
Scalability Evaluation of a P2P Content Distribution

System

Serge Abiteboul Radu Pop Gabriel Vasile Dan Vodislav

INRIA-Orsay
fname.lname@inria.fr

INRIA & Mandriva
fname.lname@inria.fr

INRIA-Orsay
fname.lname@inria.fr

CNAM/CEDRIC
lname@cnam.fr

Abstract

Scalability is a key issue in current con-
tent distribution systems for web commu-
nities, which have to disseminate increas-
ingly large amounts of data to increasingly
large communities of users. We believe
that peer-to-peer (P2P) architectures pro-
vide good solutions for scalable distribu-
tion of large amounts of data over the web.
This paper presents EDOS, a P2P system
for open-source software distribution, able
to disseminate gigabytes of data to thou-
sands of users on the web. We focus on
the publishing and querying functionali-
ties and we present several experiments
realized on the Grid’5000 network, that
confirm the system’s scalability.

Keywords: peer-to-peer, content distribution, scalability,

open-source software

1 Introduction

The growing importance of web communities,
whose number and size augment every day, pro-
duced an increasing need of sharing, retrieving
and transferring data on the web. In the par-
ticular case of open-source software (e.g. Linux),
very large amounts of data (Gigabytes and more
of source and binary code) must be disseminated
to a very large community of developers and users
(thousands and more). Moreover, content is fre-
quently updated to new versions of the software
modules.

For Linux, content is generally disseminated ei-
ther as large ISO images of a full Linux release, or
as a set of packages that group binaries or source
code for a single software module. In the first

case, content distribution is easier to manage, but
a part of the content is uselessly transferred in
the network at each download, because successive
Linux releases have many common parts. On the
other hand, the finer granularity in the second ap-
proach requires more complex data management,
with frequent package updates inducing freshness
problems.

Current software distribution architectures are
mainly centralized or based on hierarchy of mir-
rors. While centralized systems are not scalable,
current mirror-based systems face difficulties to
guarantee reasonably uniform performances, be-
cause the effort is not uniformly shared between
mirrors for each system functionality. Another
major problem of such systems is the difficulty
to globally ensure the freshness of content in the
system.

More generally, current software distribution
systems fail to fulfill several key requirements for
a software distribution system, such as:

• avoiding excessive loads on the distribution
servers and in the communication network,
that lead to poor global performances;

• providing advanced content search based on
metadata properties;

• providing support for maintaining freshness
of content;

• guaranteeing robustness in case of failure of
system components, the consistency of infor-
mation and in general, some desirable QoS;

• being scalable with respect to the amount of
data to be distributed and to the size of the
network (number of users) for each system

functionality: publishing, querying, down-
loading, change notification, etc.

We believe that peer-to-peer architectures
(P2P), that uniformly share the effort among
participants and provide replication, are a good
solution for scalable software distribution. In-
stead of addressing individual servers, users ad-
dress the system as a whole, through one of its
peers. Content distribution functionalities are
realized through collaborative processes between
peers, scalability being ensured by resource shar-
ing: CPU, disk space, bandwidth, etc.

Motivated by the belief that incremental im-
provement of existing distribution systems will
fail to fulfill the needs, we introduce a novel so-
lution based on a P2P architecture. It has been
developed in the context of the EDOS European
project [1]. EDOS stands for Environment for
the development and Distribution of Open Source
software and addresses the production, manage-
ment and distribution of open source software
packages. The EDOS distribution system pro-
poses a P2P dissemination architecture including
all the participants to the distribution process:
publishers, mirrors and end-users.

Compared to existing software distribution sys-
tems, EDOS introduces several key improve-
ments:

• a P2P architecture providing resource shar-
ing, load balancing and robustness;

• advanced information system capabilities,
based on distributed indexing and querying
of XML content metadata;

• efficient dissemination based on clustering of
packages and multicast techniques;

• support for freshness maintaining on up-
dates, based on a pub/sub mechanism.

This paper presents the EDOS distribution
system and focuses on scalability evaluation is-
sues for two main functionalities: publishing and
querying. We report here about the first experi-
ments on publishing and querying content meta-
data in EDOS and show that the system is scal-
able with respect to the amount of published
metadata and to the size of the indexing network.
A detailed description of the system may be found
in [10].

2 Related work

Among the current distribution architectures for
Linux, the most popular open-source software,
only few of the various dissemination methods [9]
propose improvements to the classical architec-
ture. The most noticeable are Red Hat Network
[15], that adds notification channels to maintain
freshness, and Conary [8], that uses distributed
versioning repositories to minimize downloads for
updates.

