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Abstract. Query processing performance in XML databases can be
greatly enhanced by the usage of materialized views whose content has
been stored in the database. This requires a method for identifying query
subexpressions matching the views, a process known as view-based query
rewriting. This process is quite complex for relational databases, and all
the more daunting on XML databases.

Current XML materialized view proposals are based on tree patterns,
since query navigation is conceptually close to such patterns. However,
the existing algorithms for extracting tree patterns from XQuery do not
detect patterns across nested query blocks. Thus, complex, useful tree
pattern views may be missed by the rewriting algorithm. We present
a novel tree pattern extraction algorithm from XQuery queries, able to
identify larger patterns than previous methods. Our algorithm has been
implemented in an XML database prototype [5].

1 Introduction

The XQuery language [23] is currently gaining adoption as the standard query
language for XML. One performance-enhancing technique in XQuery processing
is the usage of materialized views. The idea is to pre-compute and store in
the database the result of some queries (commonly called view definitions), and
when a user query arrives, to identify which parts of the query match one of
the pre-computed views. The larger parts of the query one can match with a
view, the more efficient query processing will be, since a bigger part of the query
computation can be obtained directly from the materialized view.

Identifying useful views for a query requires reasoning about containment
(e.g., is all the data in view v contained in the result of query q ?) and equiv-
alence (e.g., is the join of views v1 and v2 equivalent to the query q ?). XML
query ontainment and equivalence are well understood when views and queries
are represented as tree patterns, containing tuples of elements satisfying specific
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structural relationships [18, 19]. Moreover, popular XML indexing and fragmen-
tation strategies also materialize tree patterns [10, 11, 13, 14]. Therefore, tree
patterns are an interesting model for XML materialized views [3, 5, 6, 11, 12].

Our work is placed in the context of XQuery processing based on a persistent
store. We make some simple assumptions on this context, briefly presented next.

Most persistent XML stores assign some persistent identifiers to XML ele-
ments. Such identifiers are often structural, that is, by comparing the identifiers
id1 and id2 of two elements e1 and e2, one can decide whether some structural
relationship exists between e1 and e2: for instance, whether e1 is a child, parent,
or sibling of e2. The interest of structural identifiers is that establishing such
relationships directly is much more efficient than navigating from e1 to e2 in
the database to verify it. Numerous structural ID proposals have been made so
far, see e.g. [2, 20]. We assume persistent IDs are available in the store. The IDs
may, but do not need to, have structural properties.

Our second assumption is that a materialized view may store: (i) node
IDs [10, 12, 14], (ii) node values (i.e., the text nodes directly under an element, or
the value of an attribute) [10], and/or (iii) node content, that is, the full subtree
rooted at an XML element (or a pointer to that subtree) [6]. This assumption
provides for flexible view granularity.

To take advantage of tree pattern-shaped materialized views, one has to un-
derstand which views can be used for a query q. This process can be seen as a
translating q to some query patterns pq1, . . . , pqn, followed by a rewriting of every
query pattern pqi using the view patterns pv1, . . . , pvm. The first step (query-
to-pattern translation) is crucial. Intuitively, the bigger the query patterns, the
bigger the view(s) that can be used to rewrite them, thus the less computations
remain to be applied on top of the views.

The contribution of this paper is a provably correct algorithm identifying
tree patterns in queries expressed in a large XQuery subset. The advantage
of this method over existing ones [6, 9, 21] is that the patterns we identify are
strictly larger than in previous works, and in particular may span over nested
XQuery blocks, which was not the case in previous approaches. We ground our
algorithm on an algebra, since (as we will show) the translation is quite complex
due to XQuery complexity, and straightforward translation methods may loose
the subtle semantic relationships between a pattern and a query.

Materialized views: advantages and drawbacks. A legitimate question is whether
the cost of materializing and maintaining materialized views is justified by the
advantages they provide ? It turns out that in XML persistent store, a tree-based
approach is rarely (if ever !) sufficient to support complex querying. We survey
XML storage and indexing strategies in [15]. Shredding schemes (aiming at
loading XML documents in a set of relational tables) also offer an example of
materialized XML views, recognized as such in [11, 16]. XML view maintenance
in the presence of updates is a direction we are currently working on.

