
Active XML:

A Data-Centric Perspective on Web Services

Serge Abiteboul1,4, Omar Benjelloun1, Ioana Manolescu1,
Tova Milo1,3, and Roger Weber2

1 INRIA, France Firstname.Lastname@inria.fr
2 ETH Zurich, Switzerland Roger.Weber@inf.ethz.ch
3 Tel Aviv University, Israel
4 Xyleme S.A., France

1 Introduction

Data integration has been extensively studied in the past in the context of
company infrastructures e.g., [23, 46, 39]. However, since the web is becom-
ing a main target, data integration has to deal with its large scale, and faces
new problems of heterogeneity and interoperability between “loosely-coupled”
sources, which often hide data behind programs. These issues have been re-
cently addressed in two complimentary ways. First, major standardization
efforts have addressed and partially resolved some of the heterogeneity and
interoperability problems via (proposed) standards for the web, like XML,
SOAP and WSDL [43]. XML, as a self-describing semi-structured data model,
brings flexibility for handling data heterogeneity 5, while emerging standards
for web services like SOAP and WSDL simplify the interoperability problem
by normalizing the way programs can be invoked over the web. Second, the
increasingly popular peer-to-peer architectures seem to provide a promising
solution for the problems coming from the independence and autonomy of
sources and the large scale of the web. Peer-to-peer architectures provide a
decentralized infrastructure in sync with the spirit of the web and that scales
well to its size, as demonstrated by recent applications, e.g., [33, 28].

We believe that the peer-to-peer approach, together with the aforemen-
tioned standards, form the proper ground for data integration on the web.
What is still lacking, however, is the glue between these two paradigms. This
is precisely what is provided by Active XML (AXML, in short), the topic of
this paper, a declarative framework that harnesses XML and web services for
data integration, and is put to work in a peer-to-peer architecture.

5 Complementary standards for meta data, like RDF, also address semantic het-
erogeneity issues.

2 Serge Abiteboul et al.

The AXML framework is centered around AXML documents which are
XML documents that may contain calls to web services. When calls included
in a document are fired, the latter is enriched by the corresponding results.
In some sense, an AXML document can be seen as a (partially) materialized
view integrating plain XML data and dynamic data obtained from service
calls. It is important to stress that AXML documents are syntactically valid
XML documents. As such, they can be stored, processed and displayed using
existing tools for XML. Since web services play a major role in our model,
we also provide a powerful mean to create new ones: they can be specified as
queries with parameters on AXML documents, using XQuery [53], the future
standard query language for XML, extended with updates.

Documents with embedded calls were already proposed before (see related
work in Section 2 for a detailed account). But AXML is first to actually turn
them into a powerful tool for data integration, by providing the following
features:
Controlling the activation of calls and the lifespan of data By
giving means to declaratively specify when the service calls should be activated
(e.g. when needed, every hour, etc.), and for how long the results should be
considered valid, our approach allows to capture and combine different styles
of data integration, such as warehousing, mediation and flexible combinations
of both.
Services with intensional input/output Standard web services ex-
change “plain” XML data. We allow AXML web services to exchange AXML
data that may contain calls to other services. Namely, the arguments of calls
as well as the returned answers may include both extensional XML data and
intensional information represented by embedded calls. This allows to dele-
gate portions of a computation to other peers, i.e., to distribute computations.
Moreover, the decision to do so can be based on considerations such as peer
capabilities or security requirements.
Continuous services Existing web services either use a (one-way) messag-
ing style or a remote procedure calls (RPC) style — they are called with some
parameters and (eventually) return an answer. But often, a continuous be-
havior is desired, where a (possibly infinite) stream of answers is returned for
a single call. As an example, consider subscription systems where new data of
interest is pushed to users (see, e.g., [34]). Similarly, a data warehouse receives
streams of updates from data sources, for maintenance purposes. Streams of
results are also generated, for instance, by sensors (e.g., thermometers, video
surveillance cameras). The AXML framework adds this capability to web ser-
vices, and allows for the use and creation of such continuous web services.

These features are combined in a peer-based architecture, illustrated by
Figure 1. Each peer contains a repository of AXML documents, some AXML
web services definitions, and an Evaluator module, that acts both as a client
and as a server:
Client By choosing which of the service calls embedded in the AXML doc-
uments need to be fired at each point in time, firing the calls, and integrating

Active XML: A Data-Centric Perspective on Web Services 3

SOAP

AXML peer S2

SOAP

AXML peer S3

SOAP client

SOAP
service

AXML storage

EvaluatorXQuery
processor

query
results

definitions
AXML service

update
readupdate

read

AXML peer S1

wrapper
SOAP

service call service result

query

consults

Fig. 1. Outline of the AXML data and service integration architecture.

the returned answers into the documents. It is important to stress that any
web service can be used, be it provided by an AXML peer or not, as long as
it complies with standard protocols for web service description and invoca-
tion [38, 47].
Server By accepting requests for the AXML services supported by the peer,
executing the services (i.e. evaluating the corresponding XQuery) and return-
ing the result.

Observe that since AXML services query AXML documents and can ac-
cept (resp. return) AXML documents as parameters (resp. results), a service
execution may require the activation of other services calls. Thus, these two
tasks are closely inter-connected.

The paper is organized as follows: After an overview of related work, the
AXML language is presented in Section 3, mainly through an extended ex-
ample. A formal semantics for AXML documents and services is presented in
Section 4, while security and peer capabilities are considered in Section 5. An
evaluation strategy and an implementation are discussed in Section 6. The
last section is a conclusion.

2 Related work

Active XML touches several areas in data managment and web computing.
We next briefly consider these topics and explain how AXML relates to them.
Basic technologies/standards The starting point of the present work is
the semistructured data model and its current standard incarnation, namely
XML [50]. We rely primarily on an XML query language and on protocols
for enabling remote procedure calls on the web. Disparate efforts to define
a query language for XML are now unifying in the XQuery proposal [53],
and its subset XPath [52]. We use those as the basis of our service definition
language. As for remote procedure calls, the various industrial proposals for

4 Serge Abiteboul et al.

web services, e.g. .NET by Microsoft, e-speak by HP, SunOne by Sun Mi-
crosystems, are also converging towards using a small set of specifications to
achieve interoperability 6. Among those, we are directly concerned with the
SOAP and WSDL, that are used in our implementation.

The Simple Object Access Protocol (SOAP) [38] is an XML-based protocol
that lets applications exchange information over the web. It takes advantage
of its widely spread protocols (such as HTTP or SMTP) and provides simple
conventions for issuing/answering function calls. It also defines standard ways
to serialize common programming languages constructs, such as arrays and
compound types.

The Web Services Description Language (WSDL) [47] is an XML format
for describing web services, in terms of the operations they provide and their
binding to actual protocols. Most importantly for us, WSDL precisely defines
the types of the input and output parameters of each operation, using XML
Schema.