Currently, P2P content distribution mainly ad-
dresses load balancing and bandwidth sharing
(Coral [11], Codeen [6]). We extend this primary
use by adding a distributed information system
based on XML metadata indexing and querying,
together with efficient file sharing and multicast
dissemination, based on BitTorrent [7]. Among
the various P2P infrastructures [5], structured
overlay networks provide better performance for
locating and querying large quantities of data. We
use FreePastry, an implementation of the Pastry
[14] distributed hash table system.

The EDOS P2P architecture is an example of
data ring [4] structure for community content
sharing. A data ring is a distributed system that
is responsible as a whole for all the content sharing
functionalities: indexing, replication, reorganiza-
tion, etc.

3 System overview

The goal of the EDOS distribution system is to
efficiently disseminate open-source software (re-
ferred at a more general level as data or content)
through the Internet. Published by a main server,
data is disseminated in the network to other com-
puters (mirrors, end-users), that get copies of the
published content.

EDOS is articulated around a distributed, P2P
information system that stores and indexes con-
tent metadata. This metadata-based information
system allows querying and locating data in the
EDOS network.

3.1 Data model

There are three kinds of data units in the EDOS
distribution system:

• Package: main data unit type, represented
by an RPM file;

Figure 1: Data units for EDOS distribution

• Utility: individual file used in the installa-
tion process;

• Collection: it groups packages, utilities or
subcollections, to form a hierarchical organi-
zation of data.

A release is a set of data units that form a
complete software solution - it corresponds to a
full Linux distribution. Its content is described
by a collection.

Content dissemination is initiated by publish-
ing data units in the system. Publishing consists
in generating metadata for each data unit and
indexing them in the distributed system. Peri-
odically, the main server publishes a new release.
Updates to the current release are realized by pub-
lishing new versions of packages or utilities. When
the time comes, a “publisher” decides to trans-
form the current status of the current release into
a new release.

Figure 1 illustrates the organization of content
in EDOS. We adopted a standard hierarchical or-
ganization of data. Such an organization is, for
instance, used in the Mandriva Cooker distribu-
tion, where packages and utility files are grouped
in collections at several levels, providing various
levels of data granularity.

The example in Figure 1 corresponds to a re-
lease, whose root collection is Cooker, containing
sub-collections i586, ..., sparc64, amd64, each one
of them containing other sub-collections, packages
or utilities.

Metadata management

This is a key issue in the distribution process.
We built a global, distributed information system
about data to be disseminated in the network.
This system is fed with content metadata, that
may include not only content properties, but also
information on production, testing, statistics, etc.

Distributed management of metadata is justified
by its size and by the high rate of queries and up-
dates it supports. The ability to express complex
queries over metadata and to provide effective dis-
tributed management is a major contribution of
the EDOS system.

In the largest sense, metadata consists in the
set of properties that characterize data units. We
classify metadata properties in three main cate-
gories:

• identifiers - in our case, the name and the
version number uniquely identify a data unit.

• static properties, that do not change in time
for a content unit, e.g. size, category, check-
sum, license, etc.

• changing properties, i.e. properties that may
vary in time: locations of replicas in the net-
work, composition for collections, statistics
for the distribution process (e.g. the number
of downloads of a package), etc.

The XML structure chosen for EDOS meta-
data is a compromise between efficiency require-
ments for both query processing (that requires
large XML files, containing all the elements ad-
dressed in a query) and metadata updates (that
need small files). Our choice was to create one
separate XML file for each package, describing
package properties, and one metadata file for each
release, describing the release composition and
utility files. For efficiency reasons, replica loca-
tion management uses a separate mechanism.

More details about representing, publishing
and querying EDOS metadata are presented in
Section 5.

3.2 Actors and roles

Peers of the EDOS P2P distribution system may
be classified in three categories:

1. Publishers: They publish new content in
the network, manage flash-crowd dissemina-
tion and the pub/sub system.

2. End-users(Clients): They download con-
tent from other peers, query the system, sub-
scribe to data changes. They also participate
to the network by storing and providing por-
tion of the data for downloads. To query the
metadata they need an entry-point to the in-
dexing network of the Mirrors.

Figure 2: Actors in EDOS P2P content distribu-
tion

3. Mirrors: They provide all the functionali-
ties of the End-users. Besides that, they par-
ticipate in the indexing network. Typically,
these are trusted1 and reliable servers provid-
ing some guaranteed quality of service.

Figure 2 presents the actors in the P2P dis-
tribution network. Actors are connected in two
distinct networks:

• The distribution network, composed of all the
peers - they store, download and share EDOS
data, i.e. software packages, utilities and col-
lections.

• The indexing network, composed of trusted
peers (Publisher and Mirrors) - they store the
index on content metadata. For security rea-
sons, Clients are not allowed to participate
in metadata and index sharing, but can pro-
vide content, whose validity may be verified
by using the checksum metadata property.