The paper is organized as follows. Section 2 motivates the need for pattern
recognition in XQuery queries. Section 3 sets the formal background for the
translation algorithm presented in Section 4.
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2 Motivating Example

We illustrate the benefits of our tree pattern extraction approach on the sample
XQuery query in Fig. 1, featuring three nested for-where-return blocks. An im-
portant XQuery feature to keep in mind is that when a return clause constructs
new elements, if an expression found in the element constructor evaluates to ∅
(the empty result), an element must still be constructed, albeit with no content
corresponding to that particular expression. For instance, in Fig. 1, if for some
bindings of the variables $x and $y, the expression $x//c yields an empty re-
sult, a res1 element will still be constructed, with no content corresponding to
$x//c (but perhaps with some content produced by the nested for-where-return
expression).

Next to the query, Fig. 1 depicts eleven possible corresponding query tree
patterns. Each pattern is rooted at the � symbol, denoting the document root.
Pattern edges may be labeled / for parent-child relationships, or // for ancestor-
descendent relationships. Pattern nodes may be labeled with node names or with
∗ (any name). When a pattern node carries an ID symbol, the pattern is said to
contain the ID of the XML nodes corresponding to the pattern node; similarly, if
a pattern node is labeled Cont (respectively, V al), the pattern is said to contain
the contents (respectively, the value) of XML nodes corresponding to the pattern
node. If a pattern node is annotated with a V al = c predicate, for some constant
c, then only XML nodes whose value satisfies that predicate (and the structural
constraints on the node) will belong to the pattern.

We still need to explain the meaning of dashed pattern edges. These edges
are optional in the following sense: an XML node matching the upper (par-
ent/ancestor) node of a dashed edge may lack XML descendents matching the
lower (child/descendent) node, yet that node may still belong to the pattern (if
the edge was not optional, this would not be the case). If the lower node of a
dashed edge was annotated with ID, V al or Cont, the pattern will contain some
null (⊥) values to account for the missing children/descendents.

As previously mentioned, patterns play a dual role in our approach: view de-
finitions, and query sub-expressions. Thus, each pattern V1, . . . , V11 is a subex-
pression of the query at left, and (for our explanation) we also assume it is
available as a materialized view. When a pattern is interpreted as a view, we say
it stores various ID, Cont and V al attributes; when it is interpreted as a query
subexpression, we say it needs such attributes.

Let us now compare the ability of different algorithms to recognize the pat-
terns in the query (thus, enable their usage for view-based query rewriting).

Several existing view-based XML query rewriting frameworks [6, 24] concen-
trate on XPath views, storing data for one pattern node only (since XPath
queries have one return node), and lacking optional edges. Similar indexes are
described in [10, 14]. In Fig. 1, the only XPath views are V1-V7, which represent
the largest XPath patterns that one can derive from the query in Fig. 1; they
store Cont for all nodes which must be returned (such as the c, e and h nodes),
and ID for all nodes whose values or content are not needed for the query, but
which must be traversed by the query (such as the a/∗, b, d nodes etc.) In this
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V1
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* ID d ID e Cont

b ID

f ID

g Val=5 h Cont
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d ID e Cont

for $x in doc("in.xml")//a/*, $y in doc("in.xml")//b
return <res1> { $x//c, 
                       for $z in $y//d
                       return <res2> { $y//e,

                                              return <res3>{ $t//h }

           </res1>
                       }
                                 </res2>
                                            }

                                                        </res3>

                                              for $t in $z//f

V10

a

V6

f ID

g Val=5

V9

f ID

g Val=5 h Cont c Cont

                                              where $t[/g/text() = 5]

Fig. 1. Sample XQuery query and corresponding tree patterns/views

case, the only way to answer the query is to perform five joins and a cartesian
product (the latter due to the fact that $x and $y are not connected in any way)
to connect the data from V1-V7. This approach has some disadvantages. First, it
needs an important amount of computations, and second, it may lead to reading
from disk more data than needed (for instance, V7 contains all h elements, while
the query only needs those h elements under //b//d//f).

