INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE 1(1) 2004 1-12

(
Filtering Web Documents for eDot, a food risk warehouse

Amar-Djalil MEZAOUR
Abstract— Knowing that more and more online thematic data is available, the web can be considered as a useful source for populating thematic warehouses. The warehouse data supplier must be able to filter the heterogeneous web content to keep only the documents corresponding to the warehouse topic. In this paper, we present our filtering approach implemented in an automatic tool called eDotFilter. This tool is used to filter crawled documents to keep only the documents dealing with food risk. These documents are stored in a thematic warehouse called eDot. Our filtering approach is based on WeQueL, a declarative web query language that improves the expressive power of keyword-based queries.
Keywords— web-mining, thematic warehouse, query language.
I. INTRODUCTION

A
thematic warehouse can be a good solution for collecting large amounts of information related to a given thematic and provided by different sources. Nowadays, the web is the most used source for supplying warehouses with data. The supplying process consists of a crawler that fetches the web to gather a lot of relevant documents to the warehouse. Due to the huge amount of available information in the web and its poor organisation, a crawler gathers also a lot of irrelevant and useless documents for the warehouse. Finding relevant material from the gathered documents can be a very hard task. To avoid the storage of irrelevant data in the warehouse, efficient and precise filtering tools must be used downstream of the data acquisition process. Two different filtering approaches can be implemented.
The simplest one consists in evaluating thematic keyword-based queries over search engines repositories to obtain a list of urls. These urls correspond to the documents that are more likely to be related to the warehouse topic (according to the search engine query evaluator). We call these documents the relevant documents. Note that, with this filtering approach, all the indexed documents in the chosen repositories constitute the candidates of the thematic warehouse to implement. These candidates are already known and crawled by the search engine crawler. So, intensive web crawling can be avoided and limited to only the relevant documents corresponding to the answers given by the search engine to the thematic keyword query. This filtering approach is used in the Thesus project [1] to populate a thematic data warehouse. The thematic of Thesus deals with technology documents. The authors have manually constructed a set of keyword queries to describe the technology topic. This set of queries has been submitted to Google [2] in order to collect the urls of the documents dealing with technology (relevant documents). This approach is very dependent on the precision of the used search engines and of the quality of the submitted keyword queries. In addition to this, keyword-based queries are not enough expressive to express complex requirements. For example, it is not possible to formulate a keyword query that can filter web documents according to their mime type, the fact that they contain tables having a given property…
The second filtering approach consists of achieving the filtering process during the web crawling. To do so, one has to build a specific web crawler suited to the thematic warehouse requirements. Such a crawler traverses the web in a restrictive mode to find the most possible relevant documents to the warehouse without exploring the entire web. This technique is known as Focused crawling[3,4,5] and is used to populate different topic-specific warehouses such as CORA and CiteSeer
. Focused crawling is built upon an intensive learning process that requires an important training set as input. In fact, a classifier is trained to learn a filtering function from a preliminary set of web documents labelled as relevant and irrelevant documents. This preliminary set is called the training set. To produce a precise and efficient filtering function, the training set must contain enough relevant and representative documents. Constructing such a set leads to the same issue as populating the warehouse itself: how to locate representative documents in the web starting from nothing! In addition to this, the labelling is often done manually which can be tedious for an important training set.

To summarize, two different approaches can be used to implement a filtering tool for a thematic warehouse: using a list of thematic keywords as a filtering query over a collection of documents or using machine learning techniques, during or after the web crawl, to recognize the desired relevant documents. Each approach can be viewed as a process that describes and characterizes the warehouse thematic. We believe that an elaborate description of the warehouse thematic can be very useful in the filtering process. This is what motivates the use of WeQueL [6,7] in the implementation of eDotFilter, the filtering tool of the eDot warehouse. WeQueL is a declarative and multi-criteria web language that improves the expressive power of keywords queries. eDot is a project aiming at building automatic and semi-automatic tools for the implementation of thematic warehouses. The chosen thematic is food risk. The targeted web documents (relevant documents) are defined as documents containing microbiological data for food risk prevention and assessment.

This paper is organised in 5 sections. In section II, we present

WeQueL the web query language that is in use in our filtering process. We introduce in section III our filtering approach. The experiments to validate our approach are presented in section IV. Finally, we conclude with the improvements and the on-going work.

