
A Calculus and Algebra

for Distributed Data Management?

Serge Abiteboul

INRIA-Futurs, Orsay & Univ. Paris 11
firstname.lastname@inria.fr

Abstract. The sharing of content by communities of users (e.g., scien-
tists) in a P2P context remains cumbersome. We argue that main reasons
for this is the lack of calculus and algebra for distributed data manage-
ment. We present the ActiveXML language that extends the XML lan-
guage with features to handle distribution. More precisely, ActiveXML
documents are XML documents with a special syntax for specifying the
embedding of Web service calls, e.g. XML queries such as XQueries. We
also present ActiveXML algebra that extends ActiveXML notably with
explicit control of data exchanges. ActiveXML algebra allows describing
query plans, and exchanging them between peers.

1 Introduction

The field of distributed data management [17] has centered for many years
around the relational model. More recently, the Web has made the world wide
and intranet publication of data much simpler, by relying on HTML, Web
browsers, plain-text search engines and query forms. The situation has also dra-
matically improved with the introduction of XML [22] and Web services [25].
Together, these two standards provide an infrastructure for distributed comput-
ing at large, independent of any platform, system or programming language, i.e.,
the appropriate framework for distributed management of information. However,
the sharing of content by communities of users (e.g., scientists) in a P2P context
remains cumbersome. We argue that main reasons for this is the lack of calculus
and algebra for distributed data management and propose such languages based
on Web standards, namely XML and Web services.

In [8], we propose the data ring that can be seen as a network analogue of
a database or a content warehouse. The vision is to build a P2P middleware
system that can be used by a community of non-experts, such as scientists, to
build content sharing communities in a declarative fashion. Essentially, a peer
joins a data ring by specifying which data (or services in general) are to be
shared, without having to specify a schema for the data, load it in a store,
create any indices on it, or specify anything complex regarding its distribution.
The data ring enables users to perform declarative queries over the aggregated

? This work has been partially supported by the ANR Project WebContent and the
EC project Edos [13] on the development and distribution of open source software.



data, and becomes responsible for reorganizing the physical storage of data and
for controlling its distribution. Thus a primary focus of the data ring is simplicity

of use. To achieve these goals, we identified a number of challenges:

Self-administration Since the users of the data ring are non-expert, the de-
ployment of the ring and its administration should be almost effort-less. This
means that a number of tasks such as the selection of access structures (in-
dices) or the gathering of the statistics to be used by optimizers have to be
fully automatic.

File management Since a large part of the data is going to reside in file sys-
tems, we need very efficient processing and optimization of queries over files,
including for instance the automatic selection of specific access structures
over file collections.

Query language To facilitate the exploitation of the ring by non-experts, the
interfaces have to be mostly graphical and require the minimum expertise.
They therefore must be based on declarative languages (calculus) in the style
of relational calculus, rather than on languages such as Java or Ajax that
require programming skills.

Query optimization Query optimization has, by nature, to be distributed and
peers should be able to exchange query plans. This motivates adopting an al-
gebra for describing distributed query plans interleaving query optimization,
query evaluation, and possibly, error recovery and transaction processing.

We present ActiveXML, a declarative framework that harnesses XML and
Web services for the integration and management of distributed data. An Ac-
tiveXML document is an XML document where some of the data is given ex-
plicitly, while other portions are given only intensionally by means of embedded
calls to Web services, typically XML queries. By calling the services, one can
obtain up-to-date information. In particular, ActiveXML provides control over
the activation of service calls both from the client side (pull) or from the server
side (push).

It should be noted that the idea of mixing data and code is not new, e.g.,
stored procedures in relational systems [19], method calls in object-oriented data-
bases [10], and queries in scripting languages such as PHP. The novelty is that
since both XML and Web services are standards, ActiveXML documents can be
universally understood, and therefore can be universally exchanged.

We also present the ActiveXML algebra that extends ActiveXML in two
main directions: (i) with generic services that can be supported by several peers
(e.g., query services), (ii) with explicit control of the evaluation of ActiveXML
documents (eval operator) and of data exchange (send and receive operators).
The algebra can be used to describe query (evaluation) plans. Using rewrite
rules, query plans may be optimized in a standard way. More fundamentally, the
query plans are distributed and can be exchanged between peers. Thus the tasks
of query evaluation and optimization can be distributed among the peers of the
network.

