Web service. Similarly, if we want to enrich some documents, by tagging key concepts, summarizing their content, classifying them, etc., by using a popular application, this may also be done by turning the application into a Web service. Web services provide a uniform interface for describing a wide range of valuable, dynamic, up-to-date sources of information (acquisition) and processing (enrichment). These are all viewed as possibly remote applications with an interface based on WSDL and XML schema, W3C standards.
Active warehousing
We believe that a fundamental aspect of a content warehouse is to be dynamic. Warehouse content evolves when new information is acquired, enriched, or when its specification is modified. This is why we use the term Active Content Warehouse. This means that the warehouse system provides support for controlling changes over time such as a versioning mechanism. But it also means for instance, that the administrator is able to request the execution at regular time intervals (e.g., weekly) of some specific tasks such as the crawling of a site of interest in search for new relevant information. Similarly, users may request to be notified when some particular kind of information is discovered. In our system, the versioning is performed by a versioning Web service, and the regular calls are a functionality of Active XML, the execution platform.
Main functionalities

We are faced with the following problems: global schema design, content acquisition, enrichment, exploitation, and storage, view management, change control and administration. See Figure 1 for an illustration of various warehouse interactions. These tasks are not independent. For instance, information brought from the relational DB pilot the Web search for related information, which in turn, leads to the retrieval of more relational information about other food products, and so on.
[image: image1.png]Warehouse
Services

g EDOT
Integration of
Validated data ?

Biologist work

-validation
-querying

Figure 1. The e.dot warehouse.

We examine next the different aspects mentioned.
Global schema design
The design of a content warehouse consists primarily of the specification of a logical organization, i.e., which kinds of content elements belong to the warehouse, how they are classified, organized, and what meta-information is maintained for them. A simplified structure for the e.dot warehouse is depicted in Figure 2.

[image: image2]
Figure 2. An Acware on food-risk assessment.

Acquisition
In the spirit of ETL tools, one goal of the warehouse is to locate content elements in source information systems, obtain, transform and load them in the warehouse. The sources may be relational databases, tree-ontologies or Web sites, but one would like to be able to obtain data from virtually any system, e.g., LDAP, newsgroup, emails, file systems, etc. To have a uniform view of the external world, we use Web services. As we have stressed, it is easy to create a web service, so one can easily wrap an information source into a Web service, but this may also be done for Web crawlers or any ELT tool. Content may be acquired from external systems in pull or push mode.
In the e.dot warehouse, relational databases provide (among other things) information about allergic reactions. Documents about food products are gathered by crawling HTML and PDF documents from Web sites. These pages are obtained by alternating search phases (Google Web API) and focused crawling phases.
Acquisition also often involves humans such as domain experts who are asked to validate some information or edit meta-data: In e.dot, when a table is extracted from a PDF document and entered in a measurement database, an expert is asked to validate the results of the table analyzer.

Enrichment
The goal is to enrich the warehouse, in other words, add value to its content. This may involve translation to XML (XML-izers for various formats), structural transformations (using an XSL processor), classification, summarization, concept tagging, etc…Enrichment acts at different levels:
1. enrichment of some document’s meta-data, e.g., classification;

2. enrichment inside the document, e.g., extraction and tagging of concepts;
3. discovery of various relationships between documents, e.g., tables of content or indexes.

In the e.dot example, a lot of measurements that interest the biologists are found in tables in publications (typically PDF). An acquisition role would be to discover such tables. An enrichment role is to extract their structure and then when possible, understand their semantics so that they can be turned into knowledge.
Storage
The warehouse must store massive amounts of XML. Additional data is stored in databases and in file systems, such as the raw PDF files. The system must also support the indexing of data and meta-data, the processing of queries over XML data, and the integration with other data sources. Finally, it must provide standard repository functionalities such as recovery, access control and (to a less extent for the e.dot application) concurrency control.

Change control
The time dimension of information is important and leads to issues such as versioning (Maria, Abiteboul et al., 2001). On the one hand, administrators also want to monitor the evolution of the warehouse: control its size and verify that it is used properly. On the other hand, warehouse monitoring is of interest to users, for instance technology surveillance: users want to be able to place a subscription to be notified when a newspaper article is discovered on a particular bacteria or when some group published a new article.
Exploitation
The exploitation of the warehouse involves a number of accessing and editing functionalities. Besides hypertext navigation, access is provided via full text search, canned or ad hoc queries (some XQuery-like language for XML). Interfaces (Web sites or dashboards) are proposed, that organize the information along a variety of dimensions and classifications to facilitate the analytical processing of the content. In such a context, the user can zoom in and out in the content and query results; he may also use tools to, such as, sort, filter or summarize content. Let us note that such an exploitation of the warehouse is enhanced by work performed during its construction. Indeed, an important role of content enrichment is to simplify the subsequent exploitation of the warehouse.

