
A Pattern and Rule-based Approach for Reusing

Adaptive Hypermedia Creator’s Models

Nadjet Zemirline1, Chantal Reynaud², Yolaine Bourda1, Fabrice Popineau3

1SUPELEC/Department of Computer Science,, Plateau de Moulon, 3 rue Joliot-Curie,
91192 Gif sur Yvette Cedex, France

{Nadjet.Zemirline, Yolaine.Bourda}@supelec.fr
²Université Paris-Sud XI, CNRS (LRI) & INRIA – Saclay Île-de-France / Projet Gemo,
Bât. G, 4 rue Jacques Monod, Parc Orsay Université, 91893 Orsay Cedex, France

chantal.reynaud@lri.fr
3SUPELEC/Metz Campus, 2 rue Édouard Belin, F-57070 Metz, France

Fabrice.Popineau@supelec.fr

Abstract. The design of Adaptive Hypermedia is a difficult task which can be
made easier if generic systems and AH creators’ models are reused. We address
this design problem in the setting of the GLAM platform only made up of
generic components. In this paper, we assume the GLAM platform is used to
create a specific adaptive hypermedia. We present a pattern and a rule-based
approach helping a AH creator in reusing its user and domain models and
instances in order to make them taken into account. This semi-automatic
approach takes the creator’s models as specialisations of GLAM generic models
and requires the creator to express a minimum set of mappings between his
models and the generic ones. The process results in a merged model consisting
of the generic and the corresponding specific model, being fully compliant with
the GLAM adaptation model. A plug-in and experimentations in the e-learning
domain have been partially designed.

Keywords: assisting tools, reusing models, models merging, adaptive
hypermedia.

1 Introduction

Nowadays, there is a growing demand for personalization and the “one-size-fits-all”
approach for hypermedia systems is no longer applicable. Adaptive hypermedia (AH)
systems adapt their behaviour to the needs of individual users. The following
definition [1] is the more widely used: “ by adaptive hypermedia systems we mean all
hypertext and hypermedia systems which reflect some features of the user in the user
model and apply this model to adapt various visible aspects of the system to the user”.
Thus, adaptive hypermedia systems are tools to access information based upon the
user’s profile represented in a user’s model. They also require a domain model to
represent the application domain knowledge. These two kinds of models may be
expressed in an AH-specific language or a standard language (RDF, OWL).

Adaptation mechanisms, either rule or trigger based, which are needed in adaptive
hypermedia rely on these models.
The creation of an adaptive hypermedia system is too often made from scratch and

the re-use of existing models (user or domain) is very rare although more and more
annotated resources are available. For example, in the educational domain, many
learning resources, developed using a LMS (Learning Management System) or an
XML tool, are now available, and are described using metadata (for example using
the Learning Object Metadata standard or LOM). But, if a user wants to use a specific
AH system, he needs to translate his models into the specific format understood by
the system and to use the vocabulary specific to that system. Furthermore, he also
needs to translate all the instantiations of his models (i.e. the resources and their
metadata). We think that this task is tedious and time-consuming and we want to
avoid it. Our objective is to allow the creator of an adaptive hypermedia to reuse his
models (his vocabulary) and his models’ instantiations without any change of format
or vocabulary.
We are currently working on the GLAM (Generic Layered Adaptation Model) [2]

platform defined for an entire class of adaptive hypermedia systems. The platform is
made of a generic adaptation model relying on generic user and domain models.
Specific systems can be obtained by specializing the GLAM generic user and domain
models. However, this specialization process is not always easy to perform. It has to
be supported to make the design process easier and faster. This paper focuses on
assisting adaptive hypermedia systems creators to specialize the user and the domain
model using their own models in the setting of GLAM. We aim at automating this
process which has been so far entirely manual. Our objectives are twofold: on one
hand, to create a support for defining mappings between elements in GLAM generic
models and elements in the creator’s personal models, on the other hand, to help
creating consistent and relevant models integrating the generic and specific ones and
taking into account the mappings between them. The proposed approach is applicable
either to user or domain models. It relies on OWL1, a W3C standard and SWRL2, a
W3C proposal. GLAM’s models are expressed in OWL, so we expect that the AH
creator’s models are also expressed in OWL. This is not restrictive because OWL is
widely used.
 The paper is organized as follows. In section 2, we present the main aspects of our

approach. The pattern-based approach is described in section 3 while the rule-based
approach is detailed in section 4. In section 5 we address the validation step and in
section 6 the implementation of our plug-in and experimentations made in the e-
learning domain are presented. In section 7, we describe close related works. Finally,
section 8 concludes the paper.