The ActiveXML project has been going on for several years. A system is
now available as open source [9]. In [16], a technique to decide whether or not



calls should be activated based on typing is introduced. The general problem
has deep connections with tree automata [12] and alternating automata, i.e., au-
tomata alternating between universal and existential states [18]. Optimization
issues in the context of ActiveXML are presented in [2]. In [5], a framework for
managing distribution and replication in the context of ActiveXML is consid-
ered. Foundations of ActiveXML are studied in [3]. A preliminary version of the
algebra appeared in [7].

We conclude this introduction by a brief discussion of XML and Web services.

<directory>

<movies>

<director>Hitchcock</director>

<sc service="movies@allocine.com" >Hitchcock</sc>

<movie> <title>Vertigo</title>

<actor>J. Stewart</actor> <actor>K. Novak</actor>

<reviews> <sc service="reviews@cine.com" >Vertigo</sc></reviews>

</movie>

<movie> <title>Psycho</title>

<actor>N. Bates</actor>

<reviews> <sc service="reviews@cine.com" >Psycho</sc></reviews>

</movie>

</movies>

</directory>

�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������

�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������

movie

actor
reviews

"K. Novak"
"Vertigo"

title

"Vertigo"

actor

"J. Stewart"

directory

movies

Hitchcock

director

movies@allocine.com

Hitchcock

actor reviews

"Psycho"

movie

"Psycho"

"N. Bates"

title

reviews@cine.comreviews@cine.com

Fig. 1. An ActiveXML document and its tree representation

XML and Web services. XML is a semistructured data exchange format [4]
promoted by the Word-Wide-Web Consortium and widely adopted by industry.



An XML document can be viewed as a labeled, unranked, ordered tree, as seen
in the example1 of Figure 1 (ignoring the grey area for now). Unlike HTML,
XML does not provide any information about the document presentation. This
is typically provided externally using a CSS or XSL style-sheet. XML documents
may be typed, e.g., using XML Schema [23], and may be queried using query
languages such as XPath or XQuery [24]. Web services consist of an array of
emerging standards. For instance, to find a desired service, one can query a
UDDI [21] directory. To understand how to interact with the service, one relies
on WSDL [26], something like Corba’s IDL. One can then access the service using
SOAP [20], an XML-based lightweight protocol for the exchange of information.

The article is organized as follows. The calculus is discussed in Section 2 and
the algebra in Section 3. The last section is a conclusion.

2 A stream calculus: ActiveXML

In this section, we briefly describe ActiveXML. Details may be found from [9] as
well as papers on ActiveXML and the open-source code of an ActiveXML peer.

The success of the relational model essentially comes from the combination
of a declarative language (relational calculus), an equivalent relational algebra,
and optimization techniques based on rewrite rules. There have been a number
of extensions such as object databases, but the classical pattern (calculus, alge-
bra, rewrite rules) proved its robustness. It should also be adopted in the data
ring context. However, the situation is essentially different (distributed vs. cen-
tralized, semi-structured vs. very structured) so requires a complete overhauling
of the languages. We present a calculus for distributed semi-structured data in
this section and an algebra in Section 3. In both cases, we insist on the features
that we believe are fundamental for such languages.

We believe that to support effectively the loose integration paradigm of data,
one essential aspect is the seamless transition between explicit and intentional
data. One should not have to distinguish between extensional data (e.g., XML or
HTML pages) and intensional data (e.g., access to a relational database provided
by a Web service). As an example, consider the query “give me the name and
phone number of the CEO of the Gismo company”. Answering this query may
require first finding the name of that CEO in an XML collection of company
synopses, finding the service that exports the phone book of Gismo Inc, and
finally calling this service with the name of this CEO. The query can be answered
only (a) because we have a logical description of the resources, and (b) because
based on that, we have derived a distributed query plan.

ActiveXML was designed to capture such issues. An ActiveXML document
is an XML document where certain elements denote embedded calls to Web
services. For instance, the company synopsis may contain the CEO phone num-
ber as a Web service call. The service calls embedded in the document provide
intensional data in the sense of deductive databases [6]. Now suppose that the

1 We will see in the next section that this XML document is also an ActiveXML
document.



phone number of the CEO changes, then the second time we call the service, the
result changes. So, the home page of the company that includes this service call
changes. Thus the embedding of service calls is also capturing active data in the
sense of active databases [11].