The algorithms of [9, 21] extract patterns storing information from several
nodes, and having optional edges. However, these patterns are not allowed to
span across nested for-where-return expressions. In Fig. 1, this approach would
extract the patterns V2, V10, V8 and V9, thus the query can be rewritten by joining
the corresponding views. This still requires three joins, and may lead to read data
from many elements not useful to the query.

Our algorithm extracts from the query in Fig. 1 only two patterns: V10 and
V11. Based on these, we rewrite the query by a single join (more exactly, a
cartesian product) of the corresponding V10 and V11 views, likely to be much
less expensive than the other approaches.

Is a formal model required to describe pattern extraction ? The answer is
yes, because one needs to model precisely (i) query semantics, typically using an
algebra [7, 17, 22] and (ii) view semantics; in [4] we provided the full algebraic
semantic of patterns such as those in Fig. 1. A formal model is needed, to ensure
the patterns have exactly the same meaning as query subexpressions, or, when
this is not the case, to compute compensating actions on the views. For instance,
consider V11 in Fig. 1. Here, the d and the e nodes are optional descendents of
the b nodes, and so they should be, according to the query. However, due to
the query nesting, no e element should appear in the result, if its b ancestor
does not have d descendents. This d → e dependency is not expressed by V11,
and is not expressible by any tree pattern, because such patterns only account
for ancestor-descendent relationships. Thus, V11 is the best possible tree pattern
view for the part of the query related to variable $y, yet it is not exactly what we
need. An (inexpensive) selection on V11, on the condition (d.ID �= ⊥)∨ (d.ID =
⊥ ∧ e.Cont = ⊥), needs to be applied to adapt the view to the query.
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Fig. 2. Sample XML document and some tuples from its canonical relation

For simplicity, in this section, no nesting or grouping has been considered,
neither in the patterns in Fig. 1, nor in the query rewriting strategies. However,
given that XQuery does construct complex grouped results (e.g., all c descen-
dents of the same $x must be output together in Fig. 1), pattern models consid-
ered in [4, 21], as well as our translation method, do take nesting into account.

3 Data Model, Algebra, and Query Language

3.1 Data Model

Let A be an infinite alphabet and L, I be two disjoint subsets of A. A special A
constant ε denotes the empty string. We view an XML document as an unranked
labeled ordered tree. Any node has a tag, corresponding to the element or at-
tribute name, and may have a value. Attribute and element names range over L,
while values range over A. The value of a node n belongs to A and is obtained
by concatenating the text content of all children of n in document order; the
result may be ε if the node does not have text children. The content of a node
n is an A value, obtained by serializing the labels and values of all nodes from
the tree rooted in n, in a top-down, left-to-right traversal. Nodes have unique
identities. Let n1, n2 be two XML nodes. We denote the fact that n1 is n2’s
parent as n1 ≺ n2, and the fact that n1 is an ancestor of n2 as n1≺≺n2. We
extend this notation to element IDs; i1 ≺ i2 (resp. i1≺≺i2) iff i1 identifies n1, i2
identifies n2 and n1 ≺ n2 (resp. n1≺≺n2).

We assume available an ID scheme I, that is, an injective function assigning
to every node a value in I. Figure 2 shows a simple XML document, where nodes
are given structural ORDPATH identifiers [20].

We will rely on a nested relational model [1] as follows. The value of a tuple
attribute is either a value from A, or null (⊥), or a collection (set, list or bag) of
homogeneous tuples. Notice the alternation between the tuple and the collection
constructors. We use lowercase letters for relation names, and uppercase letters
for attribute names, as in r(A1, A2(A21, A22)). Values are designated by low-
ercase letters. For instance, a tuple in r(A1, A2(A21, A22)) may have the value
t(x1, [(x3, ⊥) (x4, x5)]).