1 www.w3.org/TR/owl-features/

2 http://www.w3.org/Submission/SWRL/

2 Main aspects of the approach

Given two models, a generic model belonging to the GLAM platform and a specific
model provided by a particular AH creator, we propose an approach to support the
construction of a model that would integrate all the particularities of the specific
model and be usable by the GLAM adaptation engine. The generic and specific
models may be either user or domain models. The same approach is usable for both
kinds of models. In the approach, mappings must be defined between elements of
both models and then validated at the structural and semantic level. Our approach
relies on the AH creator who has a very good understanding of his model. He will be
responsible for semantic validation while all the structural verifications will be done
automatically by our system. The main steps of the approach are the following:
1. Specification, by the AH creator, of equivalence and specialization mappings

between classes of the generic and the specific models, merging the whole
generic GLAM model and the mapped classes of the specific model (together
with the associated mapping links) in order to obtain a new model (cf. (1) Fig. 1).

2. Automatic computation of additional mappings between classes, the mappings
and the linked classes being added in the being built model (cf. (2) Fig. 1).

3. Automatic computation of mappings between elements different from classes.
(cf. (3) Fig. 1).

4. Validation by the AH creator of the deductions made by the system in step 3. (cf.
(4) Fig. 1).

Fig. 1 The diagram of the architecture of our assistant system.

In this paper, we only consider equivalence and specialization mappings. As our
aim is to reuse GLAM adaptation model, which includes rules expressed on generic
user and domain models, equivalence and specialization mappings between elements
of the generic and specific models allows the AH creator to reuse directly the GLAM
adaptation model. In the following sections, we focus more particularly on the steps 2,
3 and 4 of the approach which are described in the sections 3, 4 and 5 respectively.

Furthermore, we will adopt the following notations: Cm,i to represent the class i from
the model m, and Rm,d,j to represent the relation j with the domain d in the model m.

3 Using a pattern-based approach to deduce additional mappings

between classes

Starting from the mappings between classes specified by the AH creator, other
mappings can be automatically deduced. We propose to adopt a pattern-based
approach to achieve this deduction. Pattern-based approaches for mapping
identification across models assume that structural regularities always characterize the
same kind of relations.
We have defined 8 patterns which are characterizations of structural contexts

composed of 3 classes, either two classes of the generic model and a class of the
specific model or two classes of the specific model and a class of the generic model (2
categories). The idea is to deduce the nature of the relation R (equivalence or
specialization) between Cs,1 a class of the specific model and Cg,1 a class of the
generic model, when a third class belonging to one of the two models, Cm,2, is linked
to Cs,1 by a relation R1 and to Cg,1 by a relation R2, R1 and R2 being either equivalence
or specialization relations. We identified four patterns per structural context category
to represent all possible cases, that is to say 8 patterns all in all.
Given Requiv an equivalence relation and RsubClass a specialization relation, the

deduction of supplementary mappings is based on the composition (noted o)
properties of these two kinds of relations described below:
R equiv o R subClass = R subclass R subclass o R equiv = R subclass
R subclass o R subclass = R subclass R equiv o R equiv = R equiv

The patterns we have defined are generic and usable only to identify mappings
between classes. They are expressed using SWRL. Fig. 2 is an illustration of a pattern
belonging to the 1st category. Thanks to this pattern, one can deduce that there is a
subclass relation between Cs,1 and Cg,1.

Fig. 2 An example of a pattern

4 A rule-based approach

In this section our objective is twofold. First goal is to automatically deduce mappings
between relations and between attributes of classes of the generic and specific models.

Cg,1

R subClass

Class of the generic model

Class of the specific model

Mappings between classes of the generic and specific models (given by the AH creator)
Deduced mapping

Relations between classes of the GLAM model

R equiv

Cg,2Cs,1

Second goal is to check the consistency of the new model created by the merging
process. To do so, our system uses structural knowledge applicable to whatever the
model is (user or domain model) (cf. section 4.1). As detailed in section 4.2, as
models are expressed in OWL, structural knowledge has been modelled in a meta-
model based on the OWL meta-model3. Inferences on knowledge modelled in the
meta-model are performed using SWRL rules (cf. section 4.3, section 4.4).