3.3 Usage scenarios

Flash-crowd situations

These generally happen when new, popular and
large size content is published (here: a new re-
lease), and many peers (Clients or Mirrors) want
to get this content as soon as possible. Flash-
crowd distribution uses efficient dissemination
methods, based on clustering of data units and
multicast. Each peer asking for some portion of
the new release may already have some of the
packages - therefore it computes a wish list con-
taining only the missing data units. Based on
the wish lists gathered from peers, the Publisher
computes clusters of data units to be dissemi-
nated. Instead of downloading individual data

1The correctness of a file is guaranteed by its signature

and checked at download. The correctness of metadata is

guaranteed by the fact that the mirrors are trusted peers.

units, peers download clusters (where a cluster is
a set of packages that are requested by a common
set of peers), in a global multicast process.

The flash-crowd dissemination of a new pub-
lished release is described by the following steps:

1. Peers interested in the new release subscribe
to a special channel for new release publica-
tion.

2. The Publisher publishes the new release and
notifies all the peers that subscribed to that
release. Among the metadata published for
the new release, its composition (identifiers
of data units) is necessary for each peer to
determine the set of data units to download.

3. Notified peers decide if they are finally inter-
ested in the new release or not. The peers
compute the delta between the new release
and the content they already have. This
delta, called wish list, composed of the iden-
tifiers of data units to be downloaded, is sent
to the Publisher.

4. The Publisher waits for wish lists during a
predefined window of time. Then it computes
clusters of data units, based on the set of
collected wish lists.

5. The Publisher published the computed clus-
ters of data units and starts “torrents” for
disseminating them.

6. Each peer gets in parallel (via multicast tech-
niques) a set of clusters that covers its wish
list.

Off-peak distribution and query

This corresponds to periods between flash-crowd
situations. During these periods, the Publisher
may publish updates to the current release and
the other peers may query the system, download
query results, subscribe to distribution channels,
receive notifications on such channels and down-
load software updates.

4 Software architecture

EDOS distribution functionalities have been im-
plemented as a Java API, based on a set of exter-
nal software modules (Figure 3):

Figure 3: EDOS software modules and API struc-
ture

• ActiveXML [2] provides an extended XML
format for EDOS metadata and storage for
metadata documents published in KadoP.
Web service calls embedded in ActiveXML
documents may be used to represent inten-
sionally changing information (e.g. statistics
on the distribution process) or package de-
pendencies.

• KadoP [3] is a very efficient distributed in-
dex for (Active)XML documents, that allows
publishing, indexing and advanced querying
of EDOS metadata. KadoP is the core of the
EDOS information system.

Based on the Pastry [14] distributed hash ta-
ble (DHT), KadoP decomposes ActiveXML
documents into key-value pairs stored in the
DHT, and uses the DHT to evaluate XML
queries over the metadata.

• IDiP [13] implements functionalities for the
flash-crowd usage scenario: content cluster-
ing and multicast dissemination using Bit-
Torrent.

• BitTorrent [7] is an efficient file sharing and
downloading system. We use a slightly mod-
ified version of Azureus, a Java implemen-
tation of BitTorrent, for multicasting and
downloading from multiple replicas.

The structure of the EDOS distribution API is
presented in Figure 3. The API is organized into
three levels:

1. Physical level: provides EDOS peer basic
functionalities. The physical level is com-
posed of several modules: a content man-
ager, an index manager, a channel manager,
a dissemination manager, etc. Programming
distribution applications at the physical level

Figure 4: The Publisher GUI

requires more effort, but offers the best flex-
ibility.

2. Role level: built on top of the physical level,
provides a default implementation for each
role in the distribution network, i.e. publish-
ing, downloading, replicating, querying, and
subscribing.

3. Actor level: provides a default implemen-
tation for each actor kind (Publisher, Mirror
or Client), by combining several roles.

The first version of the EDOS distribution sys-
tem has been implemented as a set of Java/JSP
web applications on top of the EDOS API. Each
peer in the EDOS network runs a Java web appli-
cation. Peer applications use a Tomcat web server
for deployment, with Axis for web services. The
functionalities of each EDOS peer are accessible
through a JSP user interface, running in a web
browser.

The Publisher web application (Figure 4) al-
lows publishing new content, managing subscrip-
tion channels and driving flash-crowd dissemina-
tion. Mirrors and Clients have the same user in-
terface (Figure 5), allowing queries, downloading,
subscriptions to channels and notification han-
dling.

5 Publishing and querying EDOS
metadata

We focus in this paper on metadata-related func-
tionalities in EDOS: publishing and querying.

Figure 5: The Client/Mirror GUI

As explained above, publishing content in the
network does not mean transferring content files
over the network, but simply “announces” the
system that new content is available and can be
downloaded. This announce is realized by pub-
lishing metadata for the new content in the dis-
tributed index. Possibly, metadata publication
may trigger a flash-crowd process or notifications
on channels that concern the new content. Meta-
data is published in the form of XML files, as
detailed below.