The basic ingredient of the algebraic expressions used in our translation
method is a (virtual) relation capturing the data associated to an XML element.
Given a document d, the canonical element relation ed(ID, T, V, C) ⊆ I × L ×
A×A contains, for every element n ∈ d, a 4-tuple consisting of: the ID assigned
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to n by I; n’s tag; n’s value; and n’s content. A canonical attribute relation
can be similarly defined. Without loss of generality, we will only refer to ed. For
example, Figure 2 shows some tuples from the canonical element relation cor-
responding to the sample XML document. For simplicity, from now on, we will
omit the d index and refer to the canonical relation simply as e. Furthermore,
we will use ex, where x is some element name, as a shorthand for σT=x(e).

3.2 Logical Algebra

To every nested relation r, corresponds a Scan operator, also denoted r, returning
the (possibly nested) corresponding tuples. Other standard operators are the
cartesian product ×, the union ∪ and the set difference \ (which do not eliminate
duplicates).

We consider predicates of the form Ai θ c or Ai θ Aj , where c is a constant. θ
ranges over the comparators {=, ≤, ≥, <, >, ≺, ≺≺}, and ≺, ≺≺ only apply to
I values.

Let pred be a predicate over atomic attributes from r, or r and s. Selections
σpred have the usual semantics. A join r��preds is defined as σpred(r × s). For
convenience, we will also use outerjoins ���pred and semijoins �<pred (although
strictly speaking they are redundant to the algebra). Another set of redundant,
yet useful operators, are nested joins, denoted ��n

pred, and nested outerjoins,
denoted ���n

pred, with the following semantics:
r���n

pred s={(t1, {t2 ∈ s | pred(t1, t2)}) | t1 ∈ r}
r��n

pred s={(t1, {t2 ∈ s | pred(t1, t2)} ) | t1 ∈ r, {t2 ∈ s | pred(t1, t2)} �= ∅ }
An interesting class of logical join operators (resp. nested joins, outerjoins,

nested outerjoins, or semijoins) is obtained when the predicate’s comparator is
≺ or ≺≺ , and the operand attributes are identifiers from I. Such operators are
called structural joins. Observe that we only refer to logical structural joins,
independently of any physical implementation algorithm; different algorithms
can be devised [2, 8].

Let A1, A2, . . . , Ak be some atomic r attributes. A projection πA1,A2,...,Ak(r)
by default does not eliminate duplicates. Duplicate-eliminating projections are
singled out by a superscript, as in π0. The group-by operator γA1,A2,...,Ak

, and
unnest uB, where B is a collection attribute, have the usual semantics [1].

We use the map meta-operator to define algebraic operators which ap-
ply inside nested tuples. Let op be a unary operator, r.A1.A2. . . . .Ak−1
a collection attribute, and r.A1.A2. . . . .Ak an atomic attribute. Then,
map(op, r, A1.A2. . . . .Ak) is a unary operator, and:
– If k = 1, map(op, r, A1.A2. . . . .Ak) = op(r).
– If k > 1, for every tuple t ∈ r:

• If for every collection r′ ∈ t.A1, map(op, r′, A2. . . . .Ak)=∅, t is eliminated.
• Otherwise, a tuple t′ is returned, obtained from t by replacing every

collection r′ ∈ r.A1 with map(op, r′, A2. . . . .Ak).
For instance, let r(A1(A11, A12), A2) be a nested relation. Then,

map(σ=5, r, A1.A11) only returns those r tuples t for which some value in
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t.A1.A11 is 5 (existential semantics), and reduces these tuples accordingly. Map
applies similarly to π, γ and u. By a slight abuse of notation, we will refer to
map(op, r, A1.A2. . . . .Ak) as opA1.A2.....Ak

(r). For instance, the sample selection
above will be denoted σA1.A11=5(r).

Binary operators are similarly extended, via map, to nested tuples (details
omitted).

The xmltempl operator wraps an input tuple into a single piece of XML text,
by gluing together (some of) its attributes, and possibly adding tags, as specified
by the tagging template templ. For every tuple t, whose data has already been
grouped and structured, xmltempl thus outputs an A value which is the content
of the newly created element. While this is slightly different from new node
construction (as xmltempl does not create a new node identity), we use it here
for simplicity and without loss of generality. Element construction operators
closer to XQuery semantics [17, 22] could also be used.