4.1 Structural knowledge

First of all, let us note that we only consider OWL models. In OWL, a model includes
a set of classes and a set of properties. A property is a binary relation. It is either a
relation between an individual and a datatype (representing an attribute) or a relation
between two individuals (representing a relation between two instances). Property
restrictions such as cardinality constraints (OWL:maxCardinality,
OWL:minCardinality or OWL:Cardinality) and characteristics (functional or inverse
functional) can be used in the description of classes or of properties.
The exploitation of structural knowledge aims at defining the nature of mapping

links between OWL properties which are referred to in this paper by relations because
relations (in its usual meaning) and attributes are both represented by properties in
OWL.
In our approach, the deduction of mappings between relations is inferred from

information characterizing the compatibility of the relations. A mapping between two
relations is possible only when the relations are compatible. A mapping may be either
a potential or a probable link according to the compatibility information (inferred
from mappings between classes and from properties restrictions) associated to the
mapped relations.
Definition 1: Two relations Rs,i,j and Rg,k,l are linked by a potential link if a mapping
is defined between their domain and between their range.
Definition 2: Restrictions relative to two relations Rs,i,j and Rg,k,l are compatible if
those relations are linked by a potential link and if:
1. (Cardinalitymax(Rs,i,j) ≤ Cardinalitymax(Rg,k,l)

and Cardinalitymin(Rs,i,j) ≥ Cardinalitymin(Rg,k,l))
or Cardinalityvalue (Rs,i,j) = Cardinalityvalue (Rg,k,l).

or
2. Rs,i,j and Rg,k,l are both functional or not (resp. inverse functional or not) or Rs,i,j

is functional (resp. inverse functional) and Rg,k,l is not.
Definition 3: Two relations Rs,i,j and Rg,k,l are linked by a probable link if they are
linked by a potential link and if their restrictions are compatible.
Probable links can be either equivalence or specialization links according to the

nature of mapping between the classes corresponding to the range and according to
the restrictions associated to the relations.
Definition 4: A probable link between Rs,i,j and Rg,k,l is an equivalence probable link
if the two ranges are linked by an equivalence relation and if they have the same
restrictions.

3 http://www.omg.org/docs/ad/05-09-08.pdf

Definition 5: A probable link between Rs,i,j and Rg,k,l is a specialization probable link
if a mapping is defined between their range but the restrictions on Rs,i,j are stronger
than those on Rg,k,l or if they have the same restrictions but the Rs,i,j range is a
subcategory of the Rg,k,l range.
Note: Probable links as their name indicates it, are only probable and are not sure.
Thus they will be proposed to the AH creator for validation or eventual modification
of the specific model (Section 5).

4.2 Modelling structural knowledge

As the models to be merged are represented in OWL, we propose to represent
structural knowledge in a meta-model based on the OWL meta-model. The OWL
meta-model was defined by ODM (Ontology Definition Meta Model) of OMG as a
MOF2 compliant meta-model. It is composed of several UML class diagrams, a class
diagram per element of an OWL model. Our system does not need all the diagrams of
the OWL meta-model. We describe the reused diagrams in section 4.2.1.
Furthermore, in section 4.2.2, we present how the model coming from the OWL meta-
model has been enriched in order to represent the needed structural knowledge
described in section 4.1.

4.2.1 Reused Parts of the OWL meta-model

As structural knowledge is relative to classes, properties and restrictions according to
the OWL terminology, we reused the Class, Property and Restriction class diagrams
in the OWL meta-model. In the Class diagram, the Class and Restriction classes and
the equivalentClass and subclass relations are needed. The Restriction diagram has
been restricted to the following three classes: Cardinality Restriction, Max
Cardinality Restriction and Min Cardinality Restriction. On the other hand, the
Property diagram has been entirely reused.

