
Exchanging Intensional XML Data

TOVA MILO
INRIA and Tel-Aviv University
SERGE ABITEBOUL
INRIA
BERND AMANN
Cedric-CNAM and INRIA-Futurs
and
OMAR BENJELLOUN and FRED DANG NGOC
INRIA

XML is becoming the universal format for data exchange between applications. Recently, the emer-
gence of Web services as standard means of publishing and accessing data on the Web introduced
a new class of XML documents, which we call intensional documents. These are XML documents
where some of the data is given explicitly while other parts are defined only intensionally by means
of embedded calls to Web services.

When such documents are exchanged between applications, one has the choice of whether or
not to materialize the intensional data (i.e., to invoke the embedded calls) before the document
is sent. This choice may be influenced by various parameters, such as performance and security
considerations. This article addresses the problem of guiding this materialization process.

We argue that—like for regular XML data—schemas (à la DTD and XML Schema) can be used
to control the exchange of intensional data and, in particular, to determine which data should be
materialized before sending a document, and which should not. We formalize the problem and
provide algorithms to solve it. We also present an implementation that complies with real-life
standards for XML data, schemas, and Web services, and is used in the Active XML system. We
illustrate the usefulness of this approach through a real-life application for peer-to-peer news
exchange.

Categories and Subject Descriptors: H.2.5 [Database Management]: Heterogeneous Databases

General Terms: Algorithms, Languages, Verification

Additional Key Words and Phrases: Data exchange, intensional information, typing, Web services,
XML

This work was partially supported by EU IST project DBGlobe (IST 2001-32645).
This work was done while T. Milo, O. Benjelloun, and F. D. Ngoc were at INRIA-Futurs.
Authors’ current addresses: T. Milo, School of Computer Science, Tel Aviv University, Ramat Aviv,
Tel Aviv 69978, Israel; email: milo@cs.tau.ac.il; S. Abiteboul and B. Amann, INRIA-Futurs, Parc
Club Orsay-University, 4 Rue Jean Monod, 91893 Orsay Cedex, France; email: {serge,abiteboul,
bernd.amann}@inria.fr; O. Benjelloun, Gates Hall 4A, Room 433, Stanford University, Stanford,
CA 94305-9040; email: benjelloun@db.stanford.edu; F. D. Ngoc, France Telecom R&D and LRI,
38–40, rue du Général Leclerc, 92794 Issy-Les Moulineaux, France; email: Frederic.dangngoc@
rd.francetelecom.com.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists requires prior specific permission and/or a fee.
C© 2005 ACM 0362-5915/05/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005, Pages 1–40.

2 • T. Milo et al.

1. INTRODUCTION

XML, a self-describing semistructured data model, is becoming the standard
format for data exchange between applications. Recently, the use of XML doc-
uments where some parts of the data are given explicitly, while others consist
of programs that generate data, started gaining popularity. We refer to such
documents as intensional documents, since some of their data are defined by
programs. We term materialization the process of evaluating some of the pro-
grams included in an intensional XML document and replacing them by their
results. The goal of this article is to study the new issues raised by the exchange
of such intensional XML documents between applications, and, in particular,
how to decide which parts of the data should be materialized before the docu-
ment is sent and which should not.

This work was developed in the context of the Active XML system
[Abiteboul et al. 2002, 2003b] (also see the Active XML homepage of Web
site http://www-rocq.inria.fr/verso/Gemo/Projects/axml). The latter is cen-
tered around the notion of Active XML documents, which are XML documents
where parts of the content is explicit XML data whereas other parts are gener-
ated by calls to Web services. In the present article, we are only concerned with
certain aspects of Active XML that are also relevant to many other systems.
Therefore, we use the more general term of intensional documents to denote
documents with such features.