To know if some content unit is available in
the system, one should use queries over metadata,
that includes content unit identifiers and other
properties. The system provides a powerful XML
query language and distributed query processing
capabilities.

Both publishing and querying metadata are
based on the KadoP distributed index. We in-
troduced several optimizations to KadoP in or-
der to improve metadata-related operations. The
main goal of this paper is to evaluate the system’s
scalability for publishing and querying metadata,
and to compare various optimizations. The ex-
periments are realized in the conditions (amount
of metadata, number of peers) that correspond to
the EDOS application.

5.1 Metadata representation

XML representation of EDOS metadata respects
the following rules:

• For each software package, the package iden-
tifier (name and version) and its static char-
acteristics (size, license type, checksum, etc.)
are grouped into an XML metadata file.

• For each release, the release composition and
other release properties are grouped into a
single XML metadata file. The release com-
position contains information about the hier-
archy of collections, about the identifiers of
packages in each collection and about utili-
ties.

Ideally, for query processing, all EDOS meta-
data should be placed in a single XML file. This
would enable, for any query on metadata, to avoid
joins between metadata files, that are potentially
costly in a P2P network. On the other side,
new content published in the system would re-
quire updates to this huge file, that would be
very costly. The choice made for EDOS (one
file/package plus one file/release) is a compro-
mise between the needs of query processing and
of metadata update.

Since not all possible queries on metadata are
equally useful, this choice is also based on a study
of the most usual queries in EDOS. Two cate-
gories of queries seem to be the most common for
open-source software users:

• research of package identifiers and other
properties given some values for the package
metadata properties

• queries on the composition of a release or of
some of its collections

The choice made for slicing of EDOS metadata in
files avoids joins for these very common queries.

More precisely, the structure of a package meta-
data file is given by the following DTD, where
only one property (SUMMARY) beside the iden-
tifier is shown.

<!DOCTYPE packageMetadata [

<!ELEMENT packageMetadata (id, SUMMARY, ...)>

<!ELEMENT ID (NAME, cversion)>

<!ELEMENT cversion (VERSION, RELEASE, ARCH)>
<!ELEMENT NAME (#PCDATA)>

<!ELEMENT SUMMARY (#PCDATA)>

...

]>

The structure of the release metadata is de-
scribed by the following DTD, where only release
composition is detailed.

<!DOCTYPE releaseMetadata [
<!ELEMENT releaseMetadata

(NAME, collectionMetadata*, utilityId*, ...)>

<!ELEMENT collectionMetadata

(NAME, PATH, composition)>
<!ELEMENT composition

(packageId | utilityId | collectionMetadata)*>

<!ELEMENT packageId (NAME, PATH, cversion)>

<!ELEMENT utilityId (NAME, PATH, cversion)>

<!ELEMENT cversion (VERSION, RELEASE, ARCH)>
<!ELEMENT NAME (#PCDATA)>

<!ELEMENT PATH (#PCDATA)>

...

]>

A release contains several thousands of pack-
ages, organized on 3-4 levels of collections. In the
current system, a metadata file for a package is
about 1-2 KB in size, while the release metadata
has several hundreds of KB.

5.2 Massive publication

A key feature of the EDOS distribution system
is the need for massive publication of metadata.
Typically, when a new release has to be published,
a large number of metadata files (thousands: one
for each package in the release and for the release
itself) must be published in a flurry in the dis-
tributed index.

In this context, publication is a time consuming
process, that needs optimization. We introduce
and test a simple but effective optimization tech-
nique for massive publication in KadoP, based on
several Publishers that publish content metadata
in parallel.

Publishing an XML file with KadoP [3] first
consists of indexing its tree-like structure, such
as in Figure 6. The document contributes to the
index with a set of [key, value] couples, where the
keys are tags or words in the document and the
value for a key is a list of node identifiers. A node
identifier contains the triple [prefix, postfix, level]
that localizes the tag/word in the document tree
and that is used for query processing, but also the
document identifier in the network (not shown in
Figure 6).

The global KadoP index is composed of the
key-based fusion of all the key-value couples for
all the documents in the network. In other words,
for a given tag/word, the global index contains

packageMetadata

NAME

perl

id

cversion

5.8.8

perl package

[0,8,0]

[2,1,2]

[6,7,1]

[4,3,2]

[7,5,2] [8,6,2][3,0,3] [5,2,3]

[1,4,1]

packageMetadata

SUMMARY

id
NAME

[0,8,0]
[1,4,1]
[2,1,2]
[4,3,2]
[6,7,1]
[3,0,3],[7,5,2]
[5,2,3]
[8,6,2]package

5.8.8
perl
SUMMARY
cversion

Figure 6: Indexing a metadata file

the list of all the node identifiers in the network,
labeled with that name. KadoP uses the Pas-
try distributed hash table (DHT) to store the
global index, by uniformly distributing the key-
value couples on all the peers in the indexing net-
work. More details on the KadoP index are given
in [3].