4.2.2 Enrichment of the Reused Parts of the OWL meta-model
We enriched our meta-model in order to model structural knowledge by introducing
the needed relations (cf. section 3.1). Furthermore, we brought some modifications on
the reused part of the OWL meta-model. Indeed, in that meta-model, the XML-
Schema datatypes are considered as individuals of the class Class. That representation
is not convenient for us because some characteristics of classes that we have to
represent are not relevant for datatypes. So, we decided to add a new class
specialization of Class, denoted Application Class, whose individuals are OWL
classes different from datatypes. Application Class has an attribute model which takes
generic or specific value in order to differentiate between individuals being initial
elements either of the generic model or of the specific model. The resulting meta-
model is presented Fig. 3.

Class

Application
Class

model

Property

functional
inversefunctional

Cardinality

value

Cardinality
Restriction

Max
Cardinality
Restriction

Min
Cardinality
Restriction

subClass

restrictionOnPropertyrange

domain

equivalent
Class

specializationMapping

equivalenceMapping

sub
Properties equivalentProperties

Reused parts of the
OWL meta model

Added Extensions

potentiallyLinkedProperties

probablySubProperties

probablyEquivalent
Properties

probablyLinkedProperties

Mapping

Fig. 3 The proposed meta-model

4.3 Mapping Deduction Rules

In this section, we give the rules to deduce mappings between relations of the generic
and specific models. The rules derive from the definitions given in section 4.1 and are
based on the proposed meta-model (cf. section 4.2).
4.3.1 Deducing a potential mapping
The rule inferring a potential mapping derives directly from Definition 1, (R1).

Property(?Pg) ^ model(?Pg,"generic") ^ domain(?Pg,?Dg)^
range(?Pg,?Rg) ^ Property(?Ps) ^ model(?Ps,"specific") ^
domain(?Ps,?Ds) ^ range(?Ps,?Rs) ^
mapping(?Dg,?Ds) ^ mapping(?Rg,?Rs)
�potentiallyLinkedProperties(?Pg,?Ps)

mapping(?Cg, ?Cs) expresses a mapping between a class of the generic model and
a class of the specific model. It is either defined by the AH creator or inferred from
additional mappings automatically deduced.
4.3.2 Deducing compatible restrictions
Table.1 groups all cases where a relation of the generic model Pg and a relation of the
specific model Ps are linked by a potential link and have compatible restrictions. It
also includes the corresponding deductions and rules number.
We will not give the associated code for each rule. As an example, here is the R3 rule:

potentialLinkedProperties(?Pg,?Ps) ^
functional(?Pg,false) ^ functional(?Ps,true)�
sameFunctionality(?Pg,?Ps) ^
compatibleFunctionality(?Pg,?Ps)

Definition.2 relative to compatible restrictions is expressed by the following rule
(R10) which takes into account default values for restrictions:

compatibleFunctionality(?Pg,?Ps) ^ compatibleCardinality
(?Pg,?Ps) ^ compatibleInverseFunctionality(?Pg,?Ps)
�compatibleRestriction(?Pg,?Ps)

Table.1 Compatible restrictions

4.3.3 Deducing a probable mapping
The rule inferring a probable mapping derives directly from Definition 3, (R11).

potentiallyLinkedProperties(?Pg,?Ps) ^
compatibleRestriction(?Pg,?Ps)
�probablyLinkedProperties(?Pg,?Ps)

Two kinds of probable mappings are distinguished. A rule arising directly from
Definition 4 allows deducing an equivalence probable mapping link (R12). The
deduction of a specialization probable mapping link can be expressed by the
following formula: Probable link ⁄ (Restrictive range ¤ restrictive functional ¤
restrictive inverse functional ¤ restrictive cardinality). As the disjunction operator
doesn’t exist in SWRL, four rules (R13, R14, R15, R16) are needed to deduce a
specialization probable link. Here is one of these four rules (R13):

probablyLinkedProperties(?Ps,?Pg) ^ range(?Pg,?Rg) ^
range(?Ps,?Rs) ^ mapping(?Rg,?Rs)
�probablySubProperties(?Pg,?Ps)

 Pg Ps Associated predicates Rules

True True

False False
sameFunctionality(Pg,Ps)^
compatibleFunctionality(Pg,Ps)

R2

F
un
ct
io
na
l

False True restrictiveFunctionality(Pg,Ps)^
compatibleFunctionality(Pg,Ps) R3

True True

False False

sameInverseFunctionality(Pg,Ps)^
compatibleInverseFunctionality
(Pg,Ps)