To understand the problem, let us first highlight an essential difference be-
tween the exchange of regular XML data and that of intensional XML data.
In frameworks such as those of Sun1 or PHP,2 intensional data is provided
by programming constructs embedded inside documents. Upon request, all the
code is evaluated and replaced by its result to obtain a regular, fully mate-
rialized HTML or XML document, which is then sent. In other terms, only
extensional data is exchanged. This simple scenario has recently changed due
to the emergence of standards for Web services such as SOAP, WSDL,3 and
UDDI.4 Web services are becoming the standard means to access, describe and
advertise valuable, dynamic, up-to-date sources of information over the Web.
Recent frameworks such as Active XML, but also Macromedia MX5 and Apache
Jelly6 started allowing for the definition of intensional data, by embedding calls
to Web services inside documents.

This new generation of intensional documents have a property that we view
here as crucial: since Web services can essentially be called from everywhere on
the Web, one does not need to materialize all the intensional data before sending
a document. Instead, a more flexible data exchange paradigm is possible, where
the sender sends an intensional document, and gives the receiver the freedom

1See Sun’s Java server pages (JSP) online at http://java.sun.com/products/jsp.
2See the PHP hypertext preprocessor at http://www.php.net.
3See the W3C Web services activity at http://www.w3.org/2002/ws.
4UDDI stands for Universal Description, Discovery, and Integration of Business for the Web. Go
online to http://www.uddi.org.
5Macromedia Coldfusion MX. Go online to http://www.macromedia.com/.
6Jelly: Executable xml. Go online to http://jakarta.apache.org/commons/sandbox/jelly.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

Exchanging Intensional XML Data • 3

to materialize the data if and when needed. In general, one can use a hybrid
approach, where some data is materialized by the sender before the document
is sent, and some by the receiver.

As a simple example, consider an intensional document for the Web page
of a local newspaper. It may contain some extensional XML data, such as its
name, address, and some general information about the newspaper, and some
intensional fragments, for example, one for the current temperature in the
city, obtained from a weather forecast Web service, and a list of current art
exhibits, obtained, say, from the TimeOut local guide. In the traditional setting,
upon request, all calls would be activated, and the resulting fully materialized
document would be sent to the client. We allow for more flexible scenarios, where
the newspaper reader could also receive a (smaller) intensional document, or
one where some of the data is materialized (e.g., the art exhibits) and some is
left intensional (e.g., the temperature). A benefit that can be seen immediately
is that the user is now able to get the weather forecast whenever she pleases,
just by activating the corresponding service call, without having to reload the
whole newspaper document.

Before getting to the description of the technical solution we propose, let us
first see some of the considerations that may guide the choice of whether or not
to materialize some intensional data:

—Performance. The decision of whether to execute calls before or after the data
transfer may be influenced by the current system load or the cost of commu-
nication. For instance, if the sender’s system is overloaded or communication
is expensive, the sender may prefer to send smaller files and delegate as
much materialization of the data as possible to the receiver. Otherwise, it
may decide to materialize as much data as possible before transmission, in
order to reduce the processing on the receiver’s side.

—Capabilities. Although Web services may in principle be called remotely from
everywhere on the Internet, it may be the case that the particular receiver
of the intensional document cannot perform them, for example, a newspa-
per reader’s browser may not be able to handle the intensional parts of a
document. And even if it does, the user may not have access to a particular
service, for example, because of the lack of access rights. In such cases, it is
compulsory to materialize the corresponding information before sending the
document.

—Security. Even if the receiver is capable of invoking service calls, she may
prefer not to do so for security reasons. Indeed, service calls may have side
effects. Receiving intensional data from an untrusted party and invoking the
calls embedded in it may thus lead to severe security violations. To overcome
this problem, the receiver may decide to refuse documents with calls to ser-
vices that do not belong to some specific list. It is then the responsibility of
a helpful sender to materialize all the data generated by such service calls
before sending the document.

—Functionalities. Last but not least, the choice may be guided by the applica-
tion. In some cases, for example, for a UDDI-like service registry, the origin of
the information is what is truly requested by the receiver, and hence service

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

4 • T. Milo et al.