The massive publication optimization evalu-
ated here consists of distributing publication by
using several Publishers that publish content in
parallel. In EDOS, the responsibility for pub-
lishing new content belongs to a single author-
ity, the main software packager. Therefore, addi-
tional Publishers must be under the control of the
main server. This means that each new release to
be published must be split in several parts and
distributed among additional Publishers. They
will publish their part in parallel, under the con-
trol of the main server. A consequence is that
the Publisher application becomes more complex,
by adding functionalities for coherent distributed
publishing.

On the other side, these peers must belong to
the EDOS indexing network. We choose to build
them as a special kind of Mirrors, enriched with
publishing functionalities. This is realized by cre-
ating (through the EDOS API) a peer that in-
cludes all the functionalities of a Mirror and a
publishing role.

We wish to evaluate the time necessary for pub-
lishing metadata in the EDOS system and verify
its scalability, based on three parameters:

• The amount of published metadata.

• The size of the network, i.e. the number of

packageMetadata

perl

SUMMARYid

<packageMetadata>
 <id returned="true"/>
 <SUMMARY>

 </SUMMARY>
</packageMetadata>

 perl

Figure 7: Query on metadata

peers in the indexing network.

• The number of Publishers that publish meta-
data in parallel

5.3 Query processing

KadoP provides a powerful query language for
XML data, based on tree pattern queries. An
example of KadoP query is presented in Figure 7,
that shows both the tree form and its equivalent
textual representation used by KadoP.

The meaning of the KadoP tree query is the
usual one: the query tree is used as a pattern to
filter documents that respect the structural rela-
tionships between elements and/or words. The
default structural relation between a query node
and its parent in the tree is “descendant” (“//”).
The query in Figure 7 asks for package identifiers
(composed of a name, a version, etc.) for packages
that contain the word “perl” in the SUMMARY
property.

Query processing is distributed among the
peers in the indexing network, but is driven by
the peer that asks the query. It mainly consists
of three steps, among which the first and the last
one require network communication:

1. For each node in the query tree, the peer asks
for the corresponding index entries from the
distributed index in the network.

2. The lists of node identifiers for each key are
combined in order to check the structural re-
lationships - this produces a set of combina-
tions of node identifiers that match the query
tree.

3. For each combination of node identifiers of
the projected elements, the corresponding el-
ements are retrieved from their documents in
the network.

We wish to evaluate the variation of the query
execution time and verify its scalability, based on
three parameters:

• The amount of indexed metadata, i.e. the
size of the global index.

• The size of the network, i.e. the number of
peers in the indexing network.

• The size of the query, i.e. the number of
nodes in the query tree, which determines the
number of index entries to be retrieved and
processed.

Since the query processing time depends on the
size of the result (affecting step 3 above), we only
evaluate the time necessary for steps 1 and 2.

6 Evaluation

The evaluation of the EDOS distribution system
in real conditions, over hundreds of Mirrors and
thousands of Clients connected to the Internet, is
a difficult task. The main problem, besides the
availability of a large set of peers, is the hetero-
geneity of the firewall/NAT configurations that
disturbe the communication between any couple
of peers in the network.

In this context, we choose the Grid’5000 net-
work [12] for scalability evaluation and we con-
ceived test scenarios focused on each functionality
of the system. Grid’5000 offers several thousands
of peers, organized in several clusters, over a high-
speed network. The access to each node in the
network is exclusive, based on reservations, and
the connections are reliable. Even if this frame-
work simplifies many problems found in a real
context (large bandwidth, reliability, no firewalls,
homogeneous software environment), it allows a
first evaluation of the EDOS distribution system
functionalities at a large scale.

We present here a set of early results on
the evaluation of the EDOS distribution system,
concerning the scalability of the publishing and
querying functionalities.

6.1 Grid’5000 framework and parameters

The Grid’5000 platform represents an appropri-
ate test bed for our P2P architecture, offering the
required range of nodes for the application deploy-
ment.

The Grid’5000 network gathers 9 sites geo-
graphically distributed in France featuring a total
of 5000 CPUs. The main purpose of this platform
is to serve as an experimental test bed allowing ex-
periments in all the software layers between the

network protocols up to the applications. Each
site represents a cluster grouping up to 500 nodes,
linked together with a fast ethernet of 1-10 Gb/s.

As we described in Section 3, we distinguish be-
tween two distinct EDOS networks: for content
distribution and for metadata indexing. For the
publishing and querying functionalities only the

indexing network is concerned. We mention
that in the current mirroring architecture used
by Mandriva, we count only up to 50 mirrors in
the distribution network. That means that the
number of Mirrors in the EDOS distribution net-
work (i.e. the size of the indexing network) can
be limited to several dozens of peers. Therefore,
in our experiments we do not consider networks
larger than 100 peers for publishing and querying
metadata.

The first scalability parameter considered in
our experiments is called INS (Indexing Network
Size) and we chose three representative values of
10, 30, and 100 nodes in the network.

The data set selected for the experiments rep-
resents a complete Mandriva Linux distribution,
counting around 5000 packages. We called this
parameter MDS (MetaData Size) and we ob-
served its variation from 0 to 5000 data units. The
Cooker2007 Linux distribution we considered cor-
responds to a total size of 5 GB of data (package
files) and to around 7 MB of metadata.

Also, for the querying part we used queries with
different sizes (i.e. number of nodes in the query
tree), in order to evaluate the impact of a common
query parameter (the query size) on the query
processing time compared to the scalability pa-
rameters (INS and MDS).

For both publishing and querying, the evalu-
ation program has to create the EDOS indexing
network on the Grid’5000 peers, then to publish
metadata. For query evaluation, the correspond-
ing set of queries is launched once metadata is
published.

The general algorithm for the evaluation sce-
nario consist in the following main steps:

1. Deploy and run the Publisher peer

2. Deploy and run all Mirror peers

3. Publish the Cooker2007 release

4. If query evaluation, launch queries

5. Collect results and stop all the peers

This algorithm is implemented in a shell script
that automatically launches all the processes in
the experiment. This script is run on the Pub-
lisher peer and it manages all the distant peers,
representing the Mirrors. The deployment pro-
cess performs an installation of each peer on a
local machine, followed by the start of each ap-
plication. This process corresponds to the initial-
ization of the indexing network. The Publisher is
the peer that initializes the network and each Mir-
ror peer joins the indexing ring afterward (steps
1 and 2).

After that all the Mirrors joined the network,
the Publisher launches the publish method for
the test release (Cooker2007) and starts the time
counter (step 3). Method invocation for publish-
ing and querying are done by web service calls on
the corresponding peers. Each peer executing a
publishing or querying method measures the time
necessary for the operation and writes it in a local
log.

Finally, the manager script collects the log files
and stops all the applications (step 5).

6.2 Publishing functionality

We evaluate the time needed for publishing the
content of a complete release, considering the fol-
lowing parameters:

1. INS: {10, 30, 100} peers

2. MDS: up to 5000 packages (complete Man-
driva Cooker2007 release)

3. Optimization: single Publisher vs. multi-
ple Publishers

The complete process for publishing the meta-
data consists in several tasks for each package:
metadata extraction from the data units (pack-
ages), XML metadata file parsing and building
of the sets of key-value couples, packing the key-
value couples into messages at the Pastry level
and sending them in the indexing network. We
did not include in the evaluation the metadata
extraction step and we considered that metadata
files for all the packages were generated a priori.

Experiments with publishing are presented in
Figures 8 and 9. They correspond to two different
cases:

• Single Publisher and INS={10, 30, 100}
(Figure 8)

• INS=30 and multiple Publishers (1, 2, 5)
(Figure 9)

Figure 8 compares the publishing times ob-
tained using a single Publisher. The corre-
sponding functions are monotonically growing
with the number of packages: fINS=10(MDS),
fINS=30(MDS), and fINS=100(MDS).

We remark that for larger sizes of the indexing
network, performances are better and the time
growth is (almost) linear with the size of the data.
Two opposite factors are important when the net-
work size grows. The first one is the lookup time
in the DHT, that grows, being proportional to
log(INS). On the other side, the local index on
each peer becomes smaller, because the global in-
dex is shared among a larger number of peers.
It appears, by comparing results for INS=30 and
INS=100, that the first factor becomes less im-
portant than the second one when MDS grows
- the global time for MDS=5000 is smaller for
INS=100 than for INS=30, even if for small MDS
they are almost the same (a little bit smaller for
INS=30). This could be explained by the high
network speed and the caching mechanisms used
by Pastry, which makes lookup almost as fast
for both INS. On the other side, KadoP uses a
database for the local index, and the access time
to this index depends on its size. It appears that
in the case of a fast network, the times for a local
index update on disk and for a network transfer
become comparable.

The variation for INS=10 shows faster publish-
ing for small values of MDS (because of the lookup
factor), but significantly slower publishing start-
ing with MDS=2500. It appears that the size of
the local index on each Mirror becomes important
enough to produce a larger index update time,
probably related to the local index caching mech-
anism.