The user can also enter new content, edit meta-information, or annotate existing content. Such updates are performed using customized forms and standard Web browsers. Content editing may also be performed from standard editors with the WebDAV protocol.
Last but not least, support for the generation of complex parameterized reports, and on-line analysis of content, is provided. In all these activities related to the exploitation of the warehouse content, the user relies on the warehouse schema and is assisted in his queries by domain ontologies.
Views and Integration
The system also provides tools for building user views. Building a view usually means restructuring some classes of documents via query language such as XQuery or via XSL/T transformations; other views are constructed through the integration of heterogeneous collections of content elements. One should also consider proposing automatic or semi-automatic tools to analyze a set of XML schemas integrate them and then support queries on the integration view. Ontologies play an important role in this context.

Administration
The warehouse can be administered through a Graphical User Interface or by using an Application Program Interface. This includes in particular the means to register acquisition and enrichment tasks, the management of users and of their access privileges, as well as the control on-going tasks such as backup and failure recovery.
We will see that an important issue in this setting is how processing relates to the warehouse. This problem leads to two questions: where does a Web service that is used in the warehouse take its input values, and where does it store its results? These are important aspects described here.
THE ACWARE MODEL
In this section, we describe the Acware model and the language used to specify Active Content Warehouses. Our goal was not to define yet another database model. So, the components of our model are conventional and the warehouse organization, basic. However, in the e.dot experiment, we found it powerful enough to satisfy the needs of a highly complex application and particular useful to describe how relevant Web services are used.
The model may be broken into three distinct components:

· The type system that describes the data known about content elements;

· The schema that organizes elements in classes related by an enrichedBy relation;
· The service model, used to declare the Web services used, as well as describing how they build their inputs and where they place their results.
We consider next these three components.
The Type System

The Acware type system is based on (i) basic types, (e.g., string, integer), (ii) user-defined types obtained by compositing already defined types; and (iii) collection types. The data types follow the following abstract syntax:

(:: basic (complex
basic :: string (integer (float (…

complex :: composite (collection
composite :: [(ℓ)1: (1, ℓ2: (2, …, ℓn: (n]

collection :: {composite}
The ℓi represent attribute labels. Parentheses in composite type definitions indicate the key attributes. We impose for each composite type to have a key. We assume that the key of a basic data type is its value, while for a composite type it is recursively defined as the key of its key attributes. An attribute of type collection is not allowed to be a key attribute. There exist some restrictions in this type system; for instance, it is not possible to define directly a collection of collections. An element in a collection is identified by its key.
Figure 3 shows some type specification for the e.dot content warehouse (simplified for presentation purposes). The type definitions are given in XML syntax. Observe the key attribute in all composite type declarations. An alternative description of key attributes can be given as path expressions, in the spirit of (Buneman, Davidson et al., 2003). For example, the instances of the collection type edot are uniquely identified by the path edot/food_allergy/source/name.
<AcwareTypes>

 <type name=’source’ class=’composite’

 key=’name’>

 <child label=’name’ type=’string’ />

 <child label=’MPD’ type=’integer’ />

 </type>

 <type name=’symptom’ class=’composite’

 key=’name’>

 <child label=’name’ type=’string’ />

 </type>

 <type name=’symptoms’

 class=’collection’ of=’symptom’ />

 <type name=’product’ type=’composite’

 key=’name’>

 <child label=’name’ type=’string’ />

 <child label=’refDose’ type=’integer’ />

 </type>

 <type name=’products’

 class=’collection’ of=‘product’ />

 <type name=’food_allergy’

 class=’composite’ key=’source’>

 <child label=’source’ type=’source’ />

 <child label=’related_products’

 type=’products’ />

 </type>

 <type name=’edot’

 class=’collection’ of=’food_allergy’ />

</AcwareTypes>

Figure 3. Some types for the e.dot warehouse.

We would like to stress the importance of keys in the model. We found it essential to have such keys to identify elements in the warehouse and facilitate the use of Web services. In general, when performing a Web service call, we will often record the key of some warehouse element that we use to find where to insert the results.

The Acware Schema

The schema of a content warehouse is defined by declaring collections of elements and their enrichedBy relationships. The Acware system then uses these classes and their data type definitions to generate a tree-based (XML) representation of the warehouse schema.