Fig. 1. Data exchange scenario for intensional documents.

calls should not be materialized. In other cases, one may prefer to hide the
true origin of the information, for example, for confidentiality reasons, or be-
cause it is an asset of the sender, so the data must be materialized. Finally,
calling services might also involve some fees that should be payed by one or
the other party.

Observe that the data returned by a service may itself contain some inten-
sional parts. As a simple example, TimeOut may return a list of 10 exhibits,
along with a service call to get more. Therefore, the decision of materializing
some information or not is inherently a recursive process. For instance, for
clients who cannot handle intensional documents, the newspaper server needs
to recursively materialize all the document before sending it.

How can one guide the materialization of data? For purely extensional data,
schemas (like DTD and XML Schema) are used to specify the desired format
of the exchanged data. Similarly, we use schemas to control the exchange of
intensional data and, in particular, the invocation of service calls. The novelty
here is that schemas also entail information about which parts of the data are
allowed to be intensional and which service calls may appear in the documents,
and where. Before sending information, the sender must check if the data,
in its current structure, matches the schema expected by the receiver. If not,
the sender must perform the required calls for transforming the data into the
desired structure, if this is possible.

A typical such scenario is depicted in Figure 1. The sender and the re-
ceiver, based on their personal policies, have agreed on a specific data exchange
schema. Now, consider some particular data t to be sent (represented by the
grey triangle in the figure). In fact, this document represents a set of equiv-
alent, increasingly materialized, pieces of information—the documents that
may be obtained from t by materializing some of the service calls (q, g , and f).

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

Exchanging Intensional XML Data • 5

Among them, the sender must find at least one document conforming to the
exchange schema (e.g., the dashed one) and send it.

This schema-based approach is particularly relevant in the context of Web
services, since their input parameters and their results must match particular
XML Schemas, which are specified in their WSDL descriptions. The techniques
presented in this article can be used to achieve that.

The contributions of the article are as follows:

(1) We provide a simple but flexible XML-based syntax to embed service calls
in XML documents, and introduce an extension of XML Schema for describ-
ing the required structure of the exchanged data. This consists in adding
new type constructors for service call nodes. In particular, our typing dis-
tinguishes between accepting a concrete type, for example, a temperature
element, and accepting a service call returning some data of this type, for
example, () → temperature.

(2) Given a document t and a data exchange schema, the sender needs to decide
which data has to be materialized. We present algorithms that, based on
schema and data analysis, find an effective sequence of call invocations, if
such a sequence exists (or detect a failure if it does not). The algorithms
provide different levels of guarantee of success for this rewriting process,
ranging from “sure” success to a “possible” one.

(3) At a higher level, in order to check compatibility between applications, the
sender may wish to verify that all the documents generated by its appli-
cation may be sent to the target receiver, which involves comparing two
schemas. We show that this problem can be easily reduced to the previous
one.

(4) We illustrate the flexibility of the proposed paradigm through a real-life
application: peer-to-peer news syndication. We will show that Web services
can be customized by using and enforcing several exchange schemas.

As explained above, our algorithms find an effective sequence of call invoca-
tions, if one exists, and detect failure otherwise. In a more general context, an er-
ror may arise because of type discrepancies between the caller and the receiver.
One may then want to modify the data and convert it to the right structure,
using data translation techniques such as those provided by Cluet et al. [1998]
and Doan et al. [2001]. As a simple example, one may need to convert a temper-
ature from Celsius degrees to Fahrenheit. In our context, this would amount to
plugging (possibly automatically) intermediary external services to perform the
needed data conversions. Existing data conversion algorithms can be adapted
to determine when conversion is needed. Our typing algorithms can be used to
check that the conversions lead to matching types. Data conversion techniques
are complementary and could be added to our framework. But the focus here
is on partially materializing the given data to match the specified schema.

The core technique of this work is based on automata theory. For presentation
reasons, we first detail a simplified version of the main algorithm. We then
describe a more dynamic, optimized one, that is based on the same core idea
and is used in our implementation.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

6 • T. Milo et al.