3.3 Query Language

We consider a subset of XQuery, denoted Q, obtained as follows.
(1) XPath{/,//,∗,[ ]} ⊂ Q, that is, any core XPath [18] query over some doc-

ument d is in Q. We allow in such expressions the usage of the function text(),
which on our data model returns the value of the node it is applied on. This rep-
resents a subset of XPath’s absolute path expressions, whose navigation starts
from the document root. Examples include /a/b or //c[//d/text() = 5]/e. Nav-
igation branches enclosed in [ ] may include complex paths and comparisons
between a node and a constant c ∈ A. Predicates connecting two nodes are not
allowed; they may be expressed in XQuery for-where syntax (see below). (2) Let
$x be a variable bound in the query context [23] to a list of XML nodes, and p
be a core XPath expression. Then, $x p belongs to Q, and represents the path
expression p applied with $x’s bindings list as initial context list. For instance,
$x/a[c] returns the a children of $x bindings having a c child, while $x//b returns
the b descendents of $x bindings. This class captures relative XPath expressions
in the case where the context list is obtained from some variable bindings. We
denote the set of expressions (1) and (2) above as P , the set of path expressions.
(3) For any two expressions e1 and e2 ∈ Q, their concatenation, denoted e1, e2,
also belongs to Q. (4) If t ∈ L and exp ∈ Q, element constructors of the form
〈t〉{exp}〈/t〉 belong to Q. (5) All expressions of the following form belong to Q:

for $x1 in p1, $x2 in p2, . . . , $xk in pk

xq where pk+1 θ1 pk+2 and . . . and pm−1 θl pm

return q(x1, x2, . . . , xk)

where p1, p2, . . . , pk, pk+1, . . . , pm ∈ P , any pi starts either from the root of some
document d, or from a variable xl introduced in the query before pi, θ1, . . . , θl are
some comparators, and q(x1, . . . , xk) ∈ Q. Note that the return clause of a query
may contain several other for-where-return queries, nested and/or concatenated
and/or grouped inside constructed elements. The query in Figure 1 illustrates
our supported fragment.
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4 Pattern Extraction Algorithms

Our algorithm proceeds in two steps. First, Q queries are translated into ex-
pressions in the algebra previously described; Sections 4.1 and 4.2 explain this
translation. Second, algebraic equivalence and decomposition rules are applied
to identify, in the resulting expressions, subexpressions corresponding to tree
patterns. The algebraic rules are quite straightforward. The ability to recognize
pattern subexpressions is due to the formal algebraic pattern semantics provided
in a previous work [4]. Section 4.3 illustrates it on our running example.

Queries are translated to algebraic expressions producing one A attribute,
corresponding to the serialized query result. We describe query translation as a
translation function alg(q) for every q ∈ Q. We will also use an auxiliary function
full; intuitively, full returns “larger” algebraic expressions, out of which alg is
easily computed.

4.1 Algebraic Translation of Path Queries

For any q ∈ P , let ret(q) denote the return node of q. Let d be a document, and
a an element name. Then:

full(d//∗)def= e, and alg(d//∗)def=πC(e)

full(d//a)def=(ea), and alg(d//a)def=πC(ea)

Translating d/∗ and d/a requires care to separate just the root element from e:

full(d/∗)def= e1 \ πe3(e2 ��e2.ID≺e3.ID e3), and alg(d/∗)def=πC(full(d/∗))

where e1, e2 and e3 are three occurences of the e relation, e2.ID (respectively,
e3.ID) is the ID attribute in e2 (respectively e3), and the projection πe3 retains
only the attributes of e3. The set difference computes the e tuple corresponding
to the element that does not have a parent in e (thus, the root element). Similarly,

full(d/a)def= ea \ πe3(e2 �<e2.ID≺e3.ID e3), and alg(d/a)def=πC(full(d/a))

In general, for any P query q:

– If q ends in text(), then alg(q) = πVlast
(π0(full(q))), where Vlast is the V

attribute from the ed relation corresponding to ret(q). The inner projection
π0 eliminates possible duplicate nodes, in accordance with XPath seman-
tics [23]. The outer projection ensures only the text value is retained.