In conclusion, the publishing time is not re-
ally influenced by the network size, whose growth
seems even to benefit to the system for high-speed
networks. The time grows almost in a linear way
with the size of the published metadata, with an
additional growth brought by the access to the
local index database.

Figure 9 presents the speed up obtained by
applying the multiple publishers optimization:
fP=1(INS=30, MDS), fP=2(INS=30, MDS), and
fP=5(INS=30, MDS).

Figure 8: Publishing time for single Publisher and
various indexing networks

Since the total number of packages is split in
several parts processed in parallel, the processing
time per Publisher is also divided by the same
number. However, the speed up ratio is lower,
because message processing in the indexing net-
work introduces delays to the global publishing
process. We remark that for two Publishers, the
speed up variates between 1.5 and 2, while for
five Publishers, the speed up is between 3 and
5. The explanation is that with more Publishers
in parallel, the number of messages received by a
peer grows and at some point the rhythm of re-
ception may overrun the capacity of each peer to
treat the incoming messages. This phenomenon
is more visible for larger MDS, when the time for
insertion in the local index grows.

We mention that the modular structure of the
EDOS software API (see Section 4) enabled an
easy extension of the Mirror application in order
to add the publishing role to the Mirror peers.

In conclusion, distributed publishing is an effec-
tive optimization technique for massive publish-
ing, that produces a significant speed up. Limita-
tions occur when the number of Publishers grows
too much, because of the limited capacity of a
Mirror to treat messages for insertion into the lo-
cal index. It is necessary that the number of Pub-
lishers remain small compared to the network size.

Figure 9: Publishing time for multiple Publishers
on a 30 nodes indexing network

6.3 Querying functionality

We evaluate the querying performance of the sys-
tem according to the following parameters:

1. INS: {10, 30, 100} peers

2. MDS: {1000, 2000, ..., 5000} packages

3. Query: three queries with different sizes
{q0, q1, q2}

For the size of the indexing network we
considered the same three instances of 10, 30, and
100 peers.

For each network, we publish the Cooker2007
release, by stopping after each 1000 packages to
query the published metadata. We obtained an
evaluation of the query processing time for var-
ious query sizes, various MDS and various INS.
The query processing time reported for each query
is an average over 30 executions. As mentioned in
Section 5, we do not include in the query process-
ing time the time to get the XML results from
each peer, in order to minimize the dependency
on the result size.

We consider three queries of different sizes. The
simplest one (q0) filters packages based on a single
condition, the name of the packager:

<packageMetadata>

<id returned=’true’/>

<PACKAGER>Olivier</PACKAGER>

</packageMetadata>

The second one (q1) adds some new query con-
ditions and has a bigger size. We choose to only
add conditions that do not change the number of
results, i.e. conditions fulfilled by all the pack-
ages (e.g. the operating system to be “linux” or
to have an URL tag in metadata). This way, the
differences in execution time between q0 and q1
are only given by the size of the query and not by
the size of the result. Query q1 is the following
one:

<packageMetadata>

<id returned=’true’/>

<DISTRIBUTION>Mandriva</DISTRIBUTION>
<OS>linux</OS>

<PACKAGER>Olivier</PACKAGER>

<PAYLOADFORMAT>cpio</PAYLOADFORMAT>

<PAYLOADCOMPRESSOR>gzip</PAYLOADCOMPRESSOR>

<URL/>
<VENDOR>Mandriva</VENDOR>

</packageMetadata>

The most complex query (q2) contains the com-
plete list of metadata tags describing a package
as well as some words, common to all packages
(“linux”, “cpio”, “Mandriva”). The query has the
following form, where the missing tags are present
without any word:

<packageMetadata>

<id returned=’true’/>
<DESCRIPTION/>

<DISTRIBUTION>Mandriva</DISTRIBUTION>

<OS>linux</OS>

<PACKAGER>Olivier</PACKAGER>
<PAYLOADFORMAT>cpio</PAYLOADFORMAT>

<SUMMARY/>

<SIZE/>

<URL/>
<VENDOR>Mandriva</VENDOR>

...

</packageMetadata>

Experiments with querying are presented in
Figures 10 and 11. They correspond to two dif-
ferent cases:

• Query=q1 & INS={10, 30, 100} (Figure 10)

• INS=30 & Query={q0, q1, q2} (Figure 11)

In the first case (Figure 10) we measured the
variation of the query processing time for the fol-
lowing cases: fq1(INS=10, MDS), fq1(INS=30,
MDS), and fq1(INS=100, MDS).

Figure 10: Querying time for various indexing
networks

We remark that the query time grows with the
size of the metadata for all network sizes. How-
ever, this growth is very slow, around 25% when
MDS grows from 1000 to 5000.