Observe in Figure 4 that the food_allergy entity is enriched by the collection reactions (of type symptoms). Notice that we use different tags for elements of composite, collection and basic types. This results in a better visualization of the schema in a graphical user interface.

<AcwareSchema>

<collection name=‘edot’ datatype=‘edot’>
 <entity name=‘food_allergy’

 datatype=‘food_allergy’>

 <entity name=‘source’ datatype=‘source’>

 <basic name=‘name’ datatype=‘string’ />

 <basic name=‘MPD’ datatype=‘integer’ />

 </entity>

 <collection name=‘related_products’

 datatype=‘products’>

 <entity name=‘product’ datatype=‘product’>

 <basic name=‘name’ datatype=‘string’ />

 <basic name=‘refDose’

 datatype=‘integer’ />

 </entity>

 </collection>

 <collection name=‘reactions’

 datatype=‘symptoms’ enrich=‘yes’>

 <entity name=‘symptom’ datatype=‘symptom’>

 <basic name=‘name’ datatype=‘string’ />

 </entity>

 </collection>

 </entity>

</collection>

</AcwareSchema>

Figure 4. The Acware schema of the e.dot warehouse.
As can be seen in Figure 4, the Acware schema forms the skeleton of the warehouse. The schema is used to generate an XML-Schema that the content warehouse is compliant with. Therefore, the warehouse becomes immediately available once the construction of the types and schema is finished.
The Service Model

The service model defines the Web services that are used in the content warehouse, and how both inputs and outputs are connected to the Acware instance. A Web service is declared by providing the URL of a WSDL file. To correctly connect a Web service to a content warehouse, three important questions must be answered: (i) what are the service inputs; (ii) where should the service outputs be stored in the warehouse; and (iii) when to trigger the service calls.

The answers for the first two questions are provided by specifying service mappings between the Acware schema and the service operations. Formally, a service mapping consists of an association rule of the form:

service#operation :([Qin Uout]
Qin specifies how to find the input to the Web service and Uout where to place the results. More precisely, for each operation of a given Web service, the user must define an XQuery and an X-update statement: the input query constructs the input of the Web service, and the update statement takes the information found in the output and places it in the Content Warehouse.
In the next section, we will detail the construction of the input query and the update statement since these are novel ideas that turned out to be essential in the approach considered here. But first, let us briefly describe how to deal with the third aforementioned problem, i.e., the problem of when to call the services. The Acware system is in charge of activating the service calls when needed. For instance, when new relevant documents are discovered on the Web, one would like to automatically schedule a call to a service to classify these new documents according to the domain ontology. To control the activation of services, the warehouse relies on all the features provided by Active XML (Active XML). This is one aspect that motivated the use of Active XML. This control includes a number of possibilities such as activating a call: (i) at some particular time frequency, (ii) when some event occurs (e.g., a particular document is discovered), (iii) when it is explicitly requested by the administrator, (iv) lazily when some particular data that the call may return is needed, or (v) in push mode, i.e., when some external server decides to. The control of service call activation, guided by parameters (attributes in the AXML incarnation) of the service calls, turned out to be greatly simplified through the use of AXML.
INTERFACING WEB SERVICES
A given service may take several inputs and return several outputs, so it may be necessary to define several service mappings to connect one operation of a Web service to the content warehouse. In this section, we consider in more detail how each mapping is defined.
Overview

Quite often, the output of some service call should be stored close to, or at least at a place related to the warehouse elements that are used as the service call inputs. For instance, in the e.dot warehouse, when a call to the service GetRelatedProducts returns the list of products related to a specific allergenic source (such as “cheese” is related to the source “milk”), the Acware system has to identify that these products are going to be related_products of the food_allergy element which source has name = “milk”. This is achieved by attaching in the query that is used to define the service inputs, some context information about the location of the input data. This context information is provided as an identifier using a path descriptor, as illustrated in Figure 5.
[image: image3.png]2- Call Web Service
1- Create Input Data

WSDL compliant input

Additional
context information

Web Service
(WSDL input
And output)

3- Get Results

WSDL compliant output

Copy of
context information

Context

Warehouse

Update Scripts

6- Update Warehouse
using context information

5- Create Update Scripts

Figure 5. How service calls work in an Acware.

In the Acware system, we use XOQL (Aguilera, 2000), a home made query language for XML. This is because at the time the e.dot project started, no query processor for XQuery existed, but XOQL is similar to XQuery. We enhanced XOQL with XUpdate to capture XML updates.