– If q does not end in text(), then alg(q) = πClast
(π0(full(q))), where Clast is

the C attribute from the ed relation corresponding to ret(q).

Note that the resulting algebraic expressions return node value or con-
tent, while in general XPath queries may return nodes. Alternatively, node
identifiers can be returned by setting, for node-selecting XPath queries,
alg(q)def=πIDlast

(π0(full(q))), where IDlast is the ID attribute from the ed rela-
tion corresponding to ret(q). Since XPath results frequently need to be returned
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in a serialized form, e.g., to be shown to a user, or sent in a Web service, we
consider the C attribute is really returned, thus use πClast

in the translation.
We now focus on defining the full algebraic function for path queries, keeping

in mind how alg derives from full for such queries. For any query q ∈ P , we have:

full(q//a)def= full(q)��eq .ID ≺≺ ea.IDea

where eq.ID is the ID attribute in full(q) corresponding to ret(q), while ea.ID
is the ID from the ea relation at right in the above formula. When // is replaced
with /, the translation involves ≺ instead of ≺≺ . We also have:

full(q[text() = c])def=σV =c(full(q))

If q1 ∈ P and q2 ∈ XPath{/,//,∗,[ ]} is a relative path expression starting with
a child navigation step, we have:

full(q1[q2])
def= full(q1) �<e1.ID ≺ e2.ID full(//q2)

where e1.ID is the ID corresponding to ret(q1), //q2 is an absolute path expres-
sion obtained by adding a descendent navigation step, starting from the root, in
front of q2, and e2.ID corresponds to the first node of q2. Here and from now
on, we consider all relative path expressions start with a child step. If the first
step is to a descendent, ≺ should be replaced with ≺≺ in the translation.

Let $x be a variable bound to the result of query q$x, and q be a relative path
expression starting with a child navigation step. Then:

full($x q)def= full(q$x) ��e1.ID ≺ e2.ID (full(q))

where e1.ID is the ID corresponding to ret(q$x), and e2.ID is the ID corre-
sponding to the top node in full(q).

Example. Consider the path expressions p$x =//a/∗, p$y = //b, p$z = $y//d
and p$t = $z//f (see Fig. 1). Applying the above rules, we obtain:

full(p$x) = ea ��ea.ID≺e.ID e, full(p$y) = eb

full(p$z) = full(p$y)��e$y .ID≺≺ed.ID ed,

full(p$t) = full(p$z)��e$z .ID≺≺ef .ID ef

Now consider the path expressions p1 = $x//c, p2 = $y//e, p3 = $t[g/text() =
5] and p4 = $t//h, also extracted from the query in Fig. 1. We have:

full(p1) = full(p$x)��e$x.ID≺≺ec.ID ec,

full(p2) = full(p$y)��e$y .ID≺≺ee.ID ee,

full(p3) = full(p$t)�<e$t.ID≺eg.ID σV =5(eg),
full(p4) = full(p$t)��e$t.ID≺≺eh.ID eh

In the above, e$y, e$z and e$t are the e relations corresponding to the return
nodes in the translations of p$x, p$y and p$t. The alg expressions are easily
obtained from full.
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for $x1 in p1, $x2 in $x1/p2,. . . , $xk in $x1/pk

xq1 where $x1/pk+1 θ $x1/pk+2 and . . . $x1/pm−1 θ $x1/pm

return $x1/pm+1, $x1/pm+2, . . . , $x1/pn

full(xq1)
def=

σAk+1 θ Ak+2,...,Am−1 θ Am (full(p1)��ID1≺ID2full(//p2) . . . ��ID1≺IDkfull(//pk)
��n

ID1≺IDk+1
full(//pk+1)��n

ID1≺IDk+2
. . . ��n

ID1≺IDm
full(//pm)

��n
ID1≺IDm+1

full(//pm+1)��n
ID1≺IDm+2

. . . ��n
ID1≺IDn

full(//pn) )

alg(xq1)
def=πAm+1,Am+2,...,An(full(xq1))

Fig. 3. Generic XQuery query with simple return expression

4.2 Algebraic Translation of More Complex Queries

This section describes the translation of Q queries other than path expressions.