R4

In
ve
rs
eF
un
ct
io
na
l

False

True

restrictiveInverseFunctionality
(Pg,Ps)^
compatibleInverseFunctionality
(Pg,Ps)

R5

Cardmin(Pg)=Cardmin(Ps)
Cardmax(Pg)=Cardmax(Ps)

R6

Cardvalue(Pg)=Cardvalue(P
s)

sameCardinality(Pg,Ps)^
compatibleCardinality(Pg,Ps)

R7

Cardmin(Pg)<Cardmin(Ps)
Cardmax(Pg)=Cardmax(Ps)

R8

C
ar
di
na
li
ty

Cardmin(Pg)≤Cardmin(Ps)
Cardmax(Pg)>Cardmax(Ps)

restrictiveCardinality(Pg,Ps) ^
compatibleCardinality(Pg,Ps)

R9

4.4 Inconsistency deduction rules

Inconsistencies relate to potential mappings and derive directly from restrictions. If a
relation from the generic model is more restrictive than the potential mapped relation
of the specific model, restrictions of the two relations are incompatible. The deduced
inconsistencies are submitted to the AH creator for eventual modification of the
specific model (cf. section 5). Table.2 describes all possible incompatibilities, the
corresponding deductions and rules numbers.

Table .2 Incompatible restrictions.

5 Validation of the mappings and solving inconsistencies

In this section, we take advantage of deductions made in sections 3 and 4. So, for each
class of the generic model, all relations R whose domain is the class of the generic
model are analysed according to its mappings. We distinguish two cases. In the first
case, there is at least a relation in the specific model linked to R by a probable
mapping link. As the deduction of the potential mappings is only based on structural
knowledge, it is presented to the AH creator for validation. Table 3 describes the
suggestions made to the AH creator depending on the fact there exists only one or
several mapped probable relations. In the second case, no relations are linked by a
probable link due to incompatible restrictions. This will be interpreted as an error and
the AH creator will be asked for modifications.

Table.3 Interactions with the AH creator during the validation phase

 Interpretation Asking the AH
creator

Pg linked by a unique potential mapping link.
Ps linked by a unique potential mapping link.

Validation of this
probable mapping Pg and Ps are

linked by a
probable link Pg linked by multiple probable or potential

mapping links.

Choice of the
correct probable
mapping

Constraints Pg Ps Associated predicates Rules

Functional True False

incompatibleFunctionality
(Pg,Ps)^
incompatibleRestriction
(Pg,Ps)

R17

Inverse
Functional

True False

incompatibleInverseFunctio
nality (Pg,Ps)^
incompatibleRestriction
(Pg,Ps)

R18

Cardmin(Pg)>Cardmin(Ps) R19
Cardmax(Pg)<Cardmax(Ps) R20

Cardinality Cardvalue(Pg)≠Cardvalue(Ps)

incompatibleCardinality
(Pg,Ps) ^
incompatibleRestriction
(Pg,Ps) R21

Pg and Ps have
incompatible
restrictions

--

Modification of the
restriction of Ps

6 Implementation

In order to test and validate our approach, we have implemented MESAM, a plug-in
for Protégé 20004. Currently, MESAM (Model mErging by Specialization of Abstract
and generic Models) is under test.
In section 6.1, we describe the architecture of the MESAM plug-in. A general

overview of its implementation is presented in section 6.2. Finally, in section 6.3 we
illustrate through an example the execution of the plug-in

6.1 Architecture of MESAM plug-in

As described in Figure 4, the plug-in includes two parts.
First, a knowledge part gathers generic models (GLAM generic models in our

case), the meta-model and deduction rules (4 rules related to patterns and 21
mappings and inconsistency deduction rules). All these components are reusable
across applications.
Second, the process part is made of some components performing interaction with

an inference engine (in our case Jess) and the OWL Protégé editor. We have used the
OWL Protégé API to manipulate OWL models, as editing OWL models or the
generation of meta-model instances from OWL models, and the SWRL Jess Bridge5
to execute SWRL rules using the Jess inference engine6.