The Input Query
Given a Web Service and the Content Warehouse Schema, an XOQL query Qin is used to construct the input to the Web service. Additional context information, which will be needed in order to correctly place the results, is captured by the query result in var elements, each with a unique name attribute. All these elements are stored under a context_info element of the query result. Most of these queries can be automatically generated using a GUI.
The Update Statement
The update is described using XUpdate operations. These may be either insert operations, if we are adding new elements, or update operations if we are modifying already existing nodes. The semantics of these operations are defined in the XUpdate specification. Clearly, one can insert a new element only in a node that already exists. To insert some new information in the Warehouse, we construct the key of the new element, then insert it using an xupdate:insert operation. In order to check this, we use in each XUpdate operation a key attribute that is used by the system to verify easily whether the update is correct with regards to the definition of keys in the data model. The update may have to use context information constructed by the query. (See Figure 5 that illustrates this mechanism.) The use of keys in order to access single elements in each collection of the warehouse is crucial for the simplicity of the model, and is a slight enhancement that we have added to XUpdate for clarity. The key attributes are used in XUpdate expression to help the update processor to check that the queries are correct in so far as they define keys when inserting values into collections.
To illustrate this, we will use the connections between the warehouse and two different Web services, namely, GetAllergySource and GetRelatedProducts.
Fetching and Transforming Data

Consider first a GetAllergySource service. This particular service does not use any input parameter; thus, the corresponding input query is empty. The service returns an XML element such as:

<output>

 <allergySource>

 <name>milk</name>

 <MPD>40</MPD>

 </allergySource>

…

</output>

Suppose the above output element has been received as an answer for the GetAllergySource call. The Acware system uses the following update statement, which determines where the service results should be stored in the warehouse, thanks to the use of keys. This step may also involve some data transformations. For instance, one may want to construct food_allergy elements from the return values of GetAllergySource. In this particular case, the update statement may be specified by:

SELECT

<xupdate:modifications>

{

 SELECT
 <xupdate:insert path=“/edot/” key=”food_allergy/source/name” >

 <food_allergy>

 <source>

 <name>$A/name</name>

 <MPD>$A/MPD</MPD>

 </source>

 <related_products />

 <reactions />

 </food_allergy>

 </xupdate:insert>

 FROM

$A IN $DOC/allergySource

 }
</xupdate:modifications>

FROM

 $DOC IN /output/

Observe that the key path (food_allergy/source/name) is computed relative to the end of the insert path. If the system is unable to locate the key path in the update statement, then the statement is simply discarded and an error message issued. This is the only validation that is performed on the updates. Apart from this, users are free to define any updates they want.

Managing context information

In the next example, we illustrate how the Acware system combines the result of a service call to the corresponding service input, thus providing location context (information). Consider a GetRelatedProducts service of the e.dot warehouse, which takes a single input parameter (the name of an allergenic source) and returns some related food products. Based on path expressions for the service input, one call will be activated for each existing source element. The issue here is that the results of each service call must be placed according to the source element that generates each call. To do this, we keep some context information for each call, i.e., the key of the corresponding allergenic sources. This context information is captured by the input query. In this example, the input query is:

SELECT

 <input name=”GetRelatedProducts” >

 <source>

 <name>$A/source/name</name>

 </source>

 <context_info>

 <var name=’A’>$A/source/name</var>

 </context_info>

 <input>

FROM

 $A IN /edot/food_allergy/

The system activates one call of the GetRelatedProducts service for each input element returned by the input query. Besides that, the result of each service call is annotated with the corresponding context_info element that contains the key, thus indicating where the data came from. In this example, the data is equal to the key, but this is not necessarily the case. The path in the context_info/var element is the path of the key, whereas the path in the source/name element is the path of the data transfered to the service. The update statement can then use this context information.
Now suppose the following is returned by the service call with source/name=”milk”:

<sc_results>

 <output>

 <product>

 <name>cheese</name>

 <percentage>80</percentage>

 </product>

 …
 </output>

 <context_info>

 <var name=’A’>milk</name>

 </context_info>

</sc_results>

The output subtree in the document represents the direct output of the Web Service, and the context_info subtree is inherited from the input query. The context information can then be used to define the update, i.e., append the result of the call to the proper food_allergy subtrees. The update statement may for instance be:
SELECT

<xupdate:modifications>

 {

 SELECT

 <xupdate:insert

path=”edot/food_allergy[source/name=$A/context_info/var[@name=’A’]/related_products/” >