More indirectly, UDDI registries [41], can be used by our system, e.g., to
publish or discover web services of interest.
Data integration Data integration systems typically consist of data
sources, that provide data, and mediators or warehouses, that integrate it
with respect to a schema. The relationship between the formers and the lat-
ters is defined using a global-as-view or local-as-view approach [21, 29]. While
mediators/warehouses can also serve as data sources for higher integration lev-
els, a clear hierarchy between the data providers typically exists. In contrast,
all Active XML peers play a symmetric role, both as data sources and as par-
tially materialised views over the other peers, thus enabling a more flexible
and scalable network architecture for data integration. Web services are used
as uniform wrappers for heterogenous data sources, but also provide generic
means to apply various transformations on the retrieved data. In particular,
tools developped for schema/data translation and semantic integration, e.g.
[29] can be wrapped as web services and used to enrich the Active XML
framework.
Services composition and integration Integration and composition of
web services (and programs in general) have been an active fields of research
[44]. Intensional data was used in Multilisp [24], under the form of “futures”,
i.e., handles to results of ongoing computations, to allow for parallelism. Am-
bients [13, 12], as bounded spaces where computation happens, also provide
a powerful abstraction for processes and devices mobility on the web. More
recently, standard languages have even been proposed in the industry, like
IBM’s Web Services Flow Language [48] or Microsoft’s XLang [49] for speci-
fying how web services interact with each other and how messages and data
can be passed consistently between business processes and service interfaces.

While AXML allows to compose services, to use the output of some ser-
vice calls as input to other ones, and even to define new services based on

6 An organization was even created for that. See http://www.ws-i.org.

Active XML: A Data-Centric Perspective on Web Services 5

such (possibly recursive) compositions, the focus here is not on workflow and
process-oriented techniques [15] but on data. AXML is not a framework for
service composition, but for data integration using web services.

Our formal foundation is based on non-deterministic fixpoint semantics
[5], that was primarily developed for Datalog extensions. In that direction,
the paper has also been influenced by recent works on distributed Datalog
evaluation [27].
Embedded calls As already mentioned, the idea of embedding function
calls in data is not a new one. Embedded functions are already present in
relational systems [42], e.g., as stored procedures. Method calls form a key
component of object databases [14]. The introduction of service calls in XML
documents is thus very natural. Indeed, external functions were present in
Lore [26] and an extension of object databases to handle semistructured data
is proposed in [35], thereby allowing to introduce external calls in XML data.
Our work is tailored to XML and web services. In that sense, it is more directly
related to Microsoft Smart Tags [37], where service calls can be embedded in
Office documents, mainly to enrich the user experience by providing contex-
tual tools. Our goal is to provide means of controlling and enriching the use
of web service calls for data integration, and to equip them with a formal
semantics.
Active databases and triggers The activation of service calls is closely
related to the use of triggers [42] in relational databases, or rules in active
databases [45]. Active rules were recently adapted to the XML/XQuery con-
text [10]. A recent work considered firing web service calls [11]. We harness
these concepts to obtain a powerful data integration framework based on web
services. In some sense, the present work is a continuation of previous works
on ActiveViews [1]. There, declarative specifications allowed for the automatic
generation of applications where users could cooperate via data sharing and
change control. The main differences with ActiveViews are that (i) AXML
promotes peer-to-peer relationships vs. interactions via a central repository,
and (ii) the cornerstones of the AXML language are XPath, XQuery and web
services vs. object databases [14].
Peer-to-Peer computing is gaining momentum as a large-scale resource
sharing paradigm by promoting direct exchange between equal-footed peers
[28, 33]. We propose a system where interactions between peers are at the core
of the data model, through the use of service calls. Morever, it allows peers
to play different roles, and does not impose strong constraints on interaction
patterns between peers, since they are allowed to define and use arbitrary
web services. While we do not consider in this paper issues such as dynamic
data placement and replication, or automatic peer discovery, we believe that
solutions developped in the peer computing community for these problems
(see for instance [33]) can benefit our system, and plan to investigate that in
future work.

6 Serge Abiteboul et al.

3 AXML by example

In this section, we introduce Active XML via an example. In Section 3.1, we
present a simple syntax for including service calls within AXML documents,
and outline its core features. Section 3.2 deals with intensional parameters
and results of service calls. We then consider, in turn, the lifespan of data, the
activation of calls and the definition of AXML services.

3.1 Data and simple service integration

At the syntactic level, an AXML document is an XML document. At the
semantic level, we view an AXML document as an unordered data tree i.e.,
the relative order of the children of a node is immaterial. While order is
important in document-oriented application, in a database context like ours
it is less significant and we assume that, if needed, it may be encoded in
the data. Also, we attach a special interpretation to particular elements in
the AXML document that carry the special tag <sc>, for service call ; these
elements represent service calls that are embedded in the document 7. In
general, a peer may provide several web services. Each service may support
an array of functions. We use here the terminology service call for a call to
one of the functions of a service.

As an illustration, consider the AXML document corresponding to my
personal page for auctions that I manage on my peer, say mypeer.com. This
simple page contains information about categories of auctions I am currently
interested in, and the current outstanding auction offers for these categories.
The page may be written as follows:

<myAuctions> Auctions I’m interested in.

<category name="Toys">

<sc>auction.com/getOffers("Toys")</sc>

</category>

<category name="Glassware">

<sc>eBay.com/getAuctions("Glassware")</sc>

</category>

</myAuctions>

While the category names are explicitly written in the document, the offers
are specified only intensionally, i.e., using service calls instead of actual data.
Here, the list of toy auctions is provided by auction.com. On that server, the
function getOffers, when given as input the category name Toys, returns
the relevant list of offers, as an XML document. The latter is merged in the
document, which may now look as follows:

7 For readability, we use a simple syntax for <sc> elements.The complete syntax is
omitted here.

Active XML: A Data-Centric Perspective on Web Services 7

<myAuctions> Auctions I’m interested in.

<category name="Toys">

<sc>auction.com/getOffers("Toys")</sc>

<auction aID="1">

<description>Stuffed bear toy</description>

</auction>

<auction aID="2">

...

</category>

...

</myAuctions>

Observe that the new data is inserted as sibling elements of <sc>, and that
the latter is not erased from the document, since we may want to re-activate
this call later to obtain new auction offers. Finally, note that in the case of a
continuous service, several result messages may be sent by the service for one
call activation. In this case, all the results accumulate as siblings of the <sc>

element.
Merging service results More refined data integration may be achieved
using ID-based data fusion, in the style of e.g., [36, 6, 19]. In XML, a DTD
or XML Schema may specify that certain attributes uniquely identify their
elements. When a service result contains elements with such identifiers, they
are merged with the document elements that have the same identifiers, if such
exist. To illustrate this, assume that auction.com supports a getBargains

function that returns the list of the ten currently most attractive offers,
each one with its special bargain price. Suppose also that aID is a key for
auction elements. If an auction element with aID “1” is returned by a call
to getBargains, the element will be “merged” with the auction with aID “1”
that we already have.
XPath service parameters The parameters of a service call may be de-
fined extensionally (as in the previous examples) or may use XPath queries.
For instance, the getOffers service used above gets as input a category name.
Rather than giving the name explicitly, we can specify it intensionally using
a relative XPath expression [52]:

<myAuctions> Auctions I’m interested in.