Concatenation. We have alg(q1, q2)
def= alg(q1) ‖ alg(q2) and full(q1, q2)

def=
full(q1) ‖ full(q2), where , denotes query concatenation, and ‖ concatenation
of tuple lists.

Element constructors. Element constructor queries are translated by the fol-
lowing rule:

alg(〈t〉{q}〈/t〉)def=xml(n(alg(q)),〈t〉A1〈/t〉)
where the nest operator n packs all tuples from alg(q) in a single tuple with a
single collection attribute named A1. The second argument of the xml operator
is a tagging template, indicating that values of the attribute named A1 have to
be packed in t elements. Furthermore, full(〈t〉{q}〈/t〉) = n(full(q)).

For-where-return expressions. The translation rules for such query expres-
sions are outlined in Fig. 3 and Fig. 4. For simplicity, these rules use a single θ
symbol for some arbitrary, potentially different, comparison operators.

(1) Simple return clauses. In the generic query xq1 (Fig. 3), path expres-
sion p1 is absolute, while all others are relative and start from a query variable
$x1. Attribute ID1 corresponds to ret(p1). The query returns some variables. At-
tribute IDi is the attribute in full(//pi) corresponding to the top node of pi, for
every path expression pi in p2, . . . , pm. Attributes Ak+1, Ak+2, . . . , Am are those
returned by the algebraic translations of the relative path expressions of the where
clause, more precisely, the attributes in alg(//pk+1), alg(//pk+2), . . . , alg(//pm).
Each Ak+i is V or C, depending on pk+i. Note that once // is added in front of
such a relative path expression, //pk+i is an absolute expression, thus translat-
able to the algebra. The child navigation step connecting $x1 and an expression
pk+i is captured by the join ��n

ID1≺IDi
. As an effect of this nested structural join,

Ai may be nested in σ’s input, therefore, the selection has existential semantics
(recall the map-based extension of σ to nested attributes from Section 3.2).

The xq1 rule easily extends to queries where the for clause features several un-
related variables, the where clause contains predicates over one or two variables,
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for $x in pf where pred(pw($x))
xq2 return fwr($x)

full(xq2)
def=σpred(full(pf )��n

ID1≺ID2 full(//pw)��ID1=ID1full(fwr(pf ))
alg(xq2)

def=πfwr(full(xq2)), respectively xmltempl(fwr)(πfwr(full(xq2)))
for $x in pf where pred(pw($x))

xq3 return 〈a〉 { fwr($x) } 〈/a〉

full(xq3)
def=σpred(full(pf ) ��n

ID1≺ID2 full(//pw) ���n
ID1=ID1 full(fwr(pf ))

alg(xq3)
def=xml〈a〉·〈/a〉(πfwr(full(xq3))), resp. xml〈a〉templ(fwr)〈/a〉(πfwr(full(xq3)))

Fig. 4. Generic XQuery queries with complex return clauses

and the return clause returns only variables. Each subquery corresponding to
an independent variable in the for clause is then translated separatedly, and the
resulting expressions are joined. From now on, without loss of generality, we will
use one variable in each for clause; adding more variables depending on the first
one leads to structural join subexpression in the style of full(xq1), while adding
more unrelated variables leads to value joins as sketched above.

(2) Nested for-where-return queries. Such queries are illustrated by xq2
and xq3 in Fig. 4. Here, pf is an absolute path expression, pw a relative one,
pred a simple comparison predicate, and fwr a (potentially complex, nested)
for-where-return query.
(2.1) The outer query does not construct new elements. This is the
case for xq2 in Fig. 4. In full(xq2), ID1 corresponds to ret(pf ) and ID2 to
the top node in pw. We add // in front of pw to make it absolute. The query
fwr(pf ) is obtained from fwr by adding a new “for” variable $x′ bound to pf ,
and replacing $x by $x′. Thus, fwr(pf ) is decorrelated from (it does no longer
depend on) $x; the dependency is replaced by the join on ID1. In alg(xq2), the
projection πfwr retains only the attributes from alg(fwr(pf )). Two alternatives
exist for alg(xq2), as shown in Fig. 4:

– If fwr does not construct new elements, the query (and its translation)
recall xq1.