 <product>

 <name>$B/name</name>

 <refDose>$B/percentage</refDose>

 </product>

 </xupdate:insert>

 FROM

 $A IN $DOC,
 $B IN $A/output/product

 }

</xupdate:modifications>

FROM

 $DOC IN /sc_results

In all the examples, it is important to note that with respect to the XUpdate format, the data modifications are encapsulated inside an xupdate:modifications element.
Automatic generation of queries
In the case of simple queries, where the inputs and outputs can be defined by simple path to path mappings, the system provides a graphical interface that automatically generates the queries. This is the case for most services we used from the Web in e.dot. However, the description of the algorithm that generates these queries is beyond the scope of this paper. For more complex cases, a general algorithm that generates queries that use complex restructuring remains ongoing work.

To summarize, the use of each service requires the construction and execution of a query and an update that control service invocation. The query is used to construct the input values for the Web services and the XUpdate request uses the return value of the service together with some context information to modify the warehouse.

ARCHITECTURE
We discuss in this section the implementation of the Acware system. Acware specifications are compiled into Active XML (AXML) documents that are then handled by the AXML system. We briefly present AXML and then discuss our implementation of Acware. We also describe a library of basic Web services for Content Warehousing that were developed to build the e.dot warehouse.

We want to stress that the construction and maintenance of a content warehouse is a complex task that required the integration of many technologies. Our approach was to use emerging Web standards to take advantage of an open platform and easily reuse the software in other projects.
Active XML

We first present Active XML, a framework based on the idea of embedding calls to Web services in XML documents (Active XML), which is the basis of the Acware system.

In Active XML, parts of the data are given explicitly, while other parts consist of calls to Web services that are used to generate more data. AXML is based on a P2P architecture, where each AXML peer acts both as a client, by activating Web service calls embedded in its documents, and a server, by providing Web services that correspond to queries or updates over its repository of documents. As already mentioned, the activation of calls can be finely controlled to happen periodically, in reaction to an event (in the style of database triggers), or in a “lazy” way, whenever it may contribute data to the answer of a query.

 AXML is an XML dialect. Some particular elements are used to denote embedded service calls. Data obtained by a call to a Web service may be viewed as intensional, because it is originally not present. It may also be viewed as dynamic, since the same service call might return different data when called at different times. When a service call is activated, the data it returns is inserted in the document that contains it. Therefore documents evolve in time as a consequence of call activations. Thus the decision to activate a particular service call or not is vital. In some cases, this activation is decided by the peer hosting the document. For instance, a peer may decide to call a service only when the data it provides is requested by a user; the same peer may choose to refresh its data returned by another call on a periodic basis, say weekly. In other cases, the service provider may decide to send data to the client because the latter registered to a subscription-based service.

A key aspect of this approach is that AXML peers exchange AXML documents, i.e., documents with embedded service calls. Let us highlight an essential difference between the exchange of regular XML data and that of AXML data. In frameworks such as Sun's JSP or PHP, dynamic data is supported by programming constructs embedded inside documents. Upon request, all the code is evaluated and replaced by its result to obtain a regular, fully materialized HTML or XML document. But since Active XML documents embed calls to Web services, and the latter provide a standardized interface, one does not need to materialize all the service calls before sending some data. Instead, a more flexible data exchange paradigm is possible, where the sender sends an XML document with embedded service calls (namely, an AXML document) and gives the receiver the freedom to materialize the data if and when needed.

The work on Acware and the construction of the e.dot warehouse have been very useful for testing and improving the AXML system. The AXML system turned out to be very appropriate primarily because it is based on XML and Web services, two key components of Acware. Furthermore, AXML provided us with a very powerful support of the activation of services. It should be noted that, motivated by e.dot and Acware needs, AXML was extended to support asynchronous and stream services, two functionalities that are, as we realized, essential in the context of content warehousing.

System Architecture

The Acware architecture is shown in Figure 6. There are three main components:

· A graphical design interface that is used to generate a specification in the declarative language used
· A compiler that generates AXML documents and services from the declarative specification; and

· An execution platform that consists of an AXML peer that manages the content warehouse.

[image: image4.png]Design

s E—

S S

AXML
platform

er GUI

Acware specification

piler

AXML application

Figure 6. The Acware architecture.