<category name="Toys">

<sc>auction.com/getOffers([../@name/text()])</sc> ...

</category> ...

</myAuctions>

The XPath expression ../@name/text() navigates from the <sc> node to
the parent <category> element, and then to its name attribute. The service is
then called with the name attribute’s value as a parameter. In this example,
there is only one possible instantiation for the XPath expression. In general,
several document subtrees may match a given XPath expression. There are

8 Serge Abiteboul et al.

two possible choices here. Either to activate the service several times, once
per each possible instantiation, or alternatively to call it just once, sending
the forest consisting of all the instantiations a single parameter. In our imple-
mentation, we took the first approach as a default, but in principle one could
add a attribute to the <sc> element to explicitly specify which one of the two
semantics is prefered for a particular call. Besides the parameters, the name
of the called peer as well as the name of the service itself may be specified
using relative XPath expressions. The same default semantics applies.

3.2 Intensional parameters and results

The parameters of the services calls that we have seen so far were (instanti-
ated as) simple strings. In general, the parameters of a service call may be
arbitrary AXML data, specified either explicitly, or by an XPath expression.
In particular, AXML parameters may contain calls to other services, leading
thus to intensional service parameters. For example, to get a more adequate
set of auctions, we may use a service that, in addition to the category name,
needs the current user budget, which is itself obtained by a call to the bank
services:

<myAuctions> Auctions I’m interested in.

<category name="Toys">

<sc>auction.com/getOffers1([../@name/text()],

<sc>bank.com/getBudget("Bob")</sc>)

</sc>

</category>

</myAuctions>

Up to now, we have not discussed where and when a service call is activated.
In the above example, we already face a choice concerning the activation of
getBudget. We may call it first, and then call getOffers providing it with
the result. Another option is to call directly getOffers with the intensional
parameter, and let it handle the activation of the call to getBudget. We will
further discuss this issue in Section 5.

Services may not only get intensional data (i.e. AXML documents with
embedded service calls) as input, but also return such data as a result. As
an example, each auction in the result of getOffers may contain a call to
a getDetails service that provides more information about that particular
auction:

<myAuctions> Auctions I’m interested in.

<category name="Toys">

<sc>auction.com/getOffers([../@name/text()])</sc>

<auction aID="1">

<description>Stuffed bear toy</description>

<sc>auction.com/getDetails([../@aID])</sc>

Active XML: A Data-Centric Perspective on Web Services 9

</auction>...</category>...

</myAuctions>

Observe that intensional results already appear in practice in many popu-
lar applications. For example, the Google search engine returns, for a given
keyword, some document URLs plus (possibly) a handle for obtaining more
answers. With this handle, one can obtain a new list and perhaps another han-
dle. Therefore, AXML service calls can be seen as a generalization of HTML
hyperlinks, that handles calls to web services.

3.3 Controlling the lifespan of data

So far, all the service call results were accumulated in the calling document.
In practice, we need more flexibility to manage these results, so that we may
replace old results with new ones, discard data that became too old or in-
consistent, etc. Many models and techniques have been proposed for manag-
ing data lifespan, particularly in the fields of version management, temporal
databases, and active databases. For our purposes, we chose a suitable, simple
model, that may be extended with more complex features.

To manage data lifespan, we conceptually attach a special attribute
expiresOn to any data node in an AXML document 8. Some nodes may
have explicit expiration time, whereas others will inherit it from one of their
ancestors. Expired nodes should simply be viewed as erased from the docu-
ment.

The value of the expiresOn attribute is an event, that may depend on time,
and/or on the document content. For example, if a user wants to specify that
her interest in a product category lasts only until February 19th, 2002, then
the element will have the following form:

<category name="Toys" expiresOn="Feb. 19th, 2002">...

Data returned by a service may also come with an expiration time specifica-
tion. This is a very useful feature that allows a service provider to state how
long the particular result is meaningful. For example, getOffers may inform
the user of an auction’s closing time, by setting expiresOn for the returned
data. The lifespan of a service call result may be explicitly overwritten by
the caller. This is done using a valid attribute, in the sc element. valid can
be a function of the time when the call was (last) answered, denoted rt. For
example, the following call states that auctions in Category A are archived
for one year.

<sc valid="rt + 1 year">auction.com/contGetOffers("A")</sc>

8 Strictly speaking, it is not possible in XML to attach an attribute to a #PCData

node. It is possible to do so in AXML.

10 Serge Abiteboul et al.

3.4 Controlling the activation of calls

To control when a service call is activated, we use two attributes of <sc>

elements, namely mode and frequency. The value of the frequency attribute
is similar to the one of valid, except that it is a function of ct, the time when
the service was last called. Thus, we can easily specify a given instant, a time
interval, the occurrence of an event, etc. By default, a service is called only
once, when the document is registered. We say that a call has expired when,
according to its frequency attribute, it should be activated.

The mode of a call is either lazy or immediate. In immediate mode, the
call is activated when it expires; if the call is in lazy mode, the fact that it
has expired only means that the service has to be called whenever the data
produced by this call is needed (e.g., by a query over the AXML document).

The data validity and the calls activation mode and frequency, together,
provide a flexible and powerful tool for capturing various integration scenar-
ios. This is illustrated next. In the following integration styles, the first three
assume regular (non continuous) services whereas the last one relies on con-
tinuous services:

• mediator style: set valid to 0 (note that an immediate mode would not
be meaningful in this case).

• mediator style with caching: choose a non-zero value for valid, and lazy
mode.

• warehousing mode with pulling information: valid larger than frequency,
and immediate mode.

• warehousing mode with pushing: choose a non-zero value for valid, and
immediate mode.

Note that the activation of a call is dissociated from the lifespan of its results.
For example, if we wish to call getOffers every day, and keep the results for
a week after their acquisition, we would write:

<sc valid="rt + 1 week" frequency="ct + 1 day">

auction.com/getOffers("Toys")

</sc>

Remark 1. (timeout) In the case of a non-continuous service, it may happen
that the answer returns very late, or never returns at all. In practice, it is useful
to have timeouts for calls. When the timeout is reached, the system abandons
hope of getting the result. An exception handling mechanism should also be
provided to manage such events.

3.5 AXML service definition

The AXML framework allows to call arbitrary web services, but also to de-
fine new ones, as illustrated in this section. In short, an AXML service is

Active XML: A Data-Centric Perspective on Web Services 11

defined by a parameterized XQuery query over the peer’s AXML documents.
As an example,getOffers, that returns all currently open auctions for a given
category, may be defined at auction.com as follows:

let sc auction.com/getOffers($c) be}

for $cat in document("auction.com/a.xml")//category,

$a in $cat/auction,

$aID in $a/@aID/text(),

$des in $a/description/text()

where $cat/@name/text()=$c

return <auction aID={$aID}>

<description>{$des})</description>

<sc>auction.com/getDetails({../@aID})</sc>

</auction>

In the above example, the category parameter $c is of type #PCDATA (text).
The query consults an AXML document (a.xml) which may contain ser-
vice calls, and constructs an AXML document with some calls (e.g. to the
getDetails function of auction.com). Here again we face a choice concern-
ing the activation of getDetails: we may call it first, and only then return
the answer of getOffers. Another option is to return the document imme-
diately and let the caller of getOffers handle the activation of the calls to
getDetails. The particular type of the service result may be described by an
XML Schema [51], as advised by the WSDL specification [47]. This informa-
tion can be used to chose between the two options mentioned above.