Although the problems studied in this article are related to standard typing
problems in programming languages [Mitchell 1990], they differ here due to
the regular expressions present in XML schemas. Indeed, the general problem
that will be formalized here was recently shown to be undecidable by Muscholl
et al. [2004]. We will introduce a restriction that is practically founded, and
leads to a tractable solution.

All the ideas presented here have been implemented and tested in the context
of the Active XML system [Abiteboul et al. 2002] (see also the Active XML home-
page of Web site http://www-rocq.inria.fr/verso/Gemo/Projects/axml). This
system provides persistent storage for intensional documents with embedded
calls to Web services, along with active features to automatically trigger these
services and thus enrich/update the intensional documents. Furthermore, it al-
lows developers to declaratively specify Web services that support intensional
documents as input and output parameters. We used the algorithms described
here to implement a module that controls the types of documents being sent to
(and returned by) these Web services. This module is in charge of materializing
the appropriate data fragments to meet the interface requirements.

In the following, we assume that the reader is familiar with XML and its typ-
ing languages (DTD or XML Schema). Although some basic knowledge about
SOAP and WSDL might be helpful to understand the details of the implemen-
tation, it is not necessary.

The article is organized as follows: Section 2 describes a simple data model
and schema specification language and formalizes the general problem. Ad-
ditional features for a richer data model that facilitate the design of real life
applications are also introduced informally. Section 3 focuses on difficulties that
arise in this context, and presents the key restriction that we consider. It also
introduces the notions of “safe” and “possible” rewritings, which are studied in
Section 4 and 5, respectively. The problem of checking compatibility between in-
tensional schemas is considered in Section 6. The implementation is described
in Section 7. Then, we present in Section 8 an application of the algorithms
to Web services customization, in the context of peer-to-peer news syndication.
The last section studies related works and concludes the article.

2. THE MODEL AND THE PROBLEM

To simplify the presentation, we start by formalizing the problem using a simple
data model and a DTD-like schema specification. More precisely, we define the
notion of rewriting, which corresponds to the process of invoking some service
calls in an intensional document, in order to make it conform to a given schema.
Once this is clear, we explain how things can be extended to provide the features
ignored by the first simple model, and in particular we show how richer schemas
are taken into account.

2.1 The Simple Model

We first define documents, then move to schemas, before formalizing the key
notion of rewritings, and stating the results obtained in this setting, which will
be detailed in the following sections.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

Exchanging Intensional XML Data • 7

Fig. 2. An intensional document before/after a call.

2.1.1 Simple Intensional XML Documents. We model intensional XML
documents as ordered labeled trees consisting of two types of nodes: data nodes
and function nodes. The latter correspond to service calls. We assume the exis-
tence of some disjoint domains: N of nodes, L of labels, F of function names,7

and D of data values. In the sequel we use v, u, w to denote nodes, a, b, c to
denote labels, and f , g , q to denote function names.

Definition 2.1. An intensional document d is an expression (T, λ), where
T = (N , E, <) is an ordered tree. N ⊂ N is a finite set of nodes, E ⊂ N × N are
the edges, < associates with each node in N a total order on its children, and
λ : N → L ∪ F ∪ D is a labeling function for the nodes, where only leaf nodes
may be assigned data values from D.

Nodes with a label in L ∪ D are called data nodes while those with a label
in F are called function nodes. The children subtrees of a function node are
the function parameters. When the function is called, these subtrees are passed
to it. The return value then replaces the function node in the document. This
is illustrated in Figure 2, where data nodes are represented by circles, func-
tion nodes are represented by squares, and data values are quoted. Here, the
Get Temp Web service is invoked with the city name as a parameter. It returns a
temp element, which replaces the function node. An example of the actual XML
representation of intensional documents is given in Section 7. Observe that
the parameter subtrees and the return values may themselves be intensional
documents, that is, contain function nodes.

2.1.2 Simple Schemas. We next define simple DTD-like schemas for in-
tensional documents. The specification associates (1) a regular expression with
each element name that describes the structure of the corresponding elements,
and (2) a pair of regular expressions with each function name that describe the
function signature, namely, its input and output types.