Fig. 4 Architecture of the “MESAM” plug-in

4 http://protege.stanford.edu/
5 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLJessTab
6 http://herzberg.ca.sandia.gov/

OWL editor
(Protégé 2000)

Inference Engine
(Jess)

AH Creator

"MESAM"plug-in

 Knowledge part

Rule base

(SWRL)

Generic
models (OWL)

Meta model
(OWL)

 Process Part

Protégé OWL
API

SWRL Jess Bridge

6.2 The Protege MESAM plug-in

MESAM plug-in proposes an intuitive work space (cf. Fig. 5) which is divided into
three main windows:
A first window (cf. (1) Fig 5) enables the visualization and eventual modification

of the specific model. It proposes the same functionalities as the OWLClasses tab.
A second window (cf. (2) Fig 5) enables the visualization of the generic model.

Classes of the generic model are organized in a hierarchical form.

Fig. 5 Work space of MESAM plug-in

A third window (cf. (3) Fig 5) concerns the specialization process, described in
section 2 and it includes two parts:

- A first part (cf. (3.1) Fig 5) enables to define specialization and equivalence
mappings between classes of the generic and specific models. It can be done in
two steps: first, selecting a class of the generic model and another one of the
specific model, second clicking on the “add equivalence mapping” or “add
specialization mapping” buttons according to the type of mappings to be
defined.

- A second part enables to infer new mappings between classes and between
properties, and to infer potential inconsistencies. Results will be printed in the
corresponded textbox: (cf. (3.2) Fig 5) for mapping deductions and (cf. (3.2)
Fig 5) for inconsistency deductions.

6.3 Example of execution of MESAM plug-in

MESAM plug-in allowed us to make some experiments. The first one has been done
in the e-learning domain aiming at building a user’s model usable in the GLAM
system. We have personally played the role of an AH creator. A user model
developed in our team at Supélec [11] has been chosen as specific model.
In order to perform the specialization process of the generic GLAM model by our

specific model, we need to launch the protégé OWL editor and to load our
experimental plug-in.
The meta-model is loaded inside the plug-in, then meta-model instances are

generated from the specific and generic models. We have chosen to keep these
processes invisible to the AH creator. So, in our plug-in, the AH creator will have the
illusion to work over the specific and generic models.
We have done several tests, testing each time multiple cases and so validating our

approach proposed in section 2. Through the figures 5 and 6, we illustrate one of the
tests we have done. Figure 6 (A) illustrates a part of the specific model, figure 6 (B)
illustrates a part of the generic model.

 Fig. 6 Parts of the generic and specific user model

Figure 5 describes the different mapping we defined, describes also the results of
execution done after launching the deduction process. Among the specified mappings,
we defined specialization mappings between the classes Knowledge_attribute and
Concept, and between User_representation and User (cf. (3.1) Fig 5).
Launching the deduction process has enabled to deduce mappings and

inconsistency problems. Among the results, the plug-in has deduced that the relations
has_Aquired_concept and has_Knowledge_attribute may be equivalent, as the
relation is_Aquired_concept_of and is_Knowledge_attribute_of may also be
equivalent (cf. (3.3) Fig 5). It has also deduced an inconsistency problem between the
attributes degree_aquired_concept and value_Knowledge_attribute (a functional
inconsistency) (cf. (3.3) Fig 5).

7 Closely related works

There is related work both in the Adaptive Hypermedia (AH) and in the Knowledge
Engineering communities.
In the AH community, AH have proved their benefits, particularly in the educational
domain [3], but authoring an adaptive hypermedia for a particular need is still a
difficult task [4]. The AH community is now taking an active interest in this matter, as
the series of workshops about that topic testifies (A3H at UM2007 in Corfu, A3H at
AH2006 in Dublin, A3H at AIED05 in Amsterdam…).
Some freely available adaptive hypermedia systems, which are, in fact adaptive

educational hypermedia systems, like AHA!7 [5] or WHURLE8 [6], come with an
authoring tool but they required to learn how to use the system and it is necessary to
adapt the annotated resources to the format used by the system. The lack of standards
leads users to be captive of a particular system. It is possible to distinguish two
distinct issues: the first one is about interoperability of AH systems (how to use
resources developed for one system inside another one), the second one is about the
re-use of existing resources.
Considering the first issue, what happens if the system used is no longer

maintained or if users want to change? Do they need to re-create all their resources? It
is desirable to move away from a “one-to-one” adaptive hypermedia authoring
paradigm to a general “many-to-many” [7]. One possible solution today is to use
MOT (My Online Teacher) [8], as an authoring tool because it allows a conversion
[9] to AHA! or WHURLE. But the AH creator cannot simply reuse his models and
consequently the corresponding descriptions of his resources.
Considering the second issue, what happens if annotated resources are pre-existing