To define continuous AXML services, we simply prefix the definition with
the keyword continuous. Thus, a continuous variant of a getOffers, re-
turning the set of interesting auctions whenever it changes, is defined as
follows: let continuous sc auction.com/contGetOffers($c) be... Ad-
ditional parameters can be defined to specify the frequency of updates, and
whether to send full results or deltas. They are not detailed here.

To define AXML services with side effects, in the absence of a standardized
language for XML updates, we use the extension to XQuery proposed in [40].

3.6 Discussion

We conclude this section with two remarks regarding consistency and termi-
nation.
Consistency We assume that the document we start with is well-formed
and obeys its DTD (or XML Schema) if one is specified for it. An inconsis-
tency may arise if one call leads to constructing a document that no longer
obeys the schema. While some of this may be prevented by consulting the
declared signature of the used services [25, 8], static type checking becomes

12 Serge Abiteboul et al.

more complicated due to the use of ID-based element fusion and of XPath
expressions in call parameters.
Termination and recursion We have seen above that a service call may
return intensional answers. Note that this may lead to a non terminating
computation: the result of a service call may contain new service calls that
need to be activated. Those in turn may return new calls to be activated,
and so on. Similarly, the processing of a particular service call (namely the
evaluation of the query defining it) may triger the execution of new calls
(perhaps even to the same service), etc. While some form of recursion is useful,
e.g. for defining transitive closure type of computations, detecting termination
in general is difficult due to the distributed form of the computation and the
independence of the peers.

4 Data and computation model

In this section, we briefly define the AXML data model and the semantics of
AXML documents and services. For lack of space, the presentation is informal.
The formal definitions as well as the proofs of the results can be found in [2].

Intuitively, an AXML instance consists of a number of peers, each one
containing some AXML documents that are being run. AXML documents
are XML unordered trees. The evaluation of these documents generates calls
between these peers and possibly results in new documents being evaluated at
each peer. As we shall see, the evaluation is non-deterministic. This captures
the asynchronous evolution of the global instance, which may eventually reach
a fixpoint or not. We will first present the data model, then the computation.

4.1 Data model

An (AXML) instance consists of a number of peers. Each peer contains AXML
documents, some service definitions, and a working area. We next define in-
stances, then proceed to the definition of documents and services.
Instances An instance I consists of a number of peers p1, . . . , pn. The
content of a peer pi ∈ I is defined by a triple (Ri,Fi,Wi) where Ri, the peer’s
repository, is a set of persistent AXML documents, Fi, the peer’s services, is
a set of AXML service definitions, and Wi, the peer working area, is a set of
AXML temporary documents. All the sets are assumed to be finite.

Each document d in the working area Wi of a peer pi represents the com-
putation of some service call in pi, i.e., some current work that pi is perform-
ing. Any such document d also contains a destination attribute specifying the
place where the result of this computation should be sent, which can be a
local element or a request from a remote peer.
Documents As for standard XML documents, an AXML document is mod-
eled by a labeled tree with nodes representing the document elements/attributes
and with edges capturing the component-of relationship among document

Active XML: A Data-Centric Perspective on Web Services 13

items. The three main differences with the standard XML data model [50] are
that (1) we ignore here the order of elements, hence our trees are unordered 9,
so we only consider the order-free fragments of XPath (for parameters) and
XQuery (for service definitions); (2) a validity predicate is attached to some
elements to specify when some particular data becomes stale; (3) some of the
tree leaves are special service call nodes, called in the sequel sc-nodes. An
sc-node is labeled by a tuple of the form 〈p, f, x1, . . . , xn〉 where:

• p and f are respectively a peer and service names, or XPath expressions.
In the first case, the service f must be defined in peer p with arity n.

• x1, . . . , xn, the call parameters, are AXML documents or XPath expres-
sions.

An sc-node where none of p, f, x1, . . . , xn are XPath expressions, is called a
concrete call.
Reduced documents Continuous services send a sequence of answers to
the caller. Smart (or optimized) services may only send the delta since the last
answer. In other cases, the caller may be responsible for detecting and ignoring
redundant data. To abstract this (without having to get into implementation
details such as who performs the optimization and when), we use in the formal
model the notion of reduced version of a document, where multiple occurrences
of the same data are omitted.

To define reduced documents, we use the auxiliary concept of inclusion

relationship among trees. A reduced document is such that no subtree is in-
cluded in one of its siblings. One can show that the reduced version of a
document is unique. It can be, for instance, computed by iteratively removing
redundant subtrees. The details are omitted. We will assume in the sequel
that all our AXML documents are reduced.
Service definitions To conclude this section, let us consider the definition
of Fi, i.e., the definition of services. The semantics of XQuery queries is stan-
dard, with one notable exception: when evaluating path expressions, service
calls act like document boundaries which the evaluation cannot cross. In other
words, they are terminal nodes which do not match any path expression.

The definition of an AXML service consists of the service name, the service
type (e.g. continuous or not), the service parameter names v1, . . . , vn, and a
parameterized query Q(v1, . . . , vn), namely a query that may refer to the
(parameters) documents v1, . . . , vn.

4.2 Computation

We are now ready to define the semantics of AXML documents. Each peer
includes a collection of AXML trees, in Ri and Wi. These documents may
contain service calls that may be activated to derive more information about

9 We may take into account the ordering in some specific cases, e.g., for the exten-
sional portions of documents.

14 Serge Abiteboul et al.

the documents. A service call activation spans a computation on one of the
peers. More precisely, the activation in Peer s of a particular service call
to Peer r involves (1) (possibly) instantiating in s the XPath expressions of
attributes of the call, (2) for each instantiation, sending concrete calls from
Peer s to Peer r, (3) computing in Peer r the corresponding answers and (4)
returning the answers to Peer s, where they are received and merged at the
appropriate place in the tree. If, for some reason, the resulting tree is no longer
a legal AXML document, it becomes the inconsistent document.

Recall that the decision whether service calls can, and need to, be instanti-
ated (resp. sent, computed, returned) at a given time depends on the specific
call attributes. We will simply refer to such calls as eligible for instantiation

(resp. sending, computation, returning). We will see in the next section how
this can be implemented.