We also remark that increasing the size of
the network produces faster queries. The phe-
nomenon is similar to the influence of the INS
parameter on the publishing time. For querying
also, the influence of the local index size is higher
that the network’s one. For larger INS, the lookup
time grows (but only in a very limited way), while
the size of each local index is smaller and the re-
ducing of the access time to local indexes becomes
more important than the growth of the lookup
time.

In conclusion, query processing is scalable with
the size of the published metadata (with a very
slow growth) and even decreases when the number
of peers grows (for high-speed networks).

In the second case (Figure 11) we show the
evolutions of the querying time for various sizes
of the query (q0, q1, and q2), considering
the same configuration of the indexing network
(INS=30). The graphs correspond to the func-
tions: fINS=30(q0, MDS), fINS=30(q1, MDS),
and fINS=30(q2, MDS).

We remark the same slowly increasing time for
growing sizes of published metadata (MDS), con-
firmed here also for queries q0 and q2. We also

Figure 11: Querying time for various query com-
plexities

remark that the size of the query has a clear influ-
ence on the processing time. The salient point is
that the variation of the query size has an impact
on the execution time that is comparable to (and
even greater than) the growth of the published
metadata size or of the network size.

In conclusion, query processing in EDOS is
scalable. Moreover, the influence of the scale-
related parameters (INS and MDS) is weak and
comparable with the influence of usual query
characteristics (the query size).

7 Conclusion

We presented in this paper a content distribution
system and we described the functional and soft-
ware architectures of the P2P information sys-
tem. Metadata-related functionalities were ana-
lyzed in more details, with a focus on publishing
and querying. We showed the scalability of the
system in several experiments that we realized on
the Grid’5000 network and we studied possible
optimizations. A thorough analyze of the exper-
iments is considered as future work, as well as
the evaluation of the download and subscription-
related functionalities of the system.

8 Acknowledgments

Itay Dar from Tel Aviv University for IDiP devel-
opment and integration.

Nicoleta Preda from Gemo group for KadoP
development.

Experiments presented in this paper were
carried out using the Grid’5000 experimental
testbed, an initiative from the French Ministry of
Research through the ACI GRID incentive action,
INRIA, CNRS and RENATER and other con-
tributing partners (see https://www.grid5000.fr)

References

[1] S. Abiteboul, R. Pop et al. EDOS: Environ-
ment for the Development and Distribution
of Open Source Software. In 1st International
Conference on Open Source Systems, 2005.
http://www.edos-project.org.

[2] S. Abiteboul, O. Benjelloun, B. Cautis,
I. Manolescu, T. Milo, and N. Preda. Lazy
Query Evaluation for Active XML. In SIG-
MOD, 2004.

[3] S. Abiteboul, I. Manolescu, and N. Preda.
Constructing and Querying Peer-to-Peer
Warehouses of XML Resources. In ICDE,
2005.

[4] S. Abiteboul and N. Polyzotis. The Data
Ring: Community Content Sharing. In Con-
ference on Innovative Data Systems Research
(CIDR), pages 154–163, 2007.

[5] S. Androutsellis-Theotokis and D. Spinellis.
A Survey of Peer-to-Peer Content Distribu-
tion Technologies. In ACM Computing Sur-
veys, 2004.

[6] Codeen. http://codeen.cs.princeton.edu.

[7] B. Cohen. Incentives Build Robustness in
BitTorrent. In Workshop on Economics of
P2P Systems, 2003.

[8] Conary Software Provisioning System.
http://wiki.rpath.com/wiki/Conary.

[9] EDOS deliverable 4.1: Distribu-
tion of code and binaries over the
Internet, 2005. http://www.edos-
project.org/xwiki/bin/view/Main/D4-
1/edos-d4.1.pdf.

[10] EDOS deliverable 4.2.2: Report
on the P2P dissemination system,
2006. http://www.edos-project.org
/xwiki/bin/view/Main/D4-2-2/edos-
d4.2.2.pdf.

[11] M. Freedman, E. Freudenthal, and
D. Mazieres. Democratizing Content Pub-
lication with Coral. In 1st USENIX/ACM
Symposium on Networked Systems Design
and Implementation, 2004.

[12] GRID’5000 Plate-forme de recherche expri-
mentale en informatique, 2003. http://www-
sop.inria.fr/aci/grid/public/Library/rapport-
grid5000-V3.pdf.

[13] T. Milo and T. Zur. Boosting Topic-Based
Publish-Subscribe Systems with Dynamic
Clustering. In SIGMOD, 2007.

[14] A. Rowstron and P. Druschel. Pastry: Scal-
able, distributed object location and rout-
ing for large-scale peer-to-peer systems. In
IFIP/ACM Middleware, 2001.

[15] S. Witty. Best Practices for Deploying and
Managing Linux with RedHat Network.