II. WeQueL: Web Query Language
WeQueL [6,7] is an attribute-value language that allows a user to define its needs by combining several and different keyword-based criteria in one query. Each combined criterion targets its keywords to a specific part of a web document or describes a particular property of a document. For example, the title criterion allows the user to specify a list of keywords to search them in the title of the documents to evaluate whereas the mime criterion restricts the evaluation to the documents having the specified mime type. WeQueL proposes 9 different criteria that are the basic building blocks for complex queries. We call those criteria atomic queries. An atomic query is an attribute-value like query having the following form:

	qa:
	attribute
	contains
	[value0,…,valueN]

	
	
	Evaluated by
	semantic_constructor

A. The attribute of a WeQueL atomic query
The attribute of a WeQueL specifies the document part or the document property to target. As mentioned above, WeQueL offers 9 different attributes to focus the search on 9 predefined parts (sections) or properties of a web document:
1. page_title: When used in an atomic query, this section targets the search of value strings in the title of a document. For an HTML document, the title is defined as the set of words contained between the tags <title> and </title> or between <h1> and </h1> or in the value of the attribute content of the <meta name="title"> tag.
2. mime: This section restricts the evaluation of the documents to those having their mime type mentioned in the values part of qa. The values of an atomic query using mime section must be valid mime types (like text/html, image/jpeg…).
3. title_incoming_page: This section targets the search of the specified values of qa in each title of the documents that point to the evaluated document. Suppose that qa is evaluated over a document d. Suppose that d’ is a document pointing to d. Then, the evaluation of qa over d is equivalent to evaluate q’a over d’ such as q’a is the atomic query that uses the same values and the same semantic constructor as qa but targets the title instead of the incoming title.
4. url: This section targets the search in the url of each evaluated document.
5. outgoing_links: The outgoing links section allows the user to focus the search of the values strings in the words appearing in the neighbourhood of the outgoing links of a document. We defined the neighbourhood of a link as the words appearing in: its anchor, the tokens of the urls that this link refers to and the 10 words before and after the link (before the <a href> tag and after the closing tag).
6. incoming_links: An atomic query using an incoming links section is evaluated in the same manner as an atomic query using the previous section (outgoing links). The only difference lies in the fact that this section (incoming links) targets the neighbourhood of the links pointing to the document to evaluate.
7. keywords: This section is specific to HTML documents. It is used to target the content of the content attribute in the <meta name = "keywords"> tag (when this last one
exists in the document to evaluate).
8. object[type = 'T']: This section allows the user to focus the evaluation on the words appearing an HTML object. An HTML object can be a table, a graphic, an applet… For the eDot needs, we handled only tables and lists (i.e.,T('table_or_list'). We define a table in an html document as the words appearing between <table> and </table> tag, between <dl> and </dl> tag, between and and between and .
B. The values of a WeQueL atomic query
The values of an atomic query are separated by commas. They are sequentially searched in the content of the targeted section of the document to evaluate. Each value represents a string that contains a single keyword or a list of keywords separated by white space characters. Consider qa an atomic query that targets a given section s of web documents. Let's consider also value="w1 w2 … wn" one string value specified in qa. This value defines an occurrence order that we note: w1<w2<…<wn. The search of this string in the section s of a document consists in mapping each wi with a word (w’i(s) such that:

1. wi is a substring of w’i (s. We refer to this inclusion by: wi (w’i ;
2. The mapped words in s occurs in the same order as in value i.e., (i({1,…,n}: w’i<w’i+1.

We note this mapping by (.

Example: consider value="food data" to search in the title of 3 documents:
	Document title
	Value-title mapping (()
	Matching-success

	“food database”
	((food)=food < ((data)=database
	yes

	“data food table”
	((food)=food > ((data)=data
	no

	“on-line book store”
	((food)=((data)= (
	no

When all the words contained in a given value are mapped, this value is said matched over the section s of the evaluated document. A word w’(s is said to be relevant when: (value (qa, (w(value: (value is matched) ((((w)=w’).
C. Semantics of a WeQueL atomic query

The WeQueL language offers the possibility to determine how to exploit the matched values of an atomic query over a document to estimate the relevance of this document. In fact, the third part of an atomic query is reserved for the specification of the calculation method of a score that represents the relevance of the evaluated document according to the evaluated atomic query. We call this calculation method a "semantic constructor". WeQueL offers two categories of semantic constructors: logical constructors and numerical constructors.

A logical constructor is a calculation method that interprets the matched values in a propositional logic setting. The calculated score is then equals to 0 or 1. We implemented 5 logical constructors: disjunct which assigns 1 to the atomic query score when at least one value is matched, conjunct which assigns 1 when all the values of qa are matched, atleast(k) which assigns 1 when k or more values are matched, atmost(k) and exactly(k).
Unlike a logical constructor, a numerical constructor assigns a score comprised between 0 and 1. We implemented three numerical constructors. precision calculates the percentage of the relevant keywords in the targeted section of a document. When this score is high, this means that the evaluated document section contains a lot of the keywords mentioned in the atomic query. recall calculates the percentage of the matched values of the atomic query. A high recall score means that the evaluated section of a document covers a lot of the values specified in the query. Finally, fscore is a combination of the previous scores:
[image: image1.wmf]recall

precision

recall

precision

+

´

´

2

.
Having the definition of the atomic queries, WeQueL provides a combination formalism that permits the simultaneous (i.e., in the same query) targeting of different parts and properties of a document. We call this formalism a WeQueL combination and we note it C.