An initial instance is such that all peers have an empty working area.
Given an initial instance I, each peer s = 〈R,F ,W〉 evolves in a similar way.
Starting from I, repeatedly (and non-deterministically), one of the following
steps is executed:
Step 1: Instantiate the XPath parameters: For some (non concrete)
sc-node v in R or W that is eligible for instantiation, the XPaths are evaluated,
and for each instantiation, a new document is added to s’s Working Area. The
roots of these documents have the corresponding concrete service call as an
sc-node child, and have v as the destination for the result of the computation.
Step 2: Send/Receive an external call: For some concrete sc-node n in
R or W that is labeled with a call c to some remote peer r and is eligible for
sending, the call is activated. Formally, this consists in adding, to the Working
Area of the receiving peer r, a new document whose root has an sc-node child
labeled with c and having n as the destination for the result.
Step 3: Compute a local call: For some concrete sc-node n in R or W
that is labeled with a call c to a local service of s and is eligible for compu-
tation, evaluate the service query using the given parameters. The result, a
forest, is merged under the parent node of n.
Step 4: Return/Receive result of a call: For some document d in W ,
eligible for being returned as an answer, the children of root(d), (not including
d’s destination attribute) are sent to the destination peer and merged under
the parent of the destination node.

Observe that, in the above computation, we grouped sending (resp. re-

turning) a call and receiving it in one operation. Intuitively, our send/receive
(resp. return/receive) operation captures the moment when the receiver re-
ceives the message. Finally, to guarantee a correct semantics, we need some
fairness condition:

(†) Any operation that may happen, eventually happens.
Non-determinism and confluence In general, an initial instance I may
be transformed in many different ways, depending on the choice of the opera-
tions to perform. This non-determinism is built in the semantics. So, even if an

Active XML: A Data-Centric Perspective on Web Services 15

instance converges to a fixpoint, the fixpoint does not have to be unique. Fur-
thermore, as mentioned in Section 3.6, the computation may continue forever,
building more and more data, i.e., there is no guarantee of termination.

Although this may seem to be a negative feature of the model, observe that
this naturally models the real world we are trying to capture. The state of a
peer may continuously evolve because, for instance, of interactions with human
users updating data. Also, continuous external services such as subscriptions
may keep sending new data to the peer. So, the system should not be expected
to terminate. Also, data may expire or get deleted and the order in which the
various operations/queries are executed may have impacts on the state. Thus,
because of the asynchronicity and the independence of peers, determinism is
an elusive goal in such an environment. However, termination and confluence
can be enforced under very strict restrictions, as outlined next.

Remark 2. (Monotone computation) Suppose the computation is monotone,
i.e., no fact is ever deleted or updated, and information keeps being added in
a cumulative manner. Furthermore, assume that each call becomes eligible for
instantiation and sending infinitely often (i.e. the call is repeatedly triggered
and its XPath re-instantiated). Under these restrictions, the order in which
the steps are executed is not significant anymore. One can then guarantee
that all computations lead to a (possibly infinite) unique state. A finite state
can be guaranteed with some additional restrictions. This is in the spirit of
results on inflationary fixpoint semantics, see [5].

5 Limiting the firing of calls

So far, we have described the AXML paradigm at a rather abstract level.
Before we consider its actual implementation, we highlight some important
issues that are critical for a real life implementation. Before activating a service
call, two points need to be checked: (i) that the receiving peer is willing to
accept the call, i.e., that the caller has the proper priviledges to issue the call,
and (ii) that the receiver has the capability to process the call, which involves
understanding the parameters that are sent. In practice, access to services
from other peers will be severely controled for security reasons. Also, peers
will have limited capabilities, e.g., most of them will only accept calls with
“plain” XML arguments.

5.1 Site capabilities and security

First, consider peer capabilities. We illustrated in Section 3.1 the use of in-
tensional parameters in a service call. Observe that they may, in principle,
be evaluated before or after the call is sent to the receiving peer. In practice,
not all choices are always feasible. For instance, consider again the example in
Section 3.1. If auction.com is not capable of calling getBudget on bank.com

16 Serge Abiteboul et al.

(e.g., because it is not an AXML peer), then ‘‘Bob’’’s AXML peer must first
call getBudget, and only then call getOffers with the result.

Now, consider the security concerns that must guide call activations. Ac-
cess control is a needed features for many applications. First, a service provider
may wish to reserve the access to a service to those who paid for it. For ex-
ample, acm.org currently allows users from the inria.fr domain to use the
search services of the ACM digital library, but not any web user can do so.
Furthermore, security is necessary to protect sites from a malicious usage.
Not surprisingly, the exchange of data that includes service calls is a major
security hole. For instance, suppose that we want to break into a peer s, say
the site qod.com, providing quotes of the day. There are two main ways to do
this:
In a call parameter Intensional service parameters open backdoors to
AXML servers. For instance, a malicious client may use the following call to
qod:

<sc>qod.com/QuoteOfDay(<sc>buy.com/BuyCar("BMW")</sc>)</sc>

This malicious user does not wish to buy the car by himself, but tries to make
qod.com buy it.
In a call result (Trojan Horse) Suppose now that qod.com is malicious
in the quotes it provides, e.g., by returning the following quote as a call result:

<quote> Love means never having to say you’re sorry.

<sc>buy.com/BuyCar("BMW")</sc></quote>

Thus, by sending an intensional result, the qod peer may force its clients to
invoke dangerous services.

Finally, perhaps the most natural violation of security is to bring an AXML
peer to transmit private data to a malicious distant site. This may be achieved
for instance by including the following call (as a parameter of a call or in a
result):

<sc>i.am.bad/SneakAbout([../../{*}])</sc>

Instantiating this XPath argument amounts to sending i.am.bad (possibly
private) parts of the document that included this call, which is clearly an
issue.

The above examples show that the AXML framework makes unauthorized
attempts to access data quite likely, as well as malicious usage of web services.
Hence, access control is essential. We next see how this can be incorporated
in the framework.

5.2 Our solution

We illustrate how the above issues may be addressed with two very simple
policies. These policies have to be combined with some access control mech-
anism on the documents. Access models for XML have been proposed in,
e.g., [18]. This aspect will not be detailed here.

Active XML: A Data-Centric Perspective on Web Services 17

In the first policy, called binding, a peer publishes the kind of arguments
each of its services accepts (e.g., arbitrary AXML, XPath expressions, strict
XML). Only calls with the proper arguments may then be activated. Note
that this policy can be enforced using the WSDL language which enables
publication of XML Schema types for services input/output parameters. We
proposed in [32] a set of algorithms that follow this approach.

The second policy, called trust, reflects some form of agreement between
the caller and the receiver. More precisely, the reasoning that allows one to
decide whether a service sv (where sv includes the name of the service and
the site that provides it) can be called by a site S is encapsulated in a boolean
function canCall(sv, S). The canCall(sv, S) function returns true if S is will-
ing to call sv and the provider of sv is willing to accept this call from S.
Note that, like in Java’s sandbox security model [22], the decision depends on
the origin of the call. This function will be used to determine which calls are
eligible for activation at each point in time. We will see exactly how this is
done in the next section.