Definition 2.2. A document schema s is an expression (L, F, τ), where L ⊂
L and F ⊂ F are finite sets of labels and function names, respectively; τ is a
function that maps each label name l ∈ L to a regular expression over L ∪ F or
to the keyword “data” (for atomic data), and maps each function name f ∈ F
to a pair of such expressions, called the input and output type of f and denoted
by τin(f) and τout(f).

7We assume in this model that function names identify Web service operations. This translates in
the implementation to several parameters (URL, operation name, . . .) that allow one to invoke the
Web services.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

8 • T. Milo et al.

For instance, the following is an example of a schema:

(∗)

data:
τ (newspaper) = title.date.(Get Temp | temp).(TimeOut | exhibit ∗)
τ (title) = data
τ (date) = data
τ (temp) = data
τ (city) = data
τ (exhibit) = title.(Get Date | date)

functions:
τin(Get Temp) = city
τout(Get Temp) = temp
τin(TimeOut) = data
τout(TimeOut) = (exhibit | performance)∗

τin(Get Date) = title
τout(Get Date) = date

We next define the semantics of a schema, that is, the set of its instances.
To do so, if R is a regular expression over L ∪ F , we denote by lang(R) the
regular language defined by R. The expression lang(data) denotes the set of
data values in D.

Definition 2.3. An intensional document t is an instance of a schema s =
(L, F, τ) if for each data node (respectively function node) n ∈ t with label
l ∈ L (respectively l ∈ F), the labels of n’s children form a word in lang(τ (l))
(respectively in lang(τin(l))).

For a function name f ∈ F , a sequence t1, . . . , tn of intensional trees is an
input instance (respectively output instance) of f , if the labels of the roots form
a word in lang(τin(f)) (respectively lang(τout(f)), and all the trees are instances8

of s.

It is easy to see that the document of Figure 2(a) is an instance of the schema
of (∗), but not of a schema with τ ′ identical to τ above, except for

(∗∗) τ ′(newspaper) = title.date.temp.(TimeOut | exhibit ∗).

However, since τout(Get Temp) = temp, the document can always be turned into
an instance of the schema of (∗∗), by invoking the Get Temp service call and
replacing it by its return value. On the other hand, consider a schema with τ ′′

identical to τ , except for

(∗∗∗) τ ′′(newspaper) = title.date.temp.exhibit ∗.

According to its signature, a call to TimeOut may also return performance
elements. Therefore, in general, the document may not become an instance
of the schema of (∗ ∗ ∗). However, it is possible that it becomes one (if

8Like in DTDs, every subtree conforms to the same schema as the whole document.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

Exchanging Intensional XML Data • 9

TimeOut returns a sequence of exhibits). The only way to know is to call the
service.

This type of “on-line” testing is fine if the calls have no side effects or do not
cost money. If they do, we might want to warn the sender, before invoking the
call, that the overall process may not succeed, and see if she wants to proceed
nevertheless.

2.1.3 Rewritings. When the proper invocation of service calls leads for sure
to the desired structure, we say that the rewriting is safe, and when it only pos-
sibly does, that this is a possible rewriting. These notions are formalized next.

Definition 2.4. For a tree t, we say that t
v→ t ′ if t ′ is obtained from t by

selecting a function node v in t with some label f and replacing it by an arbitrary
output instance of f .9 If t

v1→ t1
v2→ t2 · · · vn→ tn we say that t rewrites into tn,

denoted t
∗→ tn. The nodes v1, . . . , vn are called the rewriting sequence. The set

of all trees t ′ s.t. t
∗→ t ′ is denoted ext(t).

Note that in the rewriting process, the replacement of a function node v by
its output instance is independent of any function semantics. In particular,
we may replace two occurrences of the same function by two different output
instances. Stressing somewhat the semantics, this can be interpreted as if the
value returned by the function changes over time. This captures the behavior
of real life Web services, like a temperature or stock exchange service, where
two consecutive calls may return a different result.