The Acware graphical interface enables an intuitive design of warehouse specifications. In order to achieve this goal, the tool provides three distinct working areas: one for data type definition, one for schema management, and one for Web services and service mappings. The warehouse data types are specified in a bottom-up approach, with simpler types defined first. Simple types (such as string, float, and int) are predefined in the system, and are used to create more complex (composite or collection-based) types. Users can graphically specify the enrichedBy relationship. Users can also register Web services from the Internet by providing the location of their WSDL file, which is used to import the definition of the types of services’ input and output parameters. Then, users can graphically define mappings between these services’ input and output parameters and the warehouse elements. Mappings on input parameters represent XQueries on the Warehouse. By using the graphical interface, we automatically generate the mapping queries, for very simple cases. However advanced users may also write their own XQueries to connect services in a more complex manner.

The output of an Acware specification using the graphical interface consists of an XML file containing the entire warehouse specification (data types, schema, and service mappings).

The Acware compiler takes this specification and generates an instance of the warehouse: an AXML application, i.e., some AXML documents and services (Xqueries/XSLTs). In a nutshell, the AXML documents represent the skeleton of the warehouse, and the services represent the control levers of the application. The exact detail of the algorithms used to compile the Acware specification into the AXML application is beyond the scope of the paper. Let us now detail the documents and services produced, and what they are used for.

The AXML documents produced by the Acware compiler are:

· the warehouse schema;
· the initial warehouse load, which consists of user-provided data that are used to construct the initial state of the warehouse;

· a workspace document, that is used by the system to keep incoming data until some transformations are performed before properly feeding them in the warehouse.

The compiler also produces specific AXML services, in this case XSLT style-sheets that are used to call the services used in the application. For instance, an XSLT document is generated for the GetAllergySources service, which when applied to the warehouse, generates the AXML service call nodes in the workspace document. Let us stress that this operation is the construction of the service calls, i.e., defining what service must be called at what time, given the information found in the warehouse, and not the activation of their call. The activation of the service calls is controlled at runtime by the AXML system, and is automatic, once the AXML service call nodes have been defined. We call these XSLT style-sheet the control levers of the application, because it is their activation that controls which service calls are to be evaluated or not.

We want also to stress that the XSL service calls are AXML specific service calls that construct the calls to the application related services. The compiler does not directly create the service calls to the application related services, but generates XSL services to dynamically regenerate these calls. For instance, in the case of the GetRelatedProducts service, this service needs as an input the value of a product, thus it is not possible to call it before having called the GetAllergySources service, and moreover the input of the GetRelatedProducts service is constructed with information produced by the GetAllergySources service. The XSL service calls’ goal is to help scheduling the order and construction of these calls. The XSL services can be automatically called, or manually triggered.

Basic Web Services for Content Warehousing

Our approach strongly relies on the use of Web services. Each basic warehousing task, such as Web crawling or content classification, is associated to one or more Web services. For the purpose of e.dot, we have built and tested a library of common, basic Web services for Content Warehousing. Some of the services of the library were found on the Web, e.g., Google search, whereas others were developed by us or by e.dot partners. Some of the services are run locally whereas others run remotely and are linked to the warehouse via the SOAP protocol for Web services.

Crawling services. A first class of warehouse services consists of those related to Web crawling. These services are in charge of discovering and retrieving Web pages. In the context of e.dot, we used Xyleme Crawler(Xyleme, 2001), a very efficient crawler with some sophisticate monitoring of the stream of crawled pages that we developed in a previous project. This crawler was tested over a billion Web documents, from which filtering services selected a list of approximately 22.000 URLs related to food risk.

Classification and clustering services. Once we have identified relevant Web resources, we need to classify and cluster their content. To this end, we use a clustering algorithm developed at the University of Athens, in the Thesus system (Halkidi, Nguyen et al., 2003). Some functions of the Thesus systems were wrapped as Web service. The services are used remotely from Athens, e.g., to cluster the 22.000 selected URLs, Thesus services were also useful to further filter Web contents, by identifying and grouping together both interesting and uninteresting (unrelated to the topic of food risk) documents.

XML-izing services. An important group of services used in the e.dot project is related to the extraction of the “XML structure” of Web data. These services convert diverse data formats into XML. For example, a lot of work was devoted to identify table structures in PDF documents, extract their structure and semantics, and represent the information in XML. In this particular context, an expert is asked to validate the data that has been extracted.
Services that transform temporary warehouse data. These are declarative, template-based services that merge Web service results into the warehouse. We have used XSLT as the programming language to implement these services in the AXML framework.

Change control We also turned some change control tools (Marian, Abiteboul et al., 2001;Nguyen, Abiteboul et al., 2001) into Web services to monitor and version documents in the warehouse. These tools allow transparent and automatic versioning of the warehouse. The use of deltas lets us reconstruct on the fly the contents of the warehouse.
FUTURE TRENDS AND CONCLUSION
We have presented the Acware approach for building and maintaining domain specific content warehouses: a declarative specification is constructed, using the Acware language. Then, this specification is compiled into an Active XML application that is run on an AXML system. The approach is based on a simple hierarchical organization of information and uses Web standards extensively, in particular XML. All computations that acquire information or enrich it are viewed as Web services. Our technical contributions are the declarative specification of how data from the warehouse may be used as input of the services, and how the results are inserted in the warehouse.
We have illustrated our work from one particular application from biology but many different disciplines may find a use for more loosely structured data management systems and content warehousing. In such domains, information is very often partial, incomplete, and represented in various ways. Furthermore, experts of these domains are rarely computer science literate. In a recent sociological application (Dudouet, 2005), regarding the sociology of the I.T. standardization universe, we have also experimented with the ideas developed in this chapter. The advantages of our approach are mainly the simplicity and expressiveness of the model, even to non experts. The problem can be reduced to the interaction of services, that take input information and produce data, and of the warehouse, whose structure must be defined in joint interaction between computer science experts, and the users of the system (in our case sociologists.)

A lot of works remain to be performed in this area. In particular, we are not satisfied with the user interfaces and believe they can be greatly improved. The library of standard Web services useful for content management is being extended. Finally, we are working on a Peer-to-Peer content warehousing system named KaDoP (Abiteboul, Manolescu et al., 2004). The idea would be to provide similar functionalities without devoting new computer resources and while keeping full control on information (Abiteboul, 2003).
Acknowledgments: We want to thank members of the Gemo group at INRIA and of Xyleme SA for discussions on the topic. G. Ruberg is supported by Central Bank of Brazil and CNPq. The manuscript contents express the viewpoint of the authors only, and does not represent the position of these institutions.
REFERENCES
Abiteboul, S. (2003). Managing an XML Warehouse in a P2P Context. Proceedings of the 15th International Conference on Advanced Information Systems Engineering, invited talk. 4-13.
Abiteboul, S., Benjelloun, O., Manolescu, I. Milo, T. & Weber, R. (2002). Active XML: Peer-to-Peer Data and Web Services Integration. Proceedings of the 28th International Conference on Very Large Databases. 1087-1090.
Abiteboul, S., Benjelloun, O., & Milo, T. (2004). Positive Active XML. Proceedings of the ACM Special Interest Group on the Management Of Data Conference (SIGMOD).

Abiteboul, S., Buneman, P., & Suciu, D. (2000). Data on the Web. Morgan Kaufmann Editors.

Abiteboul, S., Cobena, G., Masanes, J., & Sedrati, G. (2002). A First Experience in Archiving the French Web. Proceedings of the 6th European Conference on Digital Libraries. 1-15.

Abiteboul, S., Manolescu, I., & Preda, N. (2004). Constructing and querying P2P warehouses of XML resources. Semantic Web and Databases Workshop.

Abiteboul, S., Preda, M., & Cobena, G. (2003). Adaptive On-line Page Importance Computation. Proceedings of the 12th International Conference on the World Wide Web.
Active XML home page. At http://www-rocq.inria.fr/gemo/Gemo/Projects/axml/
Aguilera, V. (2000). X-OQL Homepage. At http://www-rocq.inria.fr/~aguilera/xoql/
Baril, X. & Bellahsene, Z. (2003). Designing and Managing an XML Warehouse. Chapter 16, XML Data Management: Native XML and XML-Enabled Database Systems, Addison Wesley, 2003, ISBN 0201844524.

BEA Liquid Data for WebLogic. At http://www.bea.com/
Beeri, C., Elber, G., Milo, T. et al.. (1998). WebSuite: A Tool Suite for Harnessing Web Data. Proceedings of the WebDB Workshop. 152-171.

Buneman, P., Davidson, S., Fan, W., Hara, C., & Tan, W.C. (2003). Reasoning about Keys for XML. Information Systems. 28(8), 1037-1063.
Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., & Matera, M. (2003). Designing Data-Intensive Web Applications. Morgan Kaufmann.

Chaudhuri, S., & Dayal, U. (1997). An overview of data warehousing and OLAP technology. ACM SIGMOD Record 26(1), 65-74.
Cho, J., & Garcia-Molina, H. (2000). The Evolution of the Web and Implications for an Incremental Crawler. Proceedings of the Very Large Databases conference. 200-209.