to the adaptive hypermedia? One possibility is to reuse metadata, for example
automatically generated metadata in a semantic desktop environment [10]. A
proposed solution is based on Beagle for the automatic generation of metadata, and on
the MOT system for the AH system reusing the Beagle metadata. But, it is necessary
to translate the Beagle metadata in the Mot format. Another possibility is to rely on
the re-use of educational resources developed for a system based on a widespread
standard IMS-LD in order to enable authoring of sequencing strategies that can be re-
used in any system based on IMS-LD [11] or modeling of adaptive rules by means of
IMS-LD [12]. But these solutions are based on the use of IMS-LD.
To conclude, some systems can re-use resources described in a particular standard

(like IMS-LD) or format. Other systems can translate resources from one particular
adaptive system to another one. But, all those systems have developed “ad-hoc”
solutions closed to the adaptive systems used and are not applicable to other adaptive
systems. In fact, till now, no system allows the AH creator to directly integrate his
resources and his models in an adaptive system. We make a proposal to fill this gap.
In the knowledge engineering community, research in the integration of

heterogeneous information systems has been put in perspective since several years.
There are several approaches for performing a semantic integration depending on the
degree of integration usually referred as ontology mapping, aligning or merging. The

7 http://aha.win.tue.nl
8 http://whurle.sourceforge.net/

process of ontology merging takes as input two (or more) source ontologies and
returns a merged ontology based on the given source ontologies. As manual ontology
merging using editing tools without support is difficult, labor intensive and error
prone, several systems and frameworks for supporting the knowledge engineer in the
ontology merging task have been proposed [13,14,15,16]. These approaches are based
either on instances of the two given ontologies that are to be mapped (bottom-up) or
on concepts (top-down).
FCA-MERGE [14] merges ontologies following a bottom-up approach. It extracts

instances from a given set of domain-specific text documents (by applying natural
language processing techniques) then apply techniques taken from Formal Concept
Analysis. The produced result is explored and transformed to the merged ontology by
the knowledge engineer.
ODE-MERGE or PROMPT follow a top-down approach based on concepts. ODE-

MERGE [15] is integrated in WebODE. It compares two ontologies in a completely
automatic way, considering tables of synonymy or hyperonymy. Obtained results are
evaluated by the knowledge engineer. I-PROMPT [16] is an interactive tool for
ontology merging integrated into the PROMPT framework. It asks users during the
merging process. The process goes through the following cycle. It generates
suggestions based on the structure of the ontologies, the user triggers an operation by
selecting one of its suggestions. Then, I-PROMPT performs the operations and
automatically executes changes in the merged ontology based on the type of
operation.
So, to conclude, these systems are either based on instances or on concepts. They

are either automatic or interactive tools. However, despite they have been used with
many different ontologies and in many different domains, they have not been used to
merge abstract models with specialized ones and have not been applied to AH
systems. In this paper, we focus on this specific point. The models to be merged are
relatively small. The merging process is performed once at design time. Generic
models are composed of abstract classes which have no instances. The designer of the
system knows the models to be integrated in the system very well and can then
provide simple correspondences between their elements. Given these
correspondences, the software implemented our approach is expected to reason about
the models and to generate additional correspondences between classes, properties or
relations. The hypothesis underlying this work is that it is much easier for AH
designers to specify simple correspondences from classes in the models and then
evaluate mappings returned by the system, the consistency of the merged model being
automatically checked.

8 Conclusion and future work

In this paper, we have proposed a solution enabling the user to create an adaptive
hypermedia with the GLAM system re-using his own models and consequently his
own resources and their metadata (the instantiations of the models). This approach
relies on the AH creator to start the design process. He has to specify a minimum set
of mappings between classes from which the system automatically deduces all the

other possible mappings and potential inconsistencies. Above all, this approach
enables to check and to validate the model resulting from the merging process. That
way the merged model can be immediately used by the GLAM adaptation engine.
This approach is generic and consequently usable whatever the application domain is.
We now intend to complete the implementation of our plug-in and then to propose

it to real AH creators. Future experiments will be done with Supélec teachers. It can
also be interesting to consider the relations between the adaptation rules and the user
and domain models, in particular when a mapping is not defined for a class of a
(generic or specific) model. We envision an extension enabling AH creators to
interact with the adaptation model. Finally, our solution is based on the use of OWL
to express the models and it is not dependent on the use of GLAM. So, as future
work, we plan to consider the application of this approach to other systems.