Definition 2.5. Let t be a tree and s a schema. We say that t possibly rewrites
into s if ext(t) contains some instance of s. We say that t safely rewrites into s
either if t is already an instance of s, or if there exists some node v in t such
that all trees t ′ where t

v→ t ′ safely rewrite into s.

The fact that t safely rewrites into s means that we can be sure, without
actually making any call, that we can choose a sequence of calls that will turn
t into an instance of s. For instance, the document of Figure 2(a) safely rewrites
into the schema of (∗∗) but only possibly rewrites into that of (∗ ∗ ∗).

Finally, to check compatibility between applications, we may want to check
whether all documents generated by one application (e.g., the sender applica-
tion) can be safely rewritten into the structure required by the second applica-
tion (e.g., the agreed data exchange format).

Definition 2.6. Let s be a schema with some distinguished label r called
the root label. We say that s safely rewrites into another schema s′ if all the
instances t of s with root label r rewrite safely into instances of s′.

For instance, consider the schema of (∗) presented above with newspaper as
the root label. This schema safely rewrites into the schema of (∗∗) but does not
safely rewrite into the one of (∗ ∗ ∗).

9By replacing the node by an output instance we mean that the node v and the subtree rooted at it
are deleted from t, and the forest trees t1, . . . , tn of some output instance of f are plugged at the
place of v (as children of v’s parent).

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

10 • T. Milo et al.

2.1.4 The Results. Going back to the data exchange scenario described in
the introduction, we can now specify our main contributions:

(1) We present an algorithm that tests whether a document t can be safely
rewritten into some schema s and, if so, provides an effective rewriting
sequence, and

(2) When safe rewriting is not possible, we present an algorithm that tests
whether t may be possibly rewritten into s, and finds a possibly successful
rewriting sequence, if one exists.

(3) We also provide an algorithm for testing, given two schemas, whether one
can be safely rewritten into the other.

2.2 A Richer Data Model

In order to make our presentation clear, and to simplify the definition of doc-
ument and schema rewritings, we used a very simple data model and schema
language. We will now present some useful extensions that bring more expres-
sive power, and facilitate the design of real life applications.

2.2.1 Function Patterns. The schemas we have seen so far specify that a
particular function, identified by its name, may appear in the document. But
sometimes, one does not know in advance which functions will be used at a
given place, and yet may want to allow their usage, provided that they con-
form to certain conditions. For instance, we may have several editions of the
newspaper of Figure 2(a), for different cities. A common intensional schema for
such documents should not require the use of a particular Get temp function,
but rather allow for a set of functions, which have a suitable signature: they
should accept as single parameter a city element, and return a temperature el-
ement, as previously defined in τ . The particular weather forecast service that
will be used may depend on the city and be, for instance, retrieved from some
UDDI service registry. One may also want to enforce some security policies, for
example, be allowed to specify that the allowed functions should return only
extensional results.

To specify such sets of functions, we use function patterns. A function pattern
definition consists of a boolean predicate over function names and a function
signature. A function belongs to the pattern if its name satisfies the Boolean
predicate and its signature is the same as the required one. A more liberal defi-
nition would be one that requires that the function signature only be subsumed
by the one specified in the definition, that is, that every instance of the former
be also an instance of the latter. This is possible but is computationally more
heavy, since it entails checking inclusion of the tree language defined by the
two schemas.

In terms of implementation, one can assume that this new Boolean predicate
is implemented as a Web service that takes a function name as input and
returns true or false.

To take this feature into account in our model, we define P to be a domain of
function pattern names. A schema s = (L, F, P, τ) now also contains, in addition
to the elements and functions, a set of function patterns P ⊂ P. τ associate with

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

Exchanging Intensional XML Data • 11

each function pattern p ∈ P a signature and a Boolean predicate over function
names. We can now, for instance, write a schema for our local newspapers as

τ (newspaper) = title.date.(Forecast | temp).(TimeOut | exhibit ∗)
τname(Forecast) = UDDIF ∧ InACL
τin(Forecast) = city
τout(Forecast) = temp

This schema enforces the fact that the function used in the document has the
proper signature and satisfies the Boolean predicates UDDIF and InACL. The
first predicate (UDDIF) is a Web service that checks if the given function (ser-
vice) is registered in some particular UDDI registry. Predicate InACL then
verifies if the caller has the necessary access privileges for executing the given
function (calling the service). More generally, any Web service that allows the
verification of some property of the particular function node in the document
(here, the weather forecast service), possibly with respect to some contextual
information (e.g., the identity of the caller, the system date, etc.) can be used.