– If fwr constructs new elements, the top operator in alg(fwr(pf )) is
xmltempl(fwr), for some given tagging template templ(fwr). In this case,
full(xq2) is built using exactly the same template. Note how the XML con-
structor “sifts up” as the top algebraic operator in the translation, in this
case, from alg(fwr) to alg(xq2). All algebraic translations have at most one
xml operator.

(2.2) The outer query constructs new elements. Query xq3 in Fig. 4
encloses the results of some correlated query fwr($x) in 〈a〉 elements. Therefore,
in full(xq3) an outerjoin is used to ensure that xq3 produces some output even
for $x bindings for which fwr($x) has an empty result. The outerjoin is nested,
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because all the results of fwr($x) generated for a given $x must be included in
a single 〈a〉 element. For alg(xq3), there are again two cases. If fwr does not
construct new elements, and since xq3 does, the tagging template is a simple
〈a〉 element. If fwr also constructs some elements, the xml operator in alg(xq3)
builds a bigger tagging template, by enclosing templ(fwr) in an 〈a〉 element.

The translation of more complex Q queries can be derived from the above
rules.

Example. Let us translate the query q in Fig. 1 (also recall the path expressions
at the end of Section 4.1, and their translations). We can write q as:

for $x in p$x, $y in p$y

return 〈res1〉{ p1,
〈res2〉{ p2, for $z in p$z where p3 return 〈res3〉{ p4 }〈/res3〉〈/res2〉 }

〈/res1〉

which can be furthermore abstracted into:
for $x in p$x, $y in p$y return 〈res1〉{ p1, 〈res2〉{ p2, q2 }〈/res2〉 } 〈/res1〉

where query q2 is: for $z in p$z where p3 return 〈res3〉{ p4 }〈/res3〉. Let us first
translate q2. Applying the xq3 translation rule from Fig. 4, we obtain:
full(q2) = full(p$z)��n

e$z .ID ≺ e3.ID full(//p3)���n
e$z .ID=e$z .ID full(p$z//p4)

Applying the xq3 rule again, twice, for q leads to:
(∗) full(q) = full(p$x) × full(p$y) ���n

e$x.ID=e$x.ID full(p1)
���n

e$y.ID=e$y .ID full(p2)���n
e$y.ID=e$y .ID full(q2)

Finalizing q’s translation, we have alg(q) = xmltempl(full(q)), where xmltempl is:
〈res1〉e1.C〈res2〉e2.C〈 res3〉e3.C〈/res3〉〈/res2〉〈/res1〉

where e1.C, e2.C, e3.C are the C attributes corresponding to the path expressions
p1, p2 and p3 (those producing returned nodes). Observe that no data restruc-
turing is needed in xmltempl, since the nested joins in full(q) have grouped the
data as the query required.

4.3 Isolating Patterns from Algebraic Expressions

Algebraic equivalence rules applied on (∗) bring full(q) to the equivalent form:
σ(e$z .ID �=⊥)∨(e$z.ID=⊥∧e2=⊥)( full(p$x) ���n

e$x.ID≺≺ec.ID ec ×
full(p$y) ���n

e$y .ID≺≺ee.ID ee ���n
e$y .ID≺≺ed.ID

(ed ���n
ed.ID≺≺ef .ID(ef��n

ef .ID≺≺eg.ID σV =5(eg)���n
ed.ID≺≺eh.IDeh)))

This rewriting has grouped together full(p$x) with the other subexpressions
structurally related to $x (the join product before the ×). It has also grouped
full(p$y) and the subexpressions structurally related to $y (the last two lines).
It turns out that these correspond exactly to the algebraic semantics of patterns
V10 and V11 in Figure 1. Thus:

alg(q) = xmltempl(σ(e$z .ID �=⊥)∨(e$z .ID=⊥∧e2=⊥)(V10 × V11))
The σ is a by-product of transforming the equality joins in (∗) in structural
joins.
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