References

1. Brusilovsky, P.: Methods and techniques of adaptive hypermedia, User Modeling and
User Adapted Interaction. vol. 6, no. 2-3, pp. 87-129 (1996)

2. Jacquiot, C., Bourda, Y,. Popineau, F., Delteil, A., Reynaud. C.: GLAM: A generic
layered adaptation model for adaptive hypermedia systems. In: 4th International AH2006,
Springer, pp. 131–140. Springer, Heidelberg, Allemagne (2006)

3. Brusilovsky, P.: Adaptive hypermedia, User Modeling and User Adapted Interaction. vol.
11, no. 1-2, pp. 87-110 (2001)

4. Celik, I., Stewart, C., Ashman, H.: Interoperability as an Aid to Authoring: Accessing
User Models in Multiple AEH Systems. In: 1st Adaptive and Adaptable Educational
Hypermedia workshop at AH, pp. 71-85. Springer, Heidelberg, Allemagne (2006)

5. De Bra, P., Smits, D., Stash, N.: Creating and Delivering Adaptive Courses with AHA! In:
1st European Conference on Technology Enhanced Learning, EC-TEL 2006, pp. 21-33,
Springer, Crete (2006)

6. Zakaria, M.R. Moore, A., Stewart, C.D., Brailsford, T.J.: “Pluggable” user models for
adaptive hypermedia in education. In: the Fourteenth ACM Conference on Hypertext and
Hypermedia, pp. 170-171, Nottingham, UK (2003)

7. Cristea, A., Stewart, C.: Automatic Authoring of Adaptive Educational Hypermedia. Book
chapter in "Web-Based Intelligent e-Learning Systems: Technologies and Applications",
ZongMin Ma (Ed.), Information Science Publishing (IDEA group), pp. 24-55 (2006)

8. Cristea, A.I., De Mooij, A.: Adaptive Course Authoring: My Online Teacher. In: ICT'03,
Papeete, French Polynesia (2003)

9. Cristea, A.I., Smits, D., De Bra, P.: Writing MOT, Reading AHA! - converting between an
authoring and a delivery system for adaptive educational hypermedia. In: A3EH workshop
at AIED'05, Amsterdam, Netherlands (2005)

10. Hendrix, M., Cristea, A., Nejdl, W.: Authoring Adaptive learning Material on the
Semantic Desktop. In: 4th International Workshop on Authoring of Adaptive and
Adaptable (Educational) Hypermedia (A3EH), Dublin, Ireland (2006)

11. Gutiérrez, S., Pardo A., Kloos, C.D.: Authoring of Adaptive Sequencing for IMS-LD. In:
5th International Workshop on Authoring Adaptable and Adaptive Hypermedia, in User
Modelling Conference (UM), pp. 12-19, Corfu, Greece (2007)

12. Berlanga, A.J, García, F.J, Carabias, J.: Authoring Adaptive Learning Designs Using IMS
LD. AH, In: 4th International AH2006, pp. 31-40, Heidelberg, Allemagne (2006)

13. Mc Guinness, D. L., Fikes, R., Rice, J., Wilder, S.: An environment for Merging and
Testing Large Ontologies. In: 7th International conference on Principles of Knowledge

Representation and Reasoning, KR-2000, pp. 483-493, Breckenridge, Colorado, USA
(2000)

14. Stumme, G., Maedche, A.: FCA-MERGE: bottom-up merging of ontologies. In: 17th IJCAI,
pp. 225-234, Seattle, Washington, USA (2001)

15. Gomez-Perez, A., Angele, J., Fernandez-Lopez, M., Christophides, V., Stutt, A., Sure, Y.:
A survey on ontology tools. In: OntoWeb deliverable 1.3 Universidad Politecnica de
Madrid (2002)

16. Noy, N.F., Musen M. A.: The PROMPT Suite: Interactive Tools for Ontology Merging
And Mapping. In: IJHCS, vol. 59, no. 6, pp. 983-1024, Elsevier (2003)