	C: 1.
	qmime .q1a.q2a…qN-1a.qNa
	((1.q’1a ,…, (M.q’Ma (

	
	1-weighted part
	(-weighted part

A WeQueL combination is an enumeration of weighted atomic queries where: one and only one atomic query must refer to the mime type, there can not be atomic queries duplicates (i.e., a combination can't have two title atomic queries). According to the used semantic constructors and the assigned weights, a WeQueL combination contains two disconnected parts: the part of the 1-weigthed part and the part of the (-weighted part where (< 1. The 1-weighted part contains the mime type atomic query and only logical queries. This part expresses the necessary conditions that a document must satisfy (i.e., evaluated to 1) to carry on the evaluation to the next part. The (-weighted part contains logical and/or numerical atomic queries that will determine the final score of each evaluated document. This final score is calculated over a document d by the following formula:

[image: image2.wmf]Õ

å

=

=

´

´

=

N

i

M

j

j

a

i

a

mime

q

d

score

q

d

score

q

d

score

C

d

score

1

1

'

)

,

(

)

,

(

)

,

(

)

,

(

To avoid the development of a specific syntactic parser, we defined an equivalent syntax for WeQueL queries based on the XML language. Therefore, we defined an XML-schema that describes how to build a WeQueL query. This schema is available at: http://www.lri.fr/~mezaour/WeQueLschema.xsd.

Thus, a WeQueL query is an XML document that must conform to this defined schema.
III. eDotFilter: the eDot filtering module
eDot is the acronym of Entrepôt de Données Ouverts sur la Toile"} which means data warehouses open to the web. Four partners are involved in this project: IASI-LRI team (http://www.lri.fr/iasi/), GEMO-INRIA project (http://osage.inria.fr/verso/), BIA-INAPG team (http://www.inapg.inra.fr/recherche/), Xyleme start-up (http://www.xyleme.com/). For more details on the project see http://www-rocq.inria.fr/~amann/edot/.

eDotFilter module is the filtering tool that determines from a set of crawled candidates documents, the ones to include in the eDot warehouse. To do so, our module uses a WeQueL combination query to estimate the relevance of eDot candidates to the food risk thematic. We call this combination the filtering query. The filtering query describes, in a declarative way, the content properties of the documents to include in the eDot warehouse (i.e., dealing with food risk). Microbiologist experts defined a food risk document as an HTML document having at least one HTML table that contains the most possible keywords from the food risk ontology used in eDot. Therefore, we used in the filtering query an atomic query that targets the html tables with all the keywords of the eDot food risk ontology. We also used the set of few relevant document examples given by our experts to enhance the previous atomic query with other different atomic queries. We wrote a java program that parses the content of these relevant examples and suggests in its output the values (strings of two consecutive words) to put in the different atomic queries. For example, our program extracted from the title tag of one of our relevant examples the string: fda/cfsan-approximate ph of foods and food products. This string is cleaned from its common words (like articles: of, and…) and split into a list of 6 suggestions to put in a title atomic query: fda cfsan, cfsan approximate, approximate ph, ph foods, foods food and food products. We manually discard irrelevant suggestions (fda cfsan, cfsan approximate, foods food). The choice of the semantic constructors to use with each atomic query and the choice of the weights to use in the resulting combination were determined after discussion with experts according to the eDot relevant document specifications. We finally obtained an advanced WeQueL combination having 8 atomic queries (see http://www.lri.fr/~mezaour/WeQueL/eDot/Qnum.xml).

[image: image3.wmf]The second step consists of calculating the relevance score of each eDot candidate document. To do so, we developed in java the WeQueL query engine that parses the HTML content of each candidate and the content of the filtering query xml file to output the evaluation score. The final output is ordered from the highest candidate score to the lowest one. The filtering is then done by setting threshold relevance and retaining only the candidates that have a score above this threshold. As it is hard to predict this threshold, it is experimentally set.
IV. Experimental results
The crawling module of the eDot warehouse gathered from the web 2058 candidate documents as an input to eDotFilter. The html content of these 2058 candidates were fetched, parsed and evaluated over the filtering query giving a ranked list of pairs (candidate_url,score). In this experiment we intended to show the robustness of the score ranking achieved by our filtering tool. In other words, are food risk documents ranked first or not? We intended also to show that the numerical evaluation score of each candidate d over the filtering query reflects the effective relevance of d. For this reason we used a ROC [8] curve to achieve our experimental goals. A ROC curve shows how good and how earlier the relevant documents are covered across the established ranking. The relevant documents are represented in the X-axis and the non relevant in the Y-axis. A ROC curve starts from the first position of the ranking and ends at the last one. At each position i, the curve grows by one unit if the document ranked at position i is relevant. When this document is not relevant, the curve keeps its last value. A ROC curve represents a continuous and increasing function that is bounded by 1. The quality of the ranking system is then measured by the AUC: Area Under Curve. When this area is greater than 0.9, the system is said to be excellent. To construct our ROC curve, we manually labelled the 2058 evaluated documents into two categories A and B: A for food-risk documents (relevant documents) and B for non food-risk documents (non relevant documents). We obtained: 12 documents for A and 2046 for B. The twelve relevant documents of category A were ranked by our filtering tool among the 40 first positions of the ranking. Knowing that all the relevant documents among the evaluated candidates were highly ranked, we built our validation approach using the 100 first positions of the ranking and we obtained the ROC curve shown in figure 1.We can see from the increasing rate of the ROC curve of figure 1 that most of the relevant documents were covered in the first positions of the filtering ranking. The AUC corresponding to this curve is 0.9036 which shows the efficiency of our filtering approach according to the classification given above. After analyzing manually the content of a sample documents, our experts noticed that food risk related documents obtained high scores whereas the non relevant ones obtains low scores. This shows experimentally that the numerical score of our filtering approach is a good estimator of the thematic-relevance of a document.
V. Conclusion
In this paper, we have presented eDotFilter a filtering tool that uses WeQueL, a multi-criteria web query language that is more expressive than simple keywords and less costly than learning the filtering function from relevant examples. This tool, implemented as a module, is used to filter the crawled documents to include in the eDot food risk warehouse. We showed in our experiments the benefit of a WeQueL query having a numerical semantic in the estimation of the relevance of a document to the food risk thematic. 12 relevant documents among 2058 crawled candidates can seem very insufficient to build a robust warehouse. This is due to the imprecision of the general-purpose crawler used to gather candidates for the eDot warehouse. Therefore, we are developing alternative crawling techniques that combine our filtering approach with intelligent crawling [9] to fetch the web in a more efficient manner. The intended goal is to increase the number of relevant candidates for the warehouse without traversing the entire web.

References

[1] Halkidi, M., Nguyen, B., Varlamis, I., Vazirgiannis, M.: Organising web documents into thematic subsets using an ontology (THESUS). In: Actes électroniques des Journées Web Sémantique, Paris 2002.

[2] Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems 30,pp 107-117, 1998.

[3] Rennie, J., McCallum, A.K.: Using reinforcement learning to spider the web efficiently. In: Proc. 16th International Conf. on Machine Learning, pp 335-343, Morgan Kaufmann, San Francisco, CA 1999.
[4] Diligenti, M., Coetzee, F., Lawrence, S., Giles, C.L., Gori, M.: Focused crawling using context graphs. In: 26th International Conference on Very Large Databases, VLDB, pp 527-534, Cairo, Egypt, 2000.
[5] Chakrabarti, S., Van Den Berg, M., Dom, B.: Focused crawling: a new approach to topic-specific web resource discovery. Computer Networks, pp 1623-1640, Amsterdam, Netherlands, 1999.

[6] Mezaour, A.D.: Focused search on the web using WeQueL. In: Proc. of the 10th International Workshop on Knowledge Representation meets Database (KRDB), pp 63-74, Hamburg, Germany, 2003.

[7] Mezaour, A.D.: Recherche ciblée de documents sur le web. Revue des Nouvelles technologies de l’Information (RNTI-E2), numéro spécial EGC’2004 2, pp 491-502, Clermont-Ferrand, France, 2004.

[8] Ferri, C., Flash, P., Hernandez-Orallo, J.: Learning decision trees using the ROC curve. In: Proc. of the 9th International Conference on Machine Learning, ICML, pp 139-146, 2002.

[9] Aggarwal, C.C., Al-Garawi, F., Yu, P.S.: Intelligent crawling on the World Wide Web with arbitrary predicates. In: World Wide Web (WWW10), pp 96-105, 2001.

Fig. I: ROC Curve of the ranking of eDotFilter

LRI, Université Paris Sud, Bât 490, 91405 Orsay cedex, France. mezaour@lri.fr

� on-line scientific papers warehouse

PAGE
4

_1161156481.unknown

_1161156673.unknown