Cho, J., & Garcia-Molina, H. Parallel crawlers. (2002). Proceedings of the World Wide Web conference. 124-135.

Draper, D., Halevy, A., & Weld, D. (2001). The Nimble XML Data Integration System. International Conference on Data Engineering. 155-160.

Dudouet, F-X. (2005). Sociology meets databases. Ecole Grands Réseaux d’Interaction. Paris

e.dot Project. (2005). At http://www-rocq.inria.fr/gemo/edot/
Faulstich, L., Spiliopoulou, M., & Linnemann, V. (1997). WIND - A Warehouse for Internet Data. BNCOD. 169-183.
Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J., Vassalos, V., & Widom, J. (2000). The TSIMMIS approach to mediation: Data models and Languages. J. Intell. Inf. Syst. 8(2), 117-132.

Golfarelli, M., Rizzi, S., & Vrdoljak, B. (2001). Integrating XML sources into a data warehouse environment. IEEE SoftCOM. 49-56.

Google(. Google Web APIs. At http://www.google.com/apis/

Halevy, A., Ives, Z., Madhavan, J., Mork, P., Suciu, D., & Tatarinov, I. (2004). The Piazza Peer Data Management System. IEEE Trans. Knowl. Data Eng. 16(7), 787-798.

Halkidi, M., Nguyen, B., Varlamis, I., & Vazirgiannis, M. (2003). THESUS: Organizing Web document collections based on link semantics. Very Large Databases Journal. 12(4), 320-332.

Hammer, J., Garcia-Molina, H., Widom, J., Labio, W., & Zhuge, Y. (1995). The Stanford Data Warehousing Project. IEEE Data Engineering Bulletin. 18(2), 41-48.

Hümmer, W., Bauer, A., & Harde, G. (2003). XCube – XML for Data Warehouses. DOLAP. 33-40.

Maria, N., & Silva, M. (2000). Theme-based Retrieval of Web News. Proceedings of the WebDB Workshop. 26-37.

Marian, A., Abiteboul, S., Cobena, G., & Mignet, L. (2001). Change-centric Management of Versions in an XML Warehouse. Proceedings of the 27th International Conference on Very Large Databases.
Mignet, L., Barbosa, D., & Veltri, P. (2003). The XML web: a first study. Proceedings of the World Wide Web conference. 500-510.

Myllymaki, J. (2002). Effective Web data extraction with standard XML technologies. Computer Networks 39(5), 635-644.

Nassis, V., Rajugan, R., Dillon, T.S., Rahayu, J. W. (2004). Conceptual Design of XML Document Warehouses. DaWaK. 1-14.

Nguyen, B., Abiteboul, S., Cobena, G., & Preda, M. (2001). Monitoring XML Data on the Web. Proceedings of the ACM Special Interest Group on the Management Of Data (SIGMOD).
Pokorný, J. (2001). Modelling Stars using XML. DOLAP.

Pokorný, J. (2002). XML Data Warehouse: Modelling and Querying. Baltic DB&IS, pp. 267-280.

Raghavan, S., & Garcia-Molina, H. (2001). Crawling the Hidden Web. Proceedings of the S7th International Conference on Very Large Databases. 129-138.

Rusu, I., Rahayu, J., & Taniar, D. (2005). A Methodology for Building XML Data Warehouses. Int. J. of Data Warehousing & Mining 1(2), 23-48.

SOAP Version 1.2: Primer. At http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
Universal Description, Discovery and Integration of Web Services (UDDI). At http://www.uddi.org .
The W3C Web Services Activity. At http://www.w3.org/2002/ws/
Web Services Definition Language (WSDL). At http://www.w3.org/TR/wsdl/
Xyleme, L. (2001). A dynamic warehouse for XML Data of the Web. IEEE Data Engineering Bulletin. 24(2), 40-47.
Widom, J. (1995). Research Problems in Data Warehousing. Proceedings of the International Conference on Information and Knowledge Management.
Widom, J., Ceri, S., (1996). Active Database Systems: Triggers and Rules for Advanced Database Processing. Morgan Kaufmann.

Zhu, Y., Bornhövd, C., Sautner, D., & Buchmann, A. (2000). Materializing Web Data for OLAP and DSS. Web-Age Information Management. 201-214.
AXIS Homepage : http://ws.apache.org/axis/

name

…

symptom

…

…

food_allergy

"milk"

MPD

80

"cheese"

refDose

name

40

"asthma"

edot

product

product

symptom

name

related_products

reactions

source

food_allergy

_1167044111