Note that the use of intensional information is quite standard on the Web,
e.g. in PHP-mySQL. It is also common in databases, see object or deductive
databases. The main novelty is that the intensional data is provided by a Web
service. Thus the corresponding service calls may be activated by any peer and
do not have to be evaluated prior to sending the document.

In what sense can this be viewed as a calculus for distributed semi-structured
data? First, we rely on some calculus for local semi-structured data. From a prac-
tical viewpoint, we can use the standard declarative language, XQuery. But one
could use any calculus over XML as well. ActiveXML provides the support for
handling distribution. The interaction with local queries is achieved by using
query services. In some sense, the resulting language may be viewed as a de-
ductive database language such as datalog [6] with XQuery playing the role of
the single datalog rule and with ActiveXML acting as the “glue” between the
rules, i.e., as the datalog program. Negation may be handled in any standard
way [6]. Clearly, distribution introduces new issues with respect to evaluation
and optimization, notably the detection of termination [1].

Henceforth, we assume that every peer exports its resources in the form of
ActiveXML documents or Web services. The logical layer thus consists of a set
of ActiveXML documents and services and their owning peers. The external
layer will be dealing with the semantics (e.g., ontologies), but this aspect will
be ignored here. A computation will consist in local processing and exchanging
such documents.

ActiveXML is an XML dialect, as illustrated by the document in Figure 1.
(Note that the syntax is simplified in the example for purposes of presentation.)
The sc elements are used to denote embedded service calls. Here, reviews are
obtained from cine.com, and information about more Hitchcock movies may be
obtained from allocine.com. The data obtained by a call to a Web service may
be viewed as intensional, as it is not originally present. It may also be viewed as
dynamic, since the same service call possibly returns different data when called
at different times. When a service call is activated, the data returned is inserted
in the document that contains the call. Therefore, documents evolve in time as
a consequence of call activations. Of particular importance is thus the decision
to activate a particular service call.

Two aspects are essential to the framework and motivate basing it on XML
streams (as in ActiveXML) and not simply on XML documents:

Push vs. Pull In pull mode, a query-service is called to obtain information.
But we are often interested on the Web in query subscription. The result of
a subscription is typically a stream of answers, e.g., notifications of certain
events of interest. A company synopsis may include such a service to, for
instance, obtain the news of the company. Such a subscription feature is
also essential for supporting a number of functionalities ranging from P2P



monitoring, to synchronization and reconciliation of replicas, or gathering
statistics.

Recursion The embedded service calls may be seen as views in the spirit
of those found at the core of deductive databases. In classical deductive
databases, recursion comes from data relationships and recursive queries
such as ancestor. In our setting, recursion kicks in similarly and also from
the XPATH // primitive. But more fundamentally, recursion comes from the
graph nature of the Web: site1 calls site2 that calls site3 that calls site1, etc.
Indeed, the use of recursive query processing techniques in P2P contexts has
been recently highlighted in several works in topics as different as message
rooting on the Web [15] and error diagnosis in telecom networks [1]. Now,
recursive query processing clearly requires the use of streams.

The basis of a theory proposed in [3, 1] makes two fundamental simplifying
assumptions:

set-oriented The ordering in XML is a real cause of difficulty. We assume that
the documents are labeled, unranked, unordered trees.

Query-services If the services are black boxes, there is little reasoning one can
do about particular computations. We assume that the queries are defined
logically (e.g., by conjunctions of tree pattern queries over the documents.)

Since documents contain intensional data (views), this result in a setting quite
close to deductive databases. In [3], positive results are exhibited for limited
query languages. They are obtained by combining techniques from deductive
databases (such as Query-sub-Query) and from tree automata.

3 A stream algebra

Besides the logical level, our thesis is that a language in the style of ActiveXML
should also serve as the basis for the physical model. In particular, the use
of streams is unavoidable: see trivially, how answers are returned by Google
or try to send 100K in a standard Web service without obtaining a timeout.
As shown in a recent work [7], distributed query evaluation and optimization
can be naturally captured using ActiveXML algebraic expressions, based on the
exchange of distributed query execution plans. The expressions include standard
algebraic XML operations and send/receive operators, all over XML streams.
Note that these may be seen as particular workflow descriptions, very particular
ones of a strong database flavor. Thus, we propose that the physical model be
based on a the ActiveXML algebra [7].

The algebraic evaluation of queries is performed by collaborating query pro-
cessors installed on different peers exchanging ActiveXML data in a streaming
manner. Query optimization is performed also in a distributed manner by alge-
braic query rewriting. Standard distributed query optimization techniques can
all be described using the proposed framework and simple rewrite rules in the
language.



The ActiveXML algebra is an extension of the ActiveXML language with two
main features: (i) generic data and services and (ii) a more explicit control of
execution (e.g., eval) and distribution (send/receive). Generic data and services
are data and services available on several sites, an essential feature to capture
replication and the fact that a query service may be evaluated by any peer with
query processing facilities (see [5]). We also provide the capability to explicitly
control the shipping of data and queries, an essential feature to specify the
delegation of computations (see [1]).

Fig. 2. A graphical representation of ActiveXML data.

An example will best illustrate this principle. Consider the data described in
Figure 2. We use here a visual representation of ActiveXML documents. Peer p1
and p2 have their own collections of music with metadata described in relations
r1, r2, respectively. Peer p1 knows about s(ingers) and t(itles), whereas p2 knows
about s(ingers) and a(lbum) t(itles). Peer p1 also knows that p2 has some music;
p2 knows that p3 (not shown here) has some; p3 knows p4, etc. The metadata of
p3, p4, p5 are organized as that of p1. The actual texts underneath the tags s, t, at

are not shown. Now suppose that p1 wants to get the titles of songs by Carla
Bruni. Figure 3 shows three different query plans. Each box describes some peer
computation. Query Plan (a) is the one that would result from an evaluation
of the query without optimization, i.e., from applying the pure semantics of
ActiveXML. Query plan (b) results from pushing selections, while Query plan
(c) is obtained by also optimizing data transfers (cutting some middle persons



Fig. 3. Three equivalent distributed query plans.

Fig. 4. An algebraic rewriting.



in data transmissions). One (particularly interesting) rewrite rule is illustrated
in Figure 4. Consider only the shaded nodes. To perform the evaluation, an
external service call is replaced by a receive node and remotely a computation
is activated. It is requested that its result be sent to the location of the receive
node. The communication is asynchronous.

We can make the following observations:

1. Peers 1 and 2 can already be producing answers, while Peer 3 is still op-
timizing the request it receives, while Peer 5 is still not even aware of the
query. This is illustrating the need for streaming, Peer 2 can send answers
to Peer 1 before obtaining the entire data she has to transmit.

2. Each peer separately receives a request and is fully in charge of evaluating it.
(Some optimization guidelines may be provided as well.) For instance Peer
2 receives a query where she cannot really contribute and may decide to cut
herself out of it to ask Peer 3 to evaluate its part and send the result directly
to Peer 1.

3. We assumed so far that the peer cooperate to evaluate a query. Think now
that the goal is to support a subscription. Then the same plans apply. Sup-
pose a new song of Carla Bruni is entered in Site 3. Then it is sent to Site 1
(with Query Plan (c)), then produced as a new answer unless this title has
already been produced.

In all cases, a query (subscription) for the songs of Carla Bruni (at the logical
layer) is translated to a distributed plan (at the physical layer). Observe that
the physical plan is essentially a workflow of Web services (i.e., an ActiveXML
document), where the services encapsulate the different plan operators and the
respective locations encode the distribution of computation and the flow of data.
The main idea therefore is that the complete plan itself (or a portion of it),
along with its current state of execution, can be described as an ActiveXML
document, which in turn can be exchanged between peers in order to support
query optimization and error recovery in a distributed fashion.

Another important element in the Figure 3 is the distinction between lo-
cal query evaluation (inside each box) that is the responsibility of a local sys-
tem, perhaps a relational system, and global query evaluation. The functional
architecture of a peer query processor is shown in Figure 5. See the various
components and in particular the local query optimizer and the local compo-
nent performing global query optimization that collaborates with other peers to
perform global query optimization. Essentially, this separation leads to physical
plans that combine local query processing with distributed evaluation. Clearly, a
collaboration between the two systems (local and global) is preferable but is un-
likely to be widespread in the near future. This implies that we will have to view
the local query optimizers as boxes with possibly different querying capabilities,
in the same vein as mediation systems [14].



Fig. 5. Functional architecture.

4 Conclusion

It is not necessary to insist on the importance of distributed data management.
Recent years have seen the arrival of a number of software tools that participate
in such activity: structured p2p network such as Chord or Pastry, XML repos-
itories such as Xyleme or DBMonet, file sharing systems such as BitTorrent or
Kazaa, distributed storage systems such as OceanStore or Google File System.
content delivery network such as Coral or Akamai, multicast systems such as
Bullet or Avalanche, Pub/Sub system such as Scribe or Hyper, application plat-
form suites as proposed by Sun or Oracle for integrating software components,
data integration as provided in warehouse or mediator systems.

A formal foundation for distributed data management is still to come. The
purpose of the present paper was not to advertise particular languages that close
the issue, but rather to encourage researchers to work in this area. ActiveXML
and ActiveXML algebra were used to illustrate aspects that, we believe, a cal-
culus and an algebra for such a context should stress.

Acknowledgments The material presented in this paper comes from joint works
with a number of colleagues from the projects that have been mentioned and
most notably, Omar Benjelloun and Tova Milo for ActiveXML, Ioana Manolescu
for ActiveXML Algebra, and Alkis Polyzotis for the Data Ring.

References

1. S. Abiteboul, Z. Abrams, S. Haar, and T. Milo. Diagnosis of asynchronous discrete
event systems - Datalog to the rescue! In ACM PODS, 2005.



2. S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu, T. Milo, N. Preda, Lazy Query
Evaluation for Active XML, In Proc. of ACM SIGMOD 2004.

3. S. Abiteboul, O. Benjelloun, T. Milo, Positive Active XML, In Proc. of ACM PODS,
2004.

4. S. Abiteboul, P. Buneman, D. Suciu, Data on the Web, Morgan Kaufmann, 2000.
5. S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, T. Milo, Active XML Docu-

ments with Distribution and Replication, In Proc. of ACM SIGMOD, 2003.
6. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,

Reading-Massachusetts, 1995.
7. Abiteboul, S., I. Manolescu, E. Taropa. A framework for distributed XML data

management. In Proc. EDBT. 2006.
8. Serge Abiteboul, Neoklis Polyzotis, The Data Ring: Community Content Sharing

In Proceedings of CIDR, 2007.
9. The ActiveXML project, INRIA, http://activexml.net.
10. The Object Database Standard: ODMG-93, editor R. G. G. Cattell, Morgan Kauf-

mann, San Mateo, California, 1994.
11. Sharma Chakravarthy, Jennifer Widom: Foreword: Special Issue on Active

Database Systems. J. Intell. Inf. Syst. 7(2): 109-110. 1996.
12. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, M.

Tommasi, Tata, Tree Automata Techniques and Applications, www.grappa.univ-
lille3.fr/tata/

13. The Edos Project, http://www.edos-project.org/
14. Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang. Optimiz-

ing Queries Across Diverse Data Sources. In vldb97, pages 276–285, San Francisco,
CA, USA, 1997. Morgan Kaufmann Publishers Inc.

15. M. Harren, J. Hellerstein, R. Huebsch, B. Thau Loo, S. Shenker, and I. Stoica.
Complex queries in dht-based peer-to-peer networks. In Peer-to-Peer Systems Int.

Workshop, 2002.
16. T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, F. Dang Ngoc, Exchanging In-

tensional XML Data, In Proc. of ACM SIGMOD, 2003.
17. M.T. Ozsu, P. Valduriez, Principles of Distributed Database Systems, Prentice-

Hall, 1999.
18. A. Muscholl, T. Schwentick, L. Segoufin, Active Context-Free Games, Symposium

on Theoretical Aspects of Computer Science, 2004.
19. J.D. Ullman, Principles of Database and Knowledge Base Systems, Volume I, II,

Computer Science Press, 1988.
20. The SOAP Specification, version 1.2, http://www.w3.org/TR/soap12/
21. Universal Description, Discovery and Integration of Web Services (UDDI),

http://www.uddi.org/
22. The Extensible Markup Language (XML), http://www.w3.org/XML/
23. XML Typing Language (XML Schema), http://www.w3.org/XML/Schema
24. An XML Query Language, http://www.w3.org/TR/xquery/
25. The W3C Web Services Activity, http://www.w3.org/2002/ws/
26. The Web Services Description Language (WSDL), http://www.w3.org/TR/wsdl/