To implement canCall, we can assume, for instance, that each peer has
an agreed service list, containing the services that it trusts, and is willing to
call. Similarly, we assume for every service, an agreed site list, i.e. the sites
(trusted and accepted by the service provider) from which the service may be
called. These two lists are typically exposed as web services. More precisely,
each AXML peer S provides (i) a service that allows to check whether it is
willing to let another peer S ′ call one of its services and (ii) a service to check
whether it is willing to call some particular service. For non-AXML peers, we
make conservative assumptions.

As mentioned above, these two models, binding and trust, may be com-
bined. They may also be extended in a number of ways. First, one may want to
include some access control list (ACL) mechanism, to grant different rights to
various users of a peer. One might want to control the right to fire a particular
service call or the right to access data with an arbitrary granularity (e.g., at
the element level). Also, the canCall function may vary in time. For instance,
depending on the load of the service provider, one may want to restrict usage
of the service to certain clients only. Finally, one may want to include arbi-
trarily complex solutions for trust management that have been proposed such
as REFEREE [16]. No matter how complex the used policy is, the provider
essentially needs to know, given a concrete call and a site, whether this site is
entitled to activate this particular call.

6 Evaluation and Implementation

In this section, we describe the architectural components, and the algorithms
used by an AXML peer in order to evaluate and maintain AXML documents.
First, we explain how time-related events are detected in the system. Then,
we see how the evaluation of documents is affected by these events.

18 Serge Abiteboul et al.

The Event Detector To capture time-related events, we use an Event

Detector module (ED). For simplicity, we omitted this module from the ar-
chitecture sketch (Figure 1) at the beginning of this paper. The ED of an
AXML peer P monitors all AXML documents on P , including data valid-
ity parameters, and the activation mode and frequency of all service calls
present in these documents. The ED sends messages to other components of
the AXML peer:

• to the Evaluator: when a service call has expired, or has reached timeout;
• to the AXML storage: when a data node has become invalid.

Before presenting our evaluation algorithm, recall from Section 3.4 that
service calls can be defined to be immediate or lazy. Immediate service calls
have to be activated as soon as they expire, while the activation of expired
lazy calls may be postponed until their results are actually needed. To sim-
plify the presentation, we first assume below that all the service calls in the
documents are defined with an immediate execution mode, and explain the
evaluation algorithm for this restricted case. Then, we explain how the above
needs to be extended in order to support lazy calls. Finally we describe our
implementation. Recall from Section 4 that a concrete service call is one whose
parameters do not include XPath expressions.

6.1 Calls with immediate mode

We start by explaining how the Evaluator decides when a call is eligible for
instantiation, resp. activation, computation and return, (in the terms of Sec-
tion 4), based on the messages received from the ED. We then outline the
algorithms for processing service call activations.
Deciding on call eligibility The following rules are applied by the Eval-
uator module:

• Upon receiving an “sc has expired” message from the ED, if sc is non-
concrete, it becomes eligible for instantiation.

• If sc is concrete and aimed at some service outside P , we first choose some
of the service calls included in the parameters (according to the security,
capability, and optimization reasoning outlined in Section 5), and process
them. Only then, sc becomes eligible for sending.

• If sc is concrete and aimed at a local AXML service defined on P by a
query Q, then sc becomes eligible for computation.

• After an sc aimed at a local AXML service was evaluated, its result be-
comes eligible for returning after being post-processed (again, by calling
some of the service calls in the result, based on security, capability etc.).

Processing service call activations Recall from Section 4 that the four
steps of computation where chosen non-deterministically and in random order.
We introduce here the notion of task, to track the evaluation of each particular

Active XML: A Data-Centric Perspective on Web Services 19

service call, from the moment it is activated, to the end of its evaluation. Like
sc-nodes, tasks can be concrete or non-concrete. Documents in W naturally
have corresponding tasks, and so do activated sc-nodes in R. Note that the
evaluation is still non-deterministic, and that tasks can be evaluated in par-
allel: at a given point in time, a task is either running, ready, or suspended,
waiting for some event, perhaps the end of another task. Any of the ready
tasks may be processed at that point.

Tasks are created in three possible ways. First, the Evaluator creates a new
task (concrete or non-concrete) for the activation of every expired, immediate
service call. Second, upon receiving from outside a call to a service defined at
P , the SOAP wrapper creates a task for this call in W . Note that this task
is concrete, since only concrete tasks can be sent (see Section 4). Third, the
processing of a task may create other tasks, as we will see.

As a notation, let t(d, Pf , f, p1, p2, . . . , pn) be a task with destination d,
corresponding to the activation of a call to the service f , provided by the peer
Pf , with parameters p1, p2, . . . , pn.

Figure 2 outlines the simple algorithm for evaluating non-concrete tasks.
First, the XPath parameters of the task have to be evaluated, by issuing calls
to the query processor. When the evaluation is done, each pi has the value
of an AXML forest fi. As mentioned in Section 3.1, the non-concrete call is
unrolled into as many concrete calls as there are elements in the cartesian
product of the forests fi. The processing of t is over when all these concrete
tasks have finished.

peer P , non-concrete task t(d, Pf , f, p1, p2, . . . , pn)

1 evaluate the XPath parameters p1, p2, . . . , pn

2 foreach i = 1, 2, . . . , n
3 let fi be the value obtained for xi (an AXML forest)
4 foreach x = (x1, x2, . . . , xn) ∈ f1 × f2 × . . . × fn

5 create tx(Pf , f, x1, x2, . . . , xn, t.root)
6 insert tx in W

7 suspend until all tx finish
8 exit

Fig. 2. Processing a non-concrete task.

In Figure 3, we describe the processing of a concrete task. Assume that
a parameter pi, which is an AXML tree, contains some expired service call
sc. Then, P has to decide whether it needs to activate it or to send it as an
intensional parameter. This decision is based on the binding and trust policies
described in Section 5 10. Note that the decision is made locally, using the
policies of P, Pf , sc without requiring a “global” view of the security and
capability requirements of other peers.

10 It may also take into account other considerations such as the system load.

20 Serge Abiteboul et al.

At line 6, if f is a service local to P , then we call the XQuery processor with
the proper arguments; otherwise, a call is sent to Pf via the SOAP wrapper.
In both cases, t is suspended waiting for the result; Once P receives the result,
if it needs to forward it to the distinct peer d.peer, we may have to decide
when and where to execute the calls it contains. The reasoning is very similar
to the one above, dividing the work among d.peer and P . Subsequently, the
result is sent to d. (If d is local, by accessing the local AXML repository;
otherwise, by sending a result message through the SOAP wrapper). Finally,
the concrete tasks exits.
Continuous tasks Tasks associated to calls to continous services keep
running. The received updates just keep being sent to their destination. When
they appear in the algorithms described above, these tasks are non-blocking.
Unsubscribe and timeout For readability, we have omitted some issues
from the algorithms depicted in Figures 2 and 3. First, if an unsubscribe
message for a continuous service is sent by the ED, the Evaluator identifies
the associated concrete tasks, sends “unsubscribe” messages to their service
providers, and destroys the task. Similarly, when a non-continuous call times
out, the Evaluator destroys its task.

peer P , concrete task t(Pf , f, p1, p2, . . . , pn, d)

1 foreach sci in p1, . . . , pn

2 if P decides to activate sci

3 then create ti, new task for sci; insert ti in W

4 suspend until all ti finish
5 if P = Pf (i.e. f is defined in P by some query Q)
6 then call Q(p1, p2, . . . , pn); suspend until result ready
7 else (i.e. f is a distant service)
8 call Pf/f(p1, p2, . . . , pn); suspend until result ready
9 if P 6= d.peer
10 then foreach scj in result
11 if P decides to activate scj

12 then create tj , new task for scj ; insert tj in W

13 suspend until all tj finish
14 send result to be inserted under d
15 if f non continuous
16 then exit

Fig. 3. Processing a concrete task.

6.2 Calls with lazy mode

Let us now consider the more complex case of the lazy mode.
Service call dependencies The presence of lazy calls may cause depen-
dencies among call activations. For example, assume that we need to activate

Active XML: A Data-Centric Perspective on Web Services 21

sc4sc2

sc1

sc3

sc6 sc7sc5

sc1

sc2

consulted by
XPath parameters

modified
by activation

(a) (b)

of sc2

of sc1

Fig. 4. Dependencies among service calls.

a non-concrete service call. Before instantiating its XPath parameters, we
may need to activate some lazy service calls, that may affect the result of the
instantiation. This situation is illustrated in the AXML document shown in
Figure 4(a). The “influence zone” of sc2, i.e., the set of nodes that may be
modified by the results of sc2, intersects the zone in which the XPath param-
eters of sc1 are evaluated. If sc2 is in lazy mode, and has expired, then it is
preferable to call it again before we instantiate the XPath arguments of sc1.
In turn, sc2 may have XPath parameters that evaluate in the influence zones
of lazy, expired service calls, leading to a graph of dependencies like the one
in Figure 4(b).

Similarly, assume that a request for an AXML service is received and the
service query Q needs to be evaluated. Before calling the XQuery processor,
we have to check if the data read by Q intersects the influence zone of some
lazy expired service call. This again leads to a dependency graph of the above
form.

A reasonable compromise between precision and complexity has to be
found for tracking dependencies. It is not possible to compute dependency
graphs statically. For instance, as a document evolves, calls are added, or re-
moved, by service call activations. Computing the exact dependency graph
of a service call leads to computationally complex problems such as XPath
containment [20].

We therefore adopt the following pragmatic solution. We consider the in-
fluence zone of a service call to be all the subtrees rooted at its parent. We
consider the scope of an XPath expression to be the set of subtrees rooted
in the highest nodes attained by its evaluation, as described by the XPath
specification [52]. Finally, we assume the data read by an XQuery query to
be described by the XPath expressions in its for clause 11. In general, path
expressions may also appear in other parts of the query, e.g. the where clause.
W.l.o.g we assume here that the query is first normalized [31]. We have thus
brought the dependency decision problem to deciding whether two trees in-
tersect, which can be done in constant time, provided a convenient encoding
for element IDs (e.g., [30]).

11 In some sense, this simple approach is pessimistic, since we do not use the where

clause to filter the actually consulted data.

22 Serge Abiteboul et al.

A call dependency graph may contain cycles reflecting mutual call depen-
dencies. They are broken by arbitrarily choosing some dependencies to be
ignored. Breaking the cycles amounts to introducing non-determinism and
possibly “missing” some data. In a web context, this is acceptable.
Eligibility with lazy mode In the presence of lazy calls, a given call sc
may be declared eligible for instantiation (resp. execution) only after all the
lazy calls in its data dependency graph have been issued.
Call activation with lazy mode Task processing in the presence of lazy
calls is more complex due to the fact that we have to track data dependencies.
First, before instantiating an XPath argument of a non-concrete call, we have
to make sure that the data it bears on is available. To that purpose, before line
1 in Figure 2, we need to construct the dependency graph G for the XPath
parameters of the task, on a snapshot of the destination document. If G has
cycles, they are broken; then, we create tasks for all the leaf nodes from G,
and process them in parallel. When these tasks are over, to take into account
their effect on the destination document, we re-compute G; as long as G is not
empty, we repeatedly create and process tasks, corresponding to lazy, expired
calls, that t depends on. The processing of t is suspended until G is empty.

The very same steps have to be applied when processing a concrete task,
before actually calling the XQuery processor (line 6 in Figure 3), except that
G is computed for the XPath expressions that Q depends on. We omit the
details.

6.3 Implementation

A first prototype of AXML peer software has been implemented in Java.
It relies on the XOQL query processor [7] which implements an algebra
similar to the one of XQuery 12. The SOAP wrapper, which is needed both
to invoke and answer service calls relies on the Axis engine from the Apache
software group [9], which although in early development stage, provides good
performance and great flexibility through its architecture based on chainable
handlers.

We implemented the evaluation strategy of Section 6.1, which only deals
with the immediate activation of service calls. This is done mainly using a
timer thread that acts as a scheduler. In this restricted case, dependency
among service calls does not have to be tracked. Tasks are evaluated in parallel,
each one being handled by a separate thread. A thread pool mechanism is used
to limit the number of simultaneously running threads.

Since SOAP supports only RPC calls and one-way messages, we built a
layer on top of it to allow for continuous services [17]. Basically, the caller of
a continuous service provides a listening SOAP service, used by the callee to
return a stream of answers as one-way messages.

12 We chose XOQL because at the time we started this implementation, no XQuery
processor was available to us. Although there are differences with XQuery, these
are mostly syntactic.

Active XML: A Data-Centric Perspective on Web Services 23

This prototype is functional, and was used to build a distributed peer-
to-peer auctioning application, where each peer can offer auctions for other
peers to bid on, and search for auctions of interest available from other peers,
without needing a centralized auction server [3].

7 Conclusion

The AXML paradigm allows to turn service calls embedded in XML docu-
ments into a powerful tool for data integration. This includes in particular
support for various integration scenarios like mediation, data warehousing
and distributing computations over the web via the exchange of AXML doc-
uments.

We implemented a first prototype, but further work is needed to develop
appropriate optimization techniques. Because of the richness of the model,
this is a complex task that should borrow from many techniques that have
been previously used, notably in the contexts of warehouses and mediators.
We also need to build an environment for designing AXML documents and
tools for easily building applications that use them.

In [32], we proposed to control the exchange of Active XML documents
between applications by using schemas for the input and output parameters of
web services. We developed a set of novel algorithms to make an Active XML
document match a given exchange schema, by invoking some of the service
calls it contains.

We also extended Active XML to deal with documents that are distributed
and/or replicated among several peers [4]. We developed an associated cost
model for query evaluation, and an algorithm to find an optimal strategy of
replication for a given peer.

The proposed AXML paradigm should be further experimented and eval-
uated. Towards this goal, we are intending to use AXML as an application de-
velopment platform in the context of a European project called DBGlobe. The
project deals with data management problems in global distributed comput-
ing environments, with a strong emphasis on mobility. We believe it provides
an adequate testbed for the proposed framework.

References

1. S. Abiteboul, B. Amann, S. Cluet, A. Eyal, L. Mignet, and T. Milo. Active
Views for Electronic Commerce. In Proc. of VLDB, 1999.

2. S. Abiteboul, O. Benjelloun, and T. Milo. A Data-Centric Perspective on Web
Services (Preliminary Report). Technical Report 212, INRIA, November 2001.

3. S. Abiteboul, O. Benjelloun, T. Milo, I. Manolescu, and R. Weber. Active XML:
Peer-to-Peer Data and Web Services Integration (demo). In Proc. of VLDB,
2002.

24 Serge Abiteboul et al.

4. S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and T. Milo. Dynamic XML
documents with distribution and replication. In Proc. of ACM SIGMOD, 2003.

5. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1995.

6. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel Query
Language for Semistructured Data. Int. Journal on Digital Libraries, 1(1):68–88,
April 1997.

7. V. Aguilera. The X-OQL homepage.
http://www-rocq.inria.fr/~ aguilera/xoql.

8. N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML with Data Values:
Typechecking Revisited. In Proc. of ACM PODS, 2001.

9. The Apache Software Foundation. http://www.apache.org.
10. A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active XQuery. In Proc. of ICDE,

2002.
11. A. Bonifati, S. Ceri, and S. Paraboschi. Pushing Reactive Services to XML

Repositories using Active Rules. In Proc. of the Int. WWW Conf., Hong Kong,
China, May 2001.

12. L. Cardelli. Abstractions for Mobile Computation. In Secure Internet Program-

ming, pages 51–94, 1999.
13. L. Cardelli and A. D. Gordon. Mobile Ambients. In M. Nivat, editor, Proc. of

FoSSaCS, volume 1378, pages 140–155. Springer-Verlag, Berlin, Germany, 1998.
14. R. G. G. Cattell, editor. The Object Database Standard: ODMG-93. Morgan

Kaufmann, San Mateo, California, 1994.
15. V. Christophides, R. Hull, A. Kumar, and J. Siméon. Workflow Mediation using

VorteXML. IEEE Data Engineering Bulletin, 24(1):40–45, March 2001.
16. Y. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and M. Strauss. REFEREE:

Trust Management for Web Applications. In Proc. of the Int. WWW Conf.,
volume 29(8-13), pages 953–964, 1997.

17. F. Cremenescu. Supporting Subscription Services using SOAP, 2001. Stage de
fin d’tude, Ecole Polytechnique.

18. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Se-
curing XML Documents. In Proc. of EDBT, 2001.

19. A. Deutsch, M.F. Fernandez, D. Florescu, A.Y. Levy, and D. Suciu. A Query
Language for XML. In Proc. of the Int. WWW Conf., volume 31(11-16), 1999.

20. A. Deutsch and V. Tannen. Containment of Regular Path Expressions under
Integrity Constraints. In Proc. of the KRDB Workshop, Rome, 2001.

21. H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv,
J. Ullman, and J. Widom. The TSIMMIS Approach to Mediation: Data Models
and Languages. Journal of Intelligent Information Systems, 8:117–132, 1997.

22. L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers. Going Beyond the
Sandbox: An Overview of the New Security Architecture in the Java Develop-
ment Kit 1.2. Proc. of the Usenix Symp. on Internet Technologies and Systems,
1997.

23. A. Gupta. Integration of Information Systems: Bridging Heterogeneous

Databases. IEEE Press, 1989.
24. R. Halstead. Multilisp: A Language for Concurrent Symbolic Computation.

ACM Trans. on Programming Languages and Systems, 7(4):510–538, 1985.
25. H. Hosoya and B. C. Pierce. XDuce: A typed XML Processing Language (Pre-

liminary Report). In Proc. of WebDB, May 2000.

Active XML: A Data-Centric Perspective on Web Services 25

26. J. Mc Hugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A
Database Management System for Semistructured Data. Technical report, Stan-
ford University Database Group, Feb 1997.

27. T. Jim and D. Suciu. Dynamically Distributed Query Evaluation. In Proc. of

ACM PODS, pages 413–424, 2001.
28. The Kazaa Homepage. http://www.kazaa.com.
29. A. Levy, A. Rajaraman, and J. Ordille. Querying Heterogeneous Information

Sources Using Source Descriptions. In Proc. of VLDB, pages 251–262, 1996.
30. Q. Li and B. Moon. Indexing and Querying XML Data for Regular Path Ex-

pressions. In Proc. of VLDB, 2001.
31. I. Manolescu, D. Florescu, and D. Kossmann. Answering XML queries over

heterogeneous data sources. In Proc. of VLDB, 2001.
32. T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, and F. Dang Ngoc. Exchanging

Intensional XML Data. In Proc. of ACM SIGMOD, 2003.
33. The Morpheus homepage. http://www.morpheus-os.com.
34. B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda. Monitoring XML data on

the web. In Proc. of ACM SIGMOD, 2001.
35. Ozone: Integrating Structured and Semistructured Data. T. Lahiri and S. Abite-

boul and J. Widom. In Proc. Int. Workshop on Database Programming Lan-

guages, 1999.
36. Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object Fusion in

Mediator Systems. In Proc. of VLDB, pages 413–424, 1996.
37. J. Powell and T. Maxwell. Integrating Office XP Smart Tags with the Microsoft

.NET Platform. http://msdn.microsoft.com, 2001.
38. Simple Object Access Protocol (SOAP) 1.1. http://www.w3.org/TR/SOAP.
39. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems, 2nd

Edition. Prentice-Hall, 1999.
40. I. Tatarinov, Z. Ives, A. Levy, and D. Weld. Updating XML. In Proc. of ACM

SIGMOD, 2001.
41. Universal Description, Discovery, and Integration of Business for the Web

(UDDI). http://www.uddi.org.
42. J.D. Ullman. Principles of Database and Knowledge Base Systems. Computer

Science Press, 1989.
43. The World Wide Web Consortium (W3C). http://www.w3.org.
44. G. Weikum, editor. Infrastructure for Advanced E-Services, volume 24, no. 1.

Bulletin of the Technical Committee on Data Engineering, IEEE Computer So-
ciety edition, Mar 2001.

45. J. Widom and S. Ceri. Active Database Systems: Triggers and Rules for Ad-

vanced Database Processing. Morgan Kaufmann Publishers, 1996.
46. G. Wiederhold. Intelligent Integration of Information. In Proc. of ACM SIG-

MOD, pages 434–437, Washington, DC, May 1993.
47. Web Services Definition Language (WSDL). http://www.w3.org/TR/wsdl.
48. Web Services Flow Language (WSFL 1.0).

Available from http://www.ibm.com/.
49. XLANG, Web Services for Business Process Design.

http://www.gotdotnet.com/team/xml wsspecs/xlang-c.
50. Extensible Markup Language (XML) 1.0 (2nd Edition).

http://www.w3.org/TR/REC-xml.
51. XML Schema. http://www.w3.org/TR/XML/Schema.
52. XML Path Language (XPath) Version 1.0. http://www.w3.org/TR/xpath.
53. XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery.