2.2.2 Wildcards. Together with function patterns, one may also use wild-
cards in schemas. Their use is already common for data. In XML Schema, the
keyword any expresses the fact that a certain part of a document may con-
tain an arbitrary element, attribute, or even an unconstrained subtree. XML
Schema further allows one to restrict wildcards to (or exclude from them) cer-
tain domains of data, based on their namespace.10 This extends naturally to
our context. We consider the namespace of a function node in an intensional
document to be the namespace of the called Web service.11 Therefore, we can
use wildcards to allow certain document parts to contain arbitrary sub-trees
with arbitrary functions, or restrict them to (respectively exclude from them)
certain classes of functions.

We believe that the combination of wildcards and function patterns provides
a good level of flexibility to describe the structure of documents. For instance,
one may specify that the temperature is obtained from an arbitrary function
that returns a correct temp element, but may take any argument, being data
or function call.

2.2.3 Restricted Service Invocations. Another interesting extension is the
following: we assumed so far that all the functions appearing in a document
may be invoked in a rewriting, in order to match a given schema. This is not
always the case, for the same reasons as mentioned in the Introduction (secu-
rity, cost, access rights, etc.). The logic of rewritings will have to take this into
account, essentially by considering, among all possible rewritings, only a proper
subset. For that, the function names/patterns in the schema can be partitioned
into two disjoint groups of invocable and noninvocable ones. A legal rewriting is
then one that invokes only invocable functions. The notions of safe and possible

10The W3C XML activity. Go online to www.w3.org/XML.
11Which is described in its WSDL description and, in our model, is one of the components of the
function name.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

12 • T. Milo et al.

rewritings extend naturally to consider only legal rewritings. Since we are in-
terested here only in such rewritings, whenever we talk in the sequel about a
function invocation, we mean an invocable one.

2.2.4 XML, XML Schema, and WSDL. The simple XML trees considered
above ignore a number of features of XML, such as attributes, and use a single
domain for data values. A richer setting may be obtained by using the full
fledged XML data model (see footnote 10). Similarly, richer schemas may be
defined by adopting XML Schema (see footnote 10), rather than using the simple
DTD-like schema used above. Indeed, our implementation is based on the full
XML model and on an extension of XML Schema.

In our prototype, function calls embedded in XML documents are represented
by special function elements that identify the Web services to be invoked and
specify the value of input parameters. XML Schemas are enriched for inten-
sional documents (to form XML Schemaint) by function and function pattern
definitions. In both cases, things are very much along the lines of the sim-
ple model we used above. We will see an example and more details of this in
Section 7.

Function signatures are usually specified by service providers as WSDL def-
initions. We similarly extend WSDL to allow the use of XML Schemaint instead
of just XML Schema for type specifications, and we term this extended language
WSDLint.

While intensional XML documents use a standard XML syntax, XML
Schemaint schemas do not comply with the XML Schema syntax. The exten-
sion is minimal, and very much along the lines of the simple syntax we used
above. We will also see an example and more details in Section 7. Note that
this is not the case for WSDL, since its specification does not enforce the use
of a specific schema language. Therefore WSDLint documents are valid WSDL
documents.

3. EXCHANGING INTENSIONAL DATA

We start by considering document rewriting. Schema rewriting is considered
later in Section 6.

Given a document t that the sender wishes to send, and a data exchange
schema s, the sender needs to rewrite t into s. A possible process is the following:

(1) Check if t safely rewrites to s and if so, find a rewriting sