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XML compression has gained prominence recently because it counters the disadvantage of the
verbose representation XML gives to data. In many applications, such as data exchange and data
archiving, entirely compressing and decompressing a document is acceptable. In other applications,
where queries must be run over compressed documents, compression may not be beneficial since
the performance penalty in running the query processor over compressed data outweighs the data
compression benefits. While balancing the interests of compression and query processing has re-
ceived significant attention in the domain of relational databases, these results do not immediately
translate to XML data.

In this article, we address the problem of embedding compression into XML databases without
degrading query performance. Since the setting is rather different from relational databases, the
choice of compression granularity and compression algorithms must be revisited. Query execution
in the compressed domain must also be rethought in the framework of XML query processing due
to the richer structure of XML data. Indeed, a proper storage design for the compressed data plays
a crucial role here.

The XQueC system (XQuery Processor and Compressor) covers a wide set of XQuery queries
in the compressed domain and relies on a workload-based cost model to perform the choices of
the compression granules and of their corresponding compression algorithms. As a consequence,
XQueC provides efficient query processing on compressed XML data. An extensive experimental
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assessment is presented, showing the effectiveness of the cost model, the compression ratios, and
the query execution times.
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1. INTRODUCTION

An increasing amount of data on the Web is now available as XML, either
directly created in this format or exported to XML from other formats. XML
documents typically exhibit a high degree of redundancy due to the repetition
of element tags and an expensive encoding of the textual content. As a conse-
quence, exporting data from proprietary formats to XML typically increases its
volume significantly. For example Liefke and Suciu [2000] show that specific
format data, such as Weblog data [APA 2004] and SwissProt data [UWXML
2004], once XML-ized grow by about 40%.

The redundancy often present in XML data provides opportunities for
compression. In some applications (e.g., data archiving), XML documents
can be compressed with a general-purpose algorithm (e.g., GZIP), kept com-
pressed, and rarely decompressed. However, other applications, in partic-
ular those frequently querying compressed XML documents, cannot afford
to fully decompress the entire document during query evaluation as the
penalty to query performance would be prohibitive. Instead, decompression
must be carefully applied on the minimal amount of data needed for each
query.

With this in mind, we have designed XQueC, a full-fledged data manage-
ment system for compressed XML data. XQueC is equipped with a compression-
compliant storage model for XML data which allows many storage options for
the query processor. The XQueC storage model leverages a proper data frag-
mentation strategy which allows the identification of the units of compression
(granules) for the query processor. These units are also manipulated at the
physical level by the storage backend.

XQueC’s data fragmentation strategy is based on the idea of separating struc-
ture and content within an XML document. It often happens that data nodes
found under the same path exhibit similar and related content. Therefore, it
makes sense to group all such values into a single container and to decide upon
a compression algorithm once per-container. The idea of using data contain-
ers has been borrowed from the XMill project [Liefke and Suciu 2000]. How-
ever, whereas XMill compressed and handled a container as a whole, in XQueC
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each container item (corresponding to a data node) is individually compressed
and accessible. The containers are key to achieving good compression as the
PCDATA of a document affects the final document compression ratio more than
the tree of tags (which is typically only 20%–30% of the overall compressed doc-
ument size).

XQueC’s fragmented storage model supports fine-grained access to individ-
ual data items, providing the basis for diverse efficient query evaluation strate-
gies in the compressed domain. It is also transparent enough to process complex
XML queries. By contrast, other existing XML queryable compressors exploit
coarse-grained compressed formats, thus only allowing a single top-down eval-
uation strategy.

In the XQueC storage model, containers are further aggregated into groups
which allow their data commonalities to be exploited, thus allowing both com-
pression and querying to be improved. In addition to the space usage of com-
pressed containers itself, there are several other factors that impact the final
compression ratio and the query performance. Consider, for instance, two con-
tainers: if they belong to the same group, they will share the same source model,
that is, the support structure used by the algorithm (e.g., a tree in the case of
the Huffman algorithm); if instead they belong to separate groups, they have
separate source models, thus always requiring decompression in order to com-
pare their values. Therefore, the grouping method impacts both the containers
space usage and the decompression times.

A proper choice of how to group containers should ensure that containers
belonging to the same group also appear together in query predicates. Indeed,
it is always preferable to perform the evaluation of a predicate within the com-
pressed domain; this can be done if the containers involved in the predicate
belong to the same group and are compressed with an algorithm supporting
that predicate in the compressed domain. Information about predicates can be
inferred by looking at available query workloads. Moreover, different compres-
sion algorithms may support different kinds of predicates in the compressed
domain. For instance, the Huffman algorithm [Huffman 1952] allows the eval-
uation of equality predicates, whereas the ALM algorithm [Antoshenkov 1997]
supports both equality and inequality predicates. XQueC addresses these is-
sues by employing a cost model and applying a suitable blend of heuristics to
make the final choice.

Since XQueC is capable of carefully balancing different compression per-
formance aspects, it can be considered as a full-fledged compressed XML
database rather than a simple compression tool. In summary, XQueC is the
first queryable XML database management system capable of:

—exploiting a storage model based on a fragmentation strategy that supports
complex XML queries and enables efficient query processing;

—compressing XML data and querying it as much as possible in the compressed
domain;

—making a cost-based choice of the compression granules and corresponding
compression algorithms, possibly based on a given query workload.
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We demonstrate the utility of XQueC by means of a wide set of experimen-
tal results on a variety of XML datasets and by comparing it with available
competitor systems.

The remainder of the article is organized as follows. Section 2 discusses the
related literature and presents a summary of the differences among XQueC
and the available XML compression tools. Section 3 illustrates the XQueC stor-
age model. Section 4 presents the compression principles of XQueC and the
cost model that makes the compression choices targeted to data and queries.
Section 5 presents an extensive experimental study that probes both XQueC
compression and querying capabilities. Section 6 concludes the article and dis-
cusses the future directions of our work.

2. RELATED WORK

Compression has long been recognized as a useful means to improve the perfor-
mance of relational databases [Chen et al. 2000; Westmann et al. 2000; Amer-
Yahia and Johnson 2000]. However, the results obtained in the relational do-
main are only partially applicable to XML. We examine in this section the
existing literature on compression as studied for relational databases, explain-
ing to what extent it might or might not be applicable to XML, and then survey
the existing tools for compression and querying of XML data [Ng et al. 2006].

2.1 Compression in Relational Databases

First of all, let us note that the interest in compressing relational data has
focused primarily on numerical attributes. String attributes, which are less
frequent in relational schemas, have received much less attention. In contrast,
string content is obviously critical in the XML context. For example, within the
TPC-H [Transaction processing performance council 1999] benchmark schema,
only 26 of 61 attributes are strings whereas within the XMark [Schmidt et al.
2002] benchmark for XML databases, 29 out of the 40 possible element content
(leaf) nodes represent string values.

Studies of compression for relational databases include Chen et al. [2000],
Goldstein et al. [1998], Graefe [1993], Greer [1999], and Westmann et al. [2000].
The focus of these works has been on (i) effectively compressing terabytes of
data, and (ii) finding the best compression granularity (field-, block-, tuple-,
and file-level) from a query performance perspective. Westmann et al. [2000]
discusses lightweight relational compression techniques oriented to field-level
compression, while Greer [1999] uses both record-level and field-level encod-
ings. Unfortunately, field-level and record-level compression do not translate
directly to the XML context. Goldstein et al. [1998] proposes an encoding, called
FOR (frame-of-reference), to compress numeric fact tables fields that elegantly
blends page-at-a-time and tuple-at-a-time decompression. Again, their results
clearly do not translate to XML.

These papers have also studied the impact of compression on the query pro-
cessor and the query optimizer. While Goldstein et al. [1998] applies compres-
sion to index structures such as B-trees and R-trees, to reduce their space usage,
Westmann et al. [2000] discusses how to modify the relational query processor,
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the storage manager, and the query optimizer in the presence of field-level
compression. Chen et al. [2000] focuses on query optimization for compressed
relational databases by introducing transient decompression, that is, interme-
diary results are decompressed (e.g., in order to execute a join in the compressed
domain), then recompressed for the rest of the execution. As XQueC does for
XML data, both Chen et al. [2000] and Westmann et al. [2000] address the
problem of incorporating compression within databases in the presence of pos-
sibly poor decompression performance, which may outweigh the savings due to
fewer disk accesses.

A novel lossy semantic-compression algorithm oriented toward relational
data mining applications is presented in Jagadish et al. [2004]. Finally, com-
pression in a data warehouse setting has been applied in commercial DBMS
products such as Oracle [Poess and Potapov 2003]. The recent advent of the
concept of Web mart (Web-scale structured data warehousing, currently pur-
sued by Microsoft, IBM, and Sun) leads to the possibility that the interest of
compression for data warehouses will shift from the relational model to XML
in the near future.

2.2 Nonqueryable Compressors for XML Databases

XMill [Liefke and Suciu 2000] is a pioneering system for efficiently compressing
XML documents. It is based on the principle of separately compressing the
values and the document tags. Values are assigned to containers in a default
way (one container for each distinct element name) or, alternatively, in a user-
driven way. In order to achieve both maximum compression rate and time,
XMill may use a customized semantic compressor, and the obtained result may
be recompressed with either GZIP or BZIP2 [2002].

XMLZIP [1999] compresses an XML document by clustering subtrees from
the root to a certain depth. This does not allow the exploitation of redundancies
that may appear below this fixed level, and hence some compression opportu-
nities are lost.

Another query-oblivious compressor which exploits the XML hierarchical
structure is XMLPPM [Cheney 2001]. It implements ESAX, an extended SAX
parser, which allows the online processing of documents. XMLPPM does not
require user input and can achieve better compression than XMill in the default
mode. However, it still represents a relatively slow compressor when compared
to XMill. A variant of XMLPPM that looks at the DTD to improve compression
has been recently presented Cheney [2005].

The previous three compressors focus on achieving the maximum compres-
sion for XML data and are not transparent to queries.

2.3 Queryable Compressors for XML Databases

Our work is most directly comparable with queryable XML compression
systems.

The XGrind system [Tolani and Haritsa 2002] compresses XML by using a
homomorphic encoding: an XGrind-compressed XML document is still an XML
document whose tags have been encoded by integers and whose textual content
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has been compressed using the Huffman (Dictionary, alternatively) algorithm.
The XGrind query processor is an extended SAX parser, that can handle exact-
match and prefix-match queries in the compressed domain. Most importantly,
XGrind only allows a top-down query evaluation strategy, which may not always
be desirable. XGrind covers a limited set of XPath queries, allowing only child
and attribute axes. It cannot handle many query operations, such as inequality
selections in the compressed domain, joins, aggregations, nested queries, and
XML node construction. Such operations occur in many XML query scenarios
(e.g., all but the first two of the 20 XMark [Schmidt et al. 2002] benchmark
queries).

XPRESS [Min et al. 2003] encodes whole paths into floating point num-
bers and, like XGrind, compresses textual (numeric, respectively) leaves using
the Huffman (Difference or Dictionary, alternatively) encoding. The novelty
of XPRESS lies in its reverse arithmetic path encoding scheme, which encodes
each path as an interval of real numbers between 0 and 1. Queries supported in
the compressed domain amount to exact/prefix queries and range queries with
numerical values. Range queries with strings require full decompression. Also,
the navigation strategy is still top-down as the document structure is main-
tained by homomorphism. The fragment of XPath supported is more powerful
than the one in XGrind as it also allows descendant axes. A recent extension of
XPRESS [Min et al. 2006] replaces the Huffman encoding with the Arithmetic
encoding, thus preserving the order information among data values. It also han-
dles simple updates on XML data such as insertions of new XML fragments or
deletions of existing ones. The compressed engine recomputes the statistics for
the newly added (or removed) content and only decompresses the portions of
the document affected by the changes.

In Buneman et al. [2003], compression is applied to the structure of an XML
document by using a bisimulation relationship, whereas leaf textual nodes are
left uncompressed. This compressed structure preserves enough information to
directly support Core XPath [Miklau and Suciu 2002], a rich subset of XPath.
A more recent paper authored by Busatto et al. [2005] proposes a similar com-
pact representation for XML binary trees, based on sharing common subtrees.
However, both systems cannot be directly compared with XQueC because they
are memory-based and do not produce a persistent compressed image of the
data instance.

XQZip [Cheng and Ng 2004] uses a structure index tree (SIT) that tends
to merge subtrees containing the exact same set of paths. It applies GZIP
compression to value blocks which entails decompressing entire blocks dur-
ing query evaluation. The blocks have a predefined length, empirically set at
1, 000 records each. At query processing time, XQZip tries to determine the
minimum number of blocks to be decompressed. The queries addressable by
XQZip belong to an extended version of XPath, enriched with union and the
grouping operator in the return step.

Finally, XCQ [Ng et al. 2006] uses DTDs to perform compression and sub-
sequent querying of XML documents. Partitioned path-based grouping (PPG)
data streams are obtained for each DTD path, and then compressed into
a number of data blocks which are input to GZIP afterwards. Similar to
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Table I. Comparative Analysis of Queryable XML Compressors

Struct./Text Evaluation Compression
System Compression Homomorph. Predicates Language Strategies Granules

XGrind Binary/Huffman + Yes =, prefix XPath Top-down Value/tag
Dictionary subset

XPRESS RAE/Huffman Yes =,<, XPath Top-down Value/path
(Arithmetic) + prefix subset ++
Dictionary +

Difference
Buneman Bisimulation/ No — Core Top-down —

et al. — XPath bottom-up
XQZip SIT/ No — XPath 1.0 ++ Multiple Block (set

GZip of records)
XCQ PPG/ No — XPath 1.0 + Multiple Block (set

GZip aggr. of records)
XQueC Binary/ No =, <, XQuery Multiple Container

cost-driven prefix subset item/tag

XQZip, the block size has to be carefully determined in order to achieve good
performance.

Table I reports the major differences among the systems discussed. XQueC
realizes a cost-driven compression and a random-access query evaluation strat-
egy as opposed to XPRESS, XGrind and XQZip. This is what makes XQueC the
first compressed XML database rather than an XML compression tool. Besides
guaranteeing that queries are processed as much as possible in the compressed
domain, XQueC also supports a more expressive language fragment. Finally,
the level of granularity XQueC considers is the smallest possible, that is, a
container item or a tag which can be randomly accessed during querying. This
is similar to XGrind, and in contrast to XQZip/XCQ, which rely on block-level
granules and to XPRESS, which has both value-level and path-level granules.

3. STORING AND QUERYING COMPRESSED XML DATA

In this section, we describe XQueC’s storage model for compressed XML data.
We outline XQueC’s overall architecture in Section 3.1. XQueC’s query pro-
cessing model is briefly described in Section 3.2. This provides the groundwork
for discussing the trade-off between compact storage and efficient querying
(Section 3.3).

3.1 XQueC Storage Structures and Architecture

XQueC splits an XML document into three data structures, depicted in Figure 1
for an XMark sample: the structure tree, the containers and the structure sum-
mary. Besides providing a description of each data structure, in the following
we also discuss its space usage in order to give an insight on the impact of each
storage structure on the final document’s compression ratio.

Across all the structures, XQueC encodes element and attribute names using
a simple binary encoding. The structure tree is encoded as a set of ID sequences,
each associated with a different root-to-node path in the tree. Figure 1(c) de-
picts the sequences resulting from the paths /site, /site/people, /site/people/person,
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Fig. 1. XQueC storage structures: (a) sample XMark document, (b) structure summary, (c) ID
sequences, and (d) containers.

and /site/regions/asia/item in the sample document. To encode the IDs in all its
storage structures, XQueC uses conventional structural identifiers consisting
of triples [pre, post, depth] as in Al-Khalifa et al. [2002], Halverson et al. [2003],
Paparizos et al. [2003], and Grust [2002]. The pre (post) number reflects the ordi-
nal position of the element within the document when traversing it in preorder
(postorder). The depth number reflects the depth of the element in the XML
tree. This node identification scheme allows the direct inference of structural
relationship between two nodes using only their identifiers. Note that the depth

field can be omitted since in our storage structures, the structural identifiers
are already clustered by their path. Thus, the sequences in Figure 1(c) actually
use only a 2-tuple [pre, post] to encode each structural ID. This means that, for a
document having N elements, each [pre, post] ID is encoded using 2 ∗ �log2(N )�
bits, thus the space usage of the set of ID sequences is

csseq = 2 ∗ N ∗ �log2(N )�. (1)

Similarly, the containers store together all data values found under the same
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root-to-leaf path in the document. A container is realized as a sequence of
records, each consisting of a compressed value, and a number representing
the position of its parent in the corresponding ID sequence of the tree structure
(see Figure 1(d) where c(s) denotes the compressed version of string s 1). We
write size(ci) for the size in bits of the i-th compressed value in container c and
seqc for the ID sequence of its parent. Hence, the space usage of the compressed
containers is

cscont =
∑

c

(
|c| ∗ �log2(|seqc|)� +

∑
i=1,...,|c|

size(ci)

)
. (2)

Finally, the storage model includes a structure summary, that is, an access
support structure storing all the distinct paths in the document. The structure
summary of an XML document d is a tree whose nodes uniquely represent
the paths in d , that is, for each distinct path p in d , the summary has exactly
one node on path p. For a textual node under path p, the summary has a node
labeled /p/#text, whereas for an attribute node a under path p, the summary
has a node labeled /p/@a. This establishes a bijection between paths in an XML
document and nodes in the structure summary. Note also that each leaf node
in the structure summary uniquely corresponds to a container of compressed
values. Figure 1(b) depicts the structure summary for the sample document.
The space usage of a summary SS is:

csaux =
∑

n∈SS

(
|tag(n)| + log2(|SS|)

)
, (3)

where the first term represents the space needed for the storage of each node’s
tag and the second term accounts for its incoming edge. The summary is typ-
ically very small (see Section 5), thus it does not significantly impact data
compression.

Overall, the compressed document size is thus cs = csseq + cscont + csaux,
and the resulting compression factor is cf = 1 − cs/os, where os is the original
document size.

Figure 2 outlines XQueC’s architecture. The loader decomposes the XML
document into ID sequences and containers and builds the structure summary.
The compressor partitions the data containers and decides which algorithm to
apply (see Section 4). This phase produces a set of compressed containers. The
repository stores the storage structures and provides data access methods and a
set of compression functions working at runtime on constant values appearing
in the query. Finally, the query processor includes a query optimizer and an
execution engine providing the physical data access operators.

3.2 Processing XML Queries in XQueC

The XQuery subset Q supported by XQueC is characterized as follows.
(1) XPath{/,//,∗,[ ]} ⊂ Q, that is, any Core XPath belongs to Q. When such XPath
expressions have as a suffix a call to the function text(), they return the text

1When type information is not known a priori, XQueC applies a simple type inference algorithm
that attempts to classify the values on each path into simple primitive types.
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Fig. 2. Architecture of the XQueC prototype.

value of the nodes they are applied on. Navigation branches enclosed in square
brackets may include complex paths and comparisons between a node and a
constant c. Predicates connecting two nodes are not allowed; they may be ex-
pressed in XQuery syntax as explained next. (2) Let $x be a variable bound in
the query context [XQUE 2004] to a list of XML nodes and p be a Core XPath
expression. Then, $x p belongs to Q and represents the path expression p ap-
plied with $x ’s bindings list as initial context list. For instance, $x/a[c] returns
the a children of $x bindings having a c child. We denote the set of expressions
(1) and (2) as P, the set of path expressions. (3) For any two expressions, e1
and e2 ∈ Q, their concatenation, denoted e1, e2, also belongs to Q. (4) If t is a
tag and e ∈ Q, element constructors of the form 〈t〉{e}〈/t〉 belong to Q. (5) All
expressions of the following form belong to Q:

for $x1 in p1, $x2 in p2, . . . , $xk in pk

xq where pk+1 θ1 pk+2 and . . . and pm−1 θl pm

return q(x1, x2, . . . , xk),

where p1, p2, . . . , pk , pk+1, . . . , pm ∈ P, any pi starts either from the root of some
document d , or from a variable xl introduced in the query before pi, θ1, . . . , θl

are some comparators, and q(x1, . . . , xk) ∈ Q. A return clause may contain other
for-where-return queries, nested and/or concatenated and/or grouped inside
constructed elements.

XQueC’s optimizer compiles a query q ∈ Q into an executable plan in several
steps. First, a set of query patterns, capturing q’s path expressions and the
relationships among them, are extracted from q. Figure 3 shows a query and its
corresponding pattern in which child (respectively, descendant) pattern edges
are shown by simple (respectively, double) lines, and optional edges (allowing
matches for the descendant node to be missing) are shown in dashed lines.
Finally, n markers identify nested edges: matches of the lower node should be
nested under the upper node matches. For instance, all name and emph matches
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Fig. 3. Sample XQuery expression and its corresponding path-annotated query pattern.

should be output together for a given $i and $d match. The full pattern extraction
algorithm, which is beyond the scope of this article, is described in Arion et al.
[2006].

Based on the structure summary, XQueC analyzes each query pattern, asso-
ciating to each pattern node all paths (from the XML document) where bindings
for this pattern node may be found. In Figure 3, the numbers of the summary
paths (recall Figure 1) associated to each node are shown in dotted circles next
to the node. This analysis follows the original Dataguide usage for optimiza-
tion [Goldman and Widom 1997].

The optimizer then builds a data access plan for each pattern node. If the
query requires the text value of the pattern node, such as $name in Figure 3,
the access plan reads the contents of containers corresponding to those paths.
Otherwise, the access plan reads the ID sequences for those paths. In both
cases, unions are built whenever a pattern node has more than one associated
path as was the case, for instance, with the emph in Figure 3.

Data access plans corresponding to pattern nodes are combined by structural
join operators [Al-Khalifa et al. 2002] reflecting the semantics of pattern edges.
We use structural outerjoins for optional edges as proposed in Chen et al. [2003].
Structural joins followed by grouping are employed for nested pattern edges.

To compensate for XQueC’s highly partitioned storage, the optimizer must
produce plans that reconstruct the XML elements which the query needs to
output entirely such as emph in Figure 3. One alternative is to combine all the
necessary containers and ID sequences via structural joins. Another alternative
is based on a pipelined, memory-efficient operator which we studied in Arion
et al. [2006].

Finally, XQueC’s optimizer adds decompression operators to decompress
those values that must be returned (uncompressed) in the query results.

3.3 Trade-Offs Between Compact Storage and Efficient Processing

XQueC aims at providing efficient query processing techniques typical of XML
databases together with the advantages of XML compression. These two goals
clearly conflict. For instance, compressing blocks of several values at a time
(instead of compressing each value individually as XQueC does) may improve
the compression factor but would reduce the query engine’s ability to perform
very selective data access.
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The desired XML database features which we targeted in XQueC are selec-
tive data access, scalable query execution operators, and low-memory needs
during query processing. Our goals for XML compression in XQueC were to
reduce space usage, and to decompress lazily. XQueC’s design is the result of
mediating between these desiderata as outlined in the following.

Path partitioning provides for selective data access, more so than the tag-
partitioning structural ID indexing used in Jagadish et al. [2002], Fiebig et al.
[2002], and Halverson et al. [2003]. Node-partitioning schemes more aggressive
than path partitioning can be envisioned [Buneman et al. 2003], but they may
lead to excessive fragmentation. Structure Index Trees (SIT) [Cheng and Ng
2004] also lead to partitioning nodes more than in XQueC since two nodes are
in the same group if they have the same incoming path and the same set of
outgoing paths. For instance, on the XMark document of Figure 1(a), the two
person elements would be in separate groups since one has an address child,
while the other does not. In the presence of optional elements, the SIT may
thus get very large.

Compressing each value individually enables both selective data access and
lazy decompression. The separation between ID sequences and containers helps
selective data access since the processor does not have to access XML node
values (voluminous even after compression) when it only needs to access (part
of) the tree structure. For instance, for four out of the six pattern nodes in
Figure 3, only ID sequences will be read. By the same argument, this separation
also reduces the processor’s memory needs.

To enable scalable query processing techniques in XQueC, we introduced
structural identifiers for every node. The space occupied by the identifiers is the
price to pay for the benefits of structural join algorithms that run in linear time
and require low memory [Al-Khalifa et al. 2002]. Observe that homomorphic
compressors such as XGrind and XPRESS, lacking a store, do not have direct
access to given parts of the document. In such settings, there will always be
unlucky queries whose processing requires a full traversal of the compressed
document even if they only retrieve a small amount of data. Selective data
access methods ensures that XQueC does not suffer from such problems, given
that

—each compressed value can be accessed directly, and
—IDs from each document path can be accessed directly (and in the order

favorable for further processing).

Path partitioning reduces IDs space usage by not storing the depth ID field;
moreover, we only store the postorder number in the ID sequences (not in
containers).

To store XML documents in a compact manner, XQueC cannot afford to com-
plement ID sequences with a full persistent tree as done in Jagadish et al.
[2002], Fiebig et al. [2002], and Halverson et al. [2003], which (in the absence
of value compression) report a disk footprint four times the size of the docu-
ment. Thus, while ID sets are used as indices in Milo and Suciu [1999], and
Goldman and Widom [1997], in XQueC, they actually are the storage.
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XQueC’s elaborate choice of the best compression algorithm to use for each
container is important for reducing storage size but also for lazy decompression.
The next section describes it in detail.

4. CHOICE OF COMPRESSION CONFIGURATIONS

Thus far we have discussed the utility of splitting the data instances into sep-
arate storage structures, that is, the containers and the tree structure. Con-
tainer compression may become more efficient if appropriate container groups
are considered and compressed together. There may exist multiple grouping
choices which have a nontrivial impact on the size of compressed data and
on the achievable query performance. As explained in the rest of this section,
XQueC leverages a suitable cost model to drive the final choice.

4.1 Rationale for a Cost Model

The containers include a large share of the compressible XML data, that is, the
values, thus making proper choices about compressing them is a key issue for
an efficient XML compressor [Liefke and Suciu 2000].

Similar to other nonqueryable XML compressors, XQueC looks at the data
commonalities to choose the container’s compression algorithm. But how do we
know that a compression algorithm is suitable for a container or a set of con-
tainers? In principle, we could use any eligible compression algorithm, but one
with nice properties is, of course, preferable. Each algorithm has specific compu-
tational properties which may lead to different performance depending on the
data sets actually used and on their similarities. In particular, the properties
of interest for our purpose were the decompression time, which strongly influ-
ences the query response times over compressed data, the compression factor
itself, and the space usage of the source models built by the algorithm. In fact,
a container can be compressed individually or along with other containers; in
the latter case, a group of containers share the same source model (i.e., the sup-
port structures used by the algorithm for both compressing and decompressing
data). Grouping containers might be convenient, for example, when they exhibit
high data similarity. Therefore, the space usage of the source model matters as
much as the space usage of containers themselves and the decompression time;
combining these three factors makes the choice even more challenging.

Besides the properties discussed, each compression algorithm is also char-
acterized by the supported selections and/or joins in the compressed domain.
There are several operations one can perform with strings, ranging from
equality/inequality comparisons to prefix-matching and regular expression-
matching. We give a brief classification of compression algorithms from the
point of view of querying XML data. We distinguish among the following kinds
of compressors.

—Equality-preserving compressors. These algorithms guarantee that equality
selections and joins can be applied in the compressed domain. For instance,
the Huffman algorithm supports both equality selections and equality joins in
the compressed domain. The same holds for ALM, Extended Huffman [Moura
et al. 2000], Arithmetic [Witten 1987], and Hu-Tucker [Hu and Tucker 1971].
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—Order-preserving compressors. These algorithms guarantee that selections
and joins using an inequality operator can be evaluated in the com-
pressed domain. Examples of these algorithms are ALM, Hu-Tucker, and
Arithmetic.

—Prefix-preserving compressors. These algorithms guarantee that prefix selec-
tions (such as c like pattern*) and joins (c1 like c2*) can be evaluated in the
compressed domain. This property holds for the Huffman algorithm but does
not hold for ALM.

—Regular expression-preserving compressors. These algorithms allow the eval-
uation of a selection of the form “c like regular-expression” in the compressed
domain. Note that if an algorithm allows matching a regular expression, it
also allows the determination of inequality selections as these can be equiva-
lently expressed as regular expression selections. An example of an algorithm
supporting regular expression selections is Extended Huffman.

The final choice of the algorithms to employ for the containers is driven by the
predicates that are actually evaluated in the queries. The specific advantage
of XQueC over similar XML compressors is that XQueC exploits query work-
loads to decide how to compress the containers in a way that supports efficient
querying. Besides selection and join predicates, the cost model also takes into
account top-level projections (i.e., those present in RETURN XQuery clauses) as
they enforce the decompression of the corresponding containers. Query work-
loads have been already successfully employed in several performance studies
from multiquery optimization to XML-to-relational mappings [Roy et al. 2000;
Bohannon et al. 2002]. To the best of our knowledge, this is the first time they
have been employed for deciding how to compress data.

We have so far discussed the multiple factors that influence the compression
and querying performances. In the following, we illustrate this by means of an
example.

4.1.1 A Simple Case Study. Let us consider three containers, namely c1,
c2, and c3, whose size are 500KB, 1MB, and 100MB, respectively. Assume that
the workload features an inequality join between c1 and c2 and a prefix join
between c1 and c3, whereas containers c2 and c3 are never compared by the
workload queries (Figure 4(a)). To keep the example simple, we disregard top-
level projections.

If we aim at minimizing only the storage costs (thus disregarding the decom-
pression costs) among the multiple alternatives (i.e., keeping the containers
separated versus aggregating them in all possible ways), we would prefer to
compress each container separately (Figure 4(b)). Indeed, making groups of
containers often increases both the sizes of compressed containers and source
models because of the decreased intercontainers similarity within each group.
In fact, if for instance c1 and c2 contain strings over two disjoint alphabets of
two symbols each, and two separate source models are built, c1 and c2 are likely
to be encoded with one bit per-symbol. If instead a single source model is used,
two bits per-symbol are required, thus degrading the compression factor. A sec-
ond relevant decision to be made is that of choosing the right algorithm for each
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Fig. 4. Sample workload and possible partitioning alternatives.

separate container. Since only the storage cost matters, this algorithm should
be the one with the best compression factor.

In contrast, if we aim at minimizing only the decompression costs but keep-
ing the advantage of the reduced amount of data to be processed, then we
would have to find a compression algorithm that supports both inequality and
prefix joins in the compressed domain. If such an algorithm is available, the
best choice is the one that aggregates all containers into one group, compressed
with that algorithm (Figure 4(c)). Such a choice is optimal as it would nullify
the decompression cost. Note that this is already in conflict with the choice of
minimizing only the storage costs. If instead such an algorithm is not available,
and there is one order-preserving algorithm for inequality joins and a prefix-
preserving one for prefix joins, two possible alternatives arise (1) grouping c1
together with c2 and compressing them with the order-preserving algorithm,
leaving c3 as a singleton (2) or, grouping c1 together with c3 and compressing
them with the prefix-preserving one, leaving c2 as a singleton. The first choice
saves decompression of a very large container, that is, c3, thus making it prefer-
able (Figure 4(d)).

The most general case is that of minimizing both storage and decompres-
sion costs. For the previous containers, there are again many possible alter-
natives. If the prefix-preserving algorithm matches the one that minimizes
the storage costs, the choice of grouping is straightforward, leaving c2 as
a singleton (Figure 4(e)). On the other hand, if the two algorithms do not
match or if the largest container is c2, the scenario becomes increasingly more
complex.

4.2 Costs of Compression Configurations

Our proposed cost model allows us to evaluate the cost of a given compression
configuration, that is, a partition of the set of containers together with the
assignment of a compression algorithm to each set in the partition. To do this,
the cost model must also know the set of available compression algorithms
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(properly characterized with respect to certain types of comparison doable in
the compressed domain) and the query workload.

More formally, we first define a similarity matrix F , that is, a symmetric ma-
trix whose generic element Fi, j , with 0 ≤ Fi, j ≤ 1, is the normalized similarity
degree between containers ci and c j . A compression algorithm a is characterized
by a tuple 〈a.cd (F ), a.cs(F ), a.cx(F, σ ), a.L〉 where:

—the decompression cost a.cd (F ) is a function estimating the cost of retrieving
an uncompressed symbol from its compressed representation using algorithm
a;

—the storage cost a.cs(F ) is a function estimating the average cost of storing
the compressed representation of a symbol using a;

—the source model storage cost a.cx(F, σ ) is a function estimating the cost of
storing the auxiliary structures needed to represent the source model of a set
of containers sized σ using a;

—the algorithmic properties a.L are the kinds of comparisons supported by a
in the compressed domain.

Note that each cost component is a function of the similarity among the
containers. This is due to the fact that such costs always depend on the nature
of data enclosed in the containers compressed together, that is, on the similarity
among them (see the example in the previous section). Observe also that, as
opposed to the containers storage cost, the source model storage cost is not
symbol-specific, but it refers to an entire source model. This is due to the fact
that the overhead of storing the source model is seldom linear with respect to
the container’s size [Moura et al. 2000].

The query workload W, containing XQuery queries, is modeled using two
sets, cmpW and projW , that reflect selections and joins among containers and
top-level projections in W:

—cmpW is a set of tuples of the form 〈q, i, j , l 〉, where q ∈ W, i ∈ {1, . . . , |C|},
j ∈ {0, . . . , |C|} are container indexes (index 0 represents constant values for
selections), and l ∈ L; each tuple denotes a comparison of kind l in q between
containers ci and c j ;

—projW is a set of tuples of the form 〈q, i〉, where q ∈ W, and i ∈ {1, . . . , |C|} is
a container index; each tuple in projW denotes a projection on container ci in
q.

Note that W could easily be extended to provide information about the rel-
ative query frequency. For instance, suppose that a query q1 features a join
between containers c1 and c2, and a query q2 has another join between con-
tainers c3 and c4. In such a case, the corresponding elements of cmpW would be
〈q1, 1, 2, eqj 〉 and 〈q2, 3, 4, eqj 〉. If we also know from W that q1 is three times
more frequent than q2, we simply add duplicates of 〈q1, 1, 2, eqj 〉 in cmpW .
This corresponds to viewing cmpW as a bag instead of a set. The same applies
to projW .

Summarizing, the cost model input consists of (see Table II for the symbols
used):
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Table II. Summary of Symbols Used in the Cost Model

C Set of textual containers
A Set of compression algorithms
W Query workload
P Partition of C
p Set in P
L Kinds of comparisons considered
alg Compression algorithm assignment function, P → A
s Compression configuration 〈P, alg〉
l Kind of comparison in L
a Algorithm in A
F Similarity matrix
Fp Similarity matrix projected over the containers in p
a.cd (F ) Cost of decompressing a symbol using the compression algorithm a
a.cs(F ) Cost of storing a symbol using the compression algorithm a
a.cx (F, σ ) Cost of storing the auxiliary structures for σ symbols using the compression

algorithm a
cmpW Set of comparisons in W
projW Set of top-level projections in W
dcomp(s, i, j , l ) Decompression cost due to a comparison of kind l between containers

ci and c j

dproj(q, s, i) Decompression cost due to a projection in query q on container ci

—a set C of textual containers;
—a set A of compression algorithms;
—a query workload W;
—a set L of algorithmic properties, denoting the kinds of comparisons consid-

ered;
—a compression configuration s = 〈P, alg〉, consisting of a partition P of C, and

a function alg : P → A that associates a compression algorithm to each set
in P .

The cost function, when evaluated on a configuration s, sums up different
costs: the cost of decompression needed to evaluate comparisons and projections
in W, the compression factors of the different algorithms, and the cost of storing
their source models. The overall cost of a configuration s with respect to a
workload W is calculated as a weighted sum of the costs previously presented
(sets C, A, and L are implicit function parameters):

cost(s, W) = α · decompW (s) + β · scc(s) + γ · scm(s),

where decompW (s) represents the decompression cost incurred by s, scc(s) rep-
resents the cost of storing the compressed data, scm(s) represents the cost of
storing the source models, and α, β, and γ , with α +β + γ = 1, are suitable cost
weights that measure the relative importance of the various components. Some
manual intervention may occur here, that is to determine the actual values of
these weights, which may depend on the application needs or the user prefer-
ences. In the following, we separately characterize each component of the cost
function.
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The containers storage cost for each set p ∈ P is computed by multiplying
the number of symbols in p by the storage cost incurred by the algorithm with
which p is compressed. Such costs are influenced by the similarity among the
containers in p so they are evaluated on the projection of FC with respect to the
containers in p (denoted as Fp). Thus, the containers storage cost is

scc(s) =
∑
p∈P

(
alg(p).cs(Fp) ·

∑
c∈p

|c|
)

,

where |c| denotes the total number of symbols appearing in container c. Simi-
larly, the source model structure storage cost is

scm(s) =
∑
p∈P

alg(p).cx

(
Fp,

∑
c∈p

|c|
)

.

The decompression cost is evaluated by summing up the costs associated
with both comparisons and projections in W. To give an intuition, let us first
consider a generic comparison occurring between two containers ci and c j . The
associated decompression cost is zero if ci and c j share the same source model
and the algorithm they are compressed with supports the required kind of
comparisons in the compressed domain. A nonzero decompression cost occurs
instead when one of the following conditions holds:

—ci and c j are compressed using different algorithms;
—ci and c j are compressed using the same algorithm but different source

models;
—ci and c j are compressed using the same algorithm and the same source

model, but the algorithm does not support the required kind of comparisons
in the compressed domain.

For a selection over a container ci, a zero decompression cost occurs only
if the compression algorithm for ci supports the required kind of selection in
the compressed domain. In such a case, the constant value will be compressed
using ci ’s source model and the selection will be directly evaluated in the com-
pressed domain. If instead the compression algorithm for ci does not support
the selection in the compressed domain, a nonzero decompression cost must be
taken into account. To formalize this, we define a function dcomp that, given a
compression configuration, calculates the cost of decompressing pairs of con-
tainers or single containers when involved in selections. The pseudocode for
function dcomp is shown in Figure 5, where function set(P, c) returns the set
in P containing c. Similarly, function dproj, given a compression configuration,
calculates the decompression cost associated with the top-level projection of a
container (Figure 5).

The overall decompression cost of a configuration s is computed by simply
summing up the costs associated to each comparison and projection in the work-
load W. The cost is therefore given by the following formula:

decompW (s) =
∑

〈q, i, j , l 〉∈cmpW

dcomp(s, i, j , l ) +
∑

〈q, i〉∈projW

dproj(s, i).
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Fig. 5. Decompression cost for comparison predicates and top-level projections.

Note that, during the evaluation of decompW , we keep track of the containers
that have already been decompressed to make sure that the decompression cost
of a container is taken into account only once.

4.3 Optimizing Compression Choices

The problem we deal with is that of finding the configuration incurring the
minimum cost, provided the query workload (W), a set of containers (C), and a
set of compression algorithms (A). To the best of our knowledge, this problem
(which in principle faces a search space of

∑
P∈P |A||P |, with |P| as the set of pos-

sible partitions of C) cannot be reduced to any well-understood combinatorial
optimization problem. Thus, we have designed some simple and fast heuristics
that explore the search space to quickly find suitable compression configura-
tions: a Greedy heuristic which starts from a naive initial configuration and
makes local greedy optimizations; a Group-based greedy heuristic that adds a
preliminary step to the previous one, aiming at improving the initial configura-
tion; a Clustering-based heuristic that applies a classical clustering algorithm
together with a cost-based distance measure. These heuristics are combined
to obtain suitable compression configurations. This is feasible because all the
heuristics are quite efficient in practice as we will show in Section 5.

4.3.1 Greedy Heuristic. We have devised a greedy heuristic that starts
from a naive initial configuration, s0 and improves over it by merging sets of con-
tainers in the partition. The main idea here is that of exploiting each comparison
in W to enhance the current configuration; at each iteration, the heuristic picks
the comparison that involves the maximum number of containers (improving
over the heuristic presented in Arion et al. [2004] that randomized the choice
of the comparison). Figure 6 shows the pseudocode of this heuristic. Steps 1–19
build the initial configuration by examining all the comparisons in the work-
load. Then, Steps 20–32 examine the cost of possible new configurations that
are built by merging the groups obtained in previous steps but using a different
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Fig. 6. Greedy heuristic.

algorithm for them. The algorithm halts when all comparisons in the workload
have been inspected.

4.3.2 Group-Based Greedy Heuristic. The group-based greedy heuristic is
a variant of the greedy one and relies on the simple intuition that textual
data marked by the same tag will likely have similar text content. Indeed, this
heuristic treats groups of containers corresponding to paths ending with the
same tag as a single container; this may lead to the building of a less trivial
initial configuration than the one produced by the greedy heuristic. The latter
is eventually applied on this initial configuration, thus, the pseudocode looks
like the one in Figure 6 except for the preprocessing step.

4.3.3 Clustering-Based Heuristic. Since the problem of computing the
compression configurations can be also thought of as a clustering problem, we
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Fig. 7. Clustering-based heuristic.

designed a heuristic that employs a simple clustering algorithm, that is, the
agglomerative single-link algorithm [Jain et al. 1999]. In our case, the distance
between pairs of containers must reflect the costs incurred when compressing
those containers with different algorithms. This cost, in turn, depends on the
containers’ actual content. In particular, the distance between containers is
proportional to the cost for decompressing the containers and storing them and
their corresponding auxiliary structures. Moreover, for each algorithm, a non-
null decompression cost occurs whenever the two compressed containers are
involved in comparisons not supported by that compression algorithm (in the
compressed domain). The distance can thus be formalized as follows:

dist(ci , c j )

=
∑

a∈A[α · uW (a, i, j ) · a.cd (F{ci ,c j }) + β · a.cs(F{ci ,c j }) + γ · a.cx(F{ci ,c j }, |ci| + |c j |)]
|A| ,

where uW (a, i, j ) is the number of comparisons in W between ci and c j that the
algorithm a does not support in the compressed domain.

The pseudocode of the clustering-based heuristic is reported in Figure 7. At
first, it chooses a number of distance levels among the containers. A distinct par-
tition is generated for each distance level, letting the containers with distance
less or equal to the chosen level be in the same set. This process leads creating
partitions that have decreasing cardinality as the sets tend to be merged. Ob-
viously, a singleton partition is eventually produced at a distance level greater
than the maximum distance between containers. Since the cost function is in-
voked as many times as the number of distance levels, the chosen number
of levels stems from a trade-off between execution times and probabilities of
finding good configurations. Deciding the number of levels is empirically done
and implies some manual tuning which is not required in the other heuristics.
Finally, for each generated partition, the heuristic assigns to each set in the
partition the algorithm that locally minimizes the costs.

5. EXPERIMENTAL ASSESSMENT

In this section, we present an experimental study of our storage and compres-
sion model.
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Table III. XML Documents and Queries Used

Document d (MB) # elems. # tags # conts. # paths ID bits Provenance

DBLP (128) 3,332,129 40 136 125 44 [UWXML 2004]
INEX (483) 8,091,799 177 12,380 10,478 46 [INEX 2004]
NASA (24) 476,645 68 70 95 38 [UWXML 2004]
Shakespeare (7.5) 179,690 22 40 58 36 [IBIBLIO 2004]
SwissProt (109) 2,977,030 99 191 117 44 [UWXML 2004]
TreeBank (82) 2,437,665 250 220,818 338,748 44 [UWXML 2004]
UW course data (2.9) 84,051 18 12 18 34 [UWXML 2004]
XMarkn (n) varies varies varies varies varies [Schmidt et al. 2002]
XMark111 (111) 1,666,310 74 444 514 42 [Schmidt et al. 2002]
ShakespeareXPress (15.3) 359380 22 40 58 36 [IBIBLIO 2004]
1998statXPress (17.06) 422897 46 97 41 38 [IBIBLIO 2004]
WashingtonXPress (12.28) 336204 18 12 18 34 [UWXML 2004]

Query Code Description

QXi XMark query number i [Schmidt et al. 2002]
Q X 1 Point query.
QX8 Nested join query.

QX14 Regular-expression predicate query.
QD1 FOR $p IN //person RETURN $p

QD2 FOR $h IN //homepage RETURN $h

QD3 FOR $a IN //address RETURN $a

We present a set of performance measures, assessing the effectiveness of
XQueC in different respects.

—Compression choices. We have evaluated the performance of the heuristics
studied in Section 4 in partitioning the set of containers and choosing the
right compression algorithm for each set in the partition.

—Compression factors. We have performed experiments on both synthetic and
real-life data sets.

—Query execution times. We have probed XQueC query performance on XML
benchmark queries [Schmidt et al. 2002] and the relative impact of decom-
pression time on query performance.

We have implemented the XQueC system prototype in Java using Berke-
ley DB [BER 2003] as the backend that provides a set of low-level persistent
storage structures. To store ID sequences and containers, we used Berkeley
DB’s persistent sequences: fixed length for ID sequences, and variable length
for containers. At the physical level, we store the sequence of structural IDs
in document order by using either a simple persistent sequence or persistent
ordered-storage structure (e.g., a B+-tree).

Experimental setting. The name, size, and provenance of the used data sets
are listed in Table III. The documents named XMarkn are generated using the
XMark generator. For the purpose of comparison, we also include the same
documents used in Min et al. [2003] (ShakespeareXPress, 1998statXPress, and
WashingtonXPress). Table III also shows the queries used for experiments. All
of our experiments have been performed on a machine with a 1.7GHz processor,
1GB RAM, and running Windows XP.
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Table IV. Compression Configurations and Workloads Used

Configurations Description

Cost-based Blend of the heuristics presented in Section 4.2
NaiveX1
X∈{Huffman,ALM}

One set with all string containers, apply compression algorithm
X on the set

NaiveX2
X∈{Huffman,ALM}

One set for each string container, apply compression algorithm X
on each set

NaiveX3 One set for each group of string containers whose paths
X∈{Huffman,ALM} end with the same tag; apply X on each set

Name Comparisons Projections

XMark 155 63 Extracted from [Schmidt et al. 2002]
RW1 217 42 Randomly generated over XMark75

(444 containers, out of which 426 contain
strings).

RW2 205 42 As above.

Other compression tools for comparison purposes. We discuss in the fol-
lowing the availability and usability of some competitors tools. XMill worked
fine with all datasets but, as a nonqueryable compressor, it was only useful to
compare compression factors. XGrind is aqueryable compressor, but we could
only compare against its compression factors since the available query pro-
cessor seems only capable of answering queries on documents sized as a few
KB. Both XPRESS and XQZip are not publicly available and covered by copy-
right so we used the compression factors from Min et al. [2003] and Cheng
and Ng [2004]2 in the comparison. However, in the XMark data sets used
by Cheng and Ng [2004], the structure of rich textual types, such as item de-
scriptions, has been eliminated. On XMark111, this leads to 7 instead of 12 lev-
els of nesting. Finally, the queryable compressors described in Buneman et al.
[2003] and Busatto et al. [2005] do not directly compare with XQueC since they
do not produce a compressed persistent structure, and thus do not compress
values.

For all the reasons described, a comprehensive comparison with other tools
was not feasible. In contrast, we could make a comparison of our system with no
compression with a compression-unaware XQuery engine, Galax 0.5.0 [Galax
2006] as shown in the remainder.

5.1 Compression Choices

In this section, we evaluate the heuristics presented in Section 4.2 by comparing
the obtained compression configurations against the naive ones described in
Table IV.

In our assessment of the cost model, we have adopted a possible characteriza-
tion of the similarity matrix F 3. To build the matrix, we have chosen the Cosine
similarity function, defined as the cosine of the angle between the vectors that

2We also borrowed XGrind compression factors from Cheng and Ng [2004] as the latter’s down-
loadable version was not usable for large datasets.
3Other characterizations of F and the corresponding cost functions are obviously possible but are
beyond the scope of this article.
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represent the containers. More formally, we first define the signature of a con-
tainer as the number of occurrences of a fixed set of symbols � (composed of
characters of the western alphabet plus some punctuation). Thus, the signature
of a container c can be defined as a function c : � → N. The cosine similarity
between two containers ci and c j is therefore defined as follows:

Fi, j =
∑

x∈� ci(x) · c j (x)√∑
x∈� ci(x) · √∑

x∈� c j (x)
.

We have implemented two compression algorithms—ALM and Huffman—
as a proof of concept in XQueC and, as a consequence, have based our experi-
mental study on these algorithms. Two algorithms suffice to demonstrate our
proof of concept. Indeed, more algorithms would only complicate the discussion,
while not conveying new ideas. Moreover, the chosen two algorithms turn out
to be quite appropriate as they fully cover XQuery [XQUE 2004] predicates in
the compressed domain. We recall that the Huffman algorithm compressing
one character at a time is relatively fast. It supports equality comparisons in
the compressed domain and its compression dictionary is typically small. As
a representative of order-preserving algorithms, we preferred ALM to other
algorithms such as the Arithmetic and Hu-Tucker ones. Indeed, dictionary-
based encoding has demonstrated its effectiveness with respect to other
non-dictionary approaches [Moffat and Zobel 1992], and ALM outperforms
Hu-Tucker [Antoshenkov et al. 1996]. Moreover, we have empirically chosen
the number of distance levels used in the Clustering-based heuristic to be equal
to 20.

Finally, as highlighted in Section 4, each compression algorithm is charac-
terized by three functions that evaluate the costs of decompression (cd (F )), of
compressed container space usage (cs(F )) and of auxiliary structures space us-
age (cx(F, σ )). The costs of the compression algorithms have been measured on
synthetic container filled with strings of up to 20 characters each; the total con-
tainer sizes ranged from 100KB to 11MB, and the containers were generated
with different cosine similarity values. Based on these measured values, we
have calibrated the cost functions for ALM and Huffman algorithms.

We used three sample workloads, shown in Table IV: XMark is a subset of
the XMark benchmark workload, while RW1 and RW2 were randomly generated
based on the containers extracted from the same document. All the containers
were extracted from XMark75. We also analyzed a no-workload case to show the
quality of compression results in the absence of a workload. In the experiments,
we considered two possible assignments for the cost function weights: α = 1, β =
0, γ = 0, for the case when only the decompression costs are taken into account;
α = 0, β = 0.5, γ = 0.5, where both the container and source model storage costs
are taken into account and equally weighted.

We report the obtained results in Figure 8. We can observe that, in the ma-
jority of cases, the cost of the configuration obtained by running the heuristics
is lower than the costs of the naive configurations. The difference in costs can be
appreciated for all assignments of weights and all cases with/without workload.
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Fig. 8. Configuration costs with (a) α = 1, β = 0, γ = 0; (b) α = 0, β = 0.5, γ = 0.5; (c) α = 0, β =
0.5, γ = 0.5, and no workload.

Moreover, as expected, the proposed heuristics turned out to be very fast; the
maximum total execution time was 158.04 seconds for α = 1, β = 0, γ = 0,
54.98 seconds for α = 0, β = 0.5, γ = 0.5, and 8.08 seconds for the no-workload
case.

5.2 Compression Performance

In this section we analyze XQueC compression performance by first showing
the impact of our data structures on the compression factor and then measuring
the latter with respect to competitors.

5.2.1 Compression Factor Breakdown. We start by showing how the vari-
ous compressed data structures produced by XQueC impact the overall size of
compressed documents. To ease readability, in Figure 9 we have used separate
plots for the smallest documents (up to 25MB) and for the largest ones (up to
483MB). The relative importance of containers and structures varies with the
nature of the considered document, for instance, TreeBank and Shakespeare do
not have integer compressed containers. We can notice that, for most datasets,
the compressed data structures reduce their size by a factor ranging between
2 and 4. Moreover, the size of the dictionary and the structure summary is also
negligible in most cases. The results shown in Figure 9 are those obtained for
NaiveHuffman1, one of the simplest configurations of Table IV.

Figure 10 shows the total size of compressed containers and dictionaries
when varying the compression configurations. The configurations used here
are built in the absence of a workload. The last column refers to a none com-
pressor which isolates structure from content according to XQueC’s model but
stores the values as such (without any compression). The figure shows that the
compression configuration impacts the resulting compressed structure sizes.
In particular, among the naive configurations, those based on ALM tend to
achieve the strongest container compression. The reason is that ALM exploits
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Fig. 9. Sizes of compressed data structures using configuration NaiveHuffman1.

repetitive substrings for compression. However, considering the dictionary size,
NaiveHuffman1 wins because it needs a single dictionary for all containers.
Conversely, NaiveHuffman3 and NaiveHuffman2 are not as good as NaiveHuff-
man1 since they require a separate dictionary for each container group. The
same behavior occurs with ALM-based naive configurations. For instance, the
dictionary size when using NaiveALM2 reaches 1.8MB for the NASA document,
against a compressed data size of 6.5MB. In such cases, the advantages of value
compression may vanish. Moreover, for XMark111, the dictionary size reached
a value of 11.7MB (for readability, the graph is capped at 5MB), whereas for
SwissProt and DBLP, the compressor’s memory requirements were so high that
loading failed. The none compressor itself achieves a light compression due to
the fact that opening and closing tags are simply replaced with (sequences of)
pre and post ID values.
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Fig. 10. Compressed string containers, dictionary sizes, and compression factors for various com-
pression configurations (loading failed when using NaiveALM2 on both SwissProt and DBLP
datasets).

The results show that NaiveHuffman1, among all other naive configura-
tions, reaches a fairly good compromise between compression ratios and times.
Thus, in the remainder of the experimental study, NaiveHuffman1 will often
be adopted as a baseline configuration.

These experiments also show that a cost-based search, blending the conflict-
ing needs of small containers (obtained by using small container groups and
ALM), and of small dictionaries (by using large container groups and Huffman)
is quite effective overall. We see that the cost-based compression factor is close
to the best CF recorded (shown in bold in Figure 10) and quite robust, whereas
naive strategies, attractive on some documents (e.g., NaiveALM2) are plainly
unfeasible on other documents. Good trade-offs are harder to find when multi-
plying the available compression algorithms, thus the interest of a cost-based
search method.

5.2.2 Compression Factor Compared with Other XML Compressors. We
now measure the XQueC compression factor (CF) and compare it with that
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Fig. 11. XQueC CF compared with its competitors.

of competitor systems (within the limitations discussed). We have divided
the experiments into two parts, depending on the compared competitors CFs.
Figure 11 (top) shows the first comparison, that is, XQueC CF against those of
XQZip (as reported in Cheng and Ng [2004]), those of XMill (which we computed
ourselves) and those of XGrind (also as reported in Cheng and Ng [2004]). We
report the obtained results for the NaiveHuffman1, NaiveALM1, and cost-based
configurations; we also report the cost-based estimates computed by the cost
model for the cost-based configurations. It can be noticed that the cost-based
configurations always overcome the naive ones, and that the estimate obtained
via the cost model is acceptably sharp. Although XQueC CF is slightly inferior
to that of XQZip and XGrind, the small difference is balanced with XQueC’s
greater query capabilities.

Secondly, we show the XQueC CFs against those of XPRESS, XMill, and
XGrind. We used the same datasets as in Min et al. [2003] and compared
them with the compression factors reported in that paper. Figure 11 (bottom)
shows that XQueC CFs are rather comparable to those of XPRESS and slightly
worse than XGrind. We recall that these datasets have all been obtained, as in
Min et al. [2003], by multiplying the original data sources several times; how-
ever, this operation does not give any advantage to our compression techniques
whose inherent properties do not allow them to recognize the presence of an
entire repeated document.
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Fig. 12. Evaluation times for XMark queries (top); actual numbers for XQueC ‘none’ and for Galax
(bottom).

5.3 Query Execution Times

In this section, we assess XQueC query evaluation performance.

5.3.1 Query Performance. We study the scaleup of the XQueC query engine
with various document sizes and the impact of cost-based compression config-
urations on query execution times. Notice that we could not compare to other
XML queryable compressors (as explained earlier), whereas we could report
comparative execution times for an XQuery compression-unaware implemen-
tation[Galax 2006].

We start by showing experiments on XQueC query performance. In Figure 12
(left), we show the results obtained running XMark query QX1 on XMark doc-
uments, using three configurations: NaiveHuffman1, as a baseline, the cost-
based one, and the one using no compression. We notice that the cost-based
configuration leads to an average improvement of 55.2% with respect to Naive-
Huffman1. In addition, query time scales linearly with the document size for
query QX1. Measures with other XMark queries showed the same trend. We
report in a separate figure (Figure 12, right) the results of QX8 and QX14 for
the cost-based and none configurations, whereas the NaiveHuffman1 is omitted
to avoid clutter. QX14 is a selection query with a regular-expression predicate,
whereas QX8 is a more complex nested join query. For such representative
queries of the XMark benchmark, we also obtained a linear scaleup, thus con-
firming XQueC scalability.

For convenience, the table of Figure 12 reports the XQueC execution times
under none configuration for queries QX1, QX8, and QX14, and the Galax [2006]
times for the same queries. Although the two XQuery engines cannot be abso-
lutely compared due to many differences in the implementations, we just want
to note that the performance of our system stays competitive when compression
is not employed. Comparable results, obtained with the queries QD1, QD2, QD3
described next, are omitted for space reasons.
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Fig. 13. Evaluation times for reconstruction queries.

5.3.2 Decompression Time. In this section, we examine the impact of data
decompression on the effort required to construct complex query results. In-
deed, reconstructing the query results for compressed data is more time-
consuming than for the uncompressed case. A first experiment is aimed at
examining the impact of the naive and cost-based compression configurations
on the execution time of three ad-hoc selective XQuery queries with descen-
dant axis. These queries, illustrated in Table III, are representative of var-
ious cases of reconstruction. In particular, QD1 returns about 1/10th of the
input document, while QD2 is more selective, and QD3 returns deep XML
fragments with complex structure. Figure 13 shows the results obtained by
running the queries against different XMark documents. We compare the con-
figuration obtained by the cost-based search with the baseline NaiveHuff-
man1 and none configurations. The plots in Figure 13 show that XQueC
total decompression time grows linearly with the document size and em-
phasize the advantages of cost-based search over naive and none configura-
tions.

Finally, Figure 14 (top) reports the time needed to read and decompress
containers from two datasets having comparable size but different structure:
XMark17 and Shakespeare. We consider two different configurations: Naive-
Huffman1 and NaiveALM1. The figure shows that, due to a slightly better
compression ratio, the time to read data from disk is smaller for the Naive-
Huffman1 configuration. At the same time, character-based Huffman decom-
pression is quite slow when compared with ALM symbol-based decompression.
Therefore, the overall time is minimized by using ALM. This confirms the utility
of properly modeling the costs of the possibly different compression configura-
tions with two algorithms such as ALM and Huffman. Indeed, ALM turns out
to be used by our heuristics in most of the cases; presumably, Huffman might
be preferred if compression time was also taken into account. Secondly, decom-
pression time is more important on the XMark document when compared to the
Shakespeare one. This can be explained by the fact that Shakespeare tends to
have relatively short strings (lines exhibiting bounded length) as opposed to
the longer strings present in XMark. Figure 14 (bottom) shows that the same
trend is obtained with larger documents: Nasa, SwissProt, DBLP, XMark55,
XMark83, and XMark111.
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Fig. 14. Time for reading and decompressing containers.

5.4 Lessons Learned

Our experiments have studied several aspects of the XQueC system. First, we
have assessed the utility of the proposed heuristics at finding suitable solutions
when compared with the naive strategies. Not only is a cost-based solution less
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expensive, but it is also faster than the naive ones. Next we have examined
the compression and querying capabilities of our system, establishing the util-
ity of cost-based configurations. By means of selected naive configurations that
we chose as baselines, we were able to pinpoint the advantages of using our
cost model. In particular, the compression factor obtained with the cost-based
configurations is, within the majority of the datasets, the best one recorded
with a naive configuration, thus confirming that the cost-based search is ef-
fective. In contrast, picking a naive configuration at random and using it for
compressing the datasets may sometimes be unfeasible. In the worst case, we
would be forced to exhaustively compute the compression factors for an arbi-
trary number of naive configurations: such a number becomes higher as the
number of compression algorithms increases. Third, we have demonstrated the
scalability of the query engine using the XMark benchmark. We have measured
the evaluation times of a significant set of XMark queries and showed the re-
construction times for increasingly selective XQuery queries. The results thus
obtained demonstrate that the combination of proper compression strategies
with a vertically fragmented storage model and efficient operators can prove
successful. Moreover, the cost-based configurations performs better for queries
than the naive ones, thus highlighting the importance of a cost-based search.
By means of a no-compression version of XQueC, we were also able to compare
with a compression-unaware XQuery implementation and show that we are
competitive. Finally, we have verified that, during query processing, the time
spent for reading and decompressing containers can vary depending on the
algorithm and the datasets, thus leading to blend these factors in a suitable
cost computation.

6. CONCLUSIONS

The XQueC approach is to seamlessly bring compression into XML databases.
In light of this, XQueC is the first XML compression and querying system sup-
porting complex XQuery queries over compressed data. XQueC uses a persis-
tent store and produces an actual disk-resident image, thus it is able to han-
dle very large datasets and expressive queries. Moreover, a cost-based search
helps identify the compression partitions and their corresponding algorithms.
We have shown that XQueC achieves a reasonable reduction of document stor-
age costs because of its ability to efficiently process queries in the compressed
domain.
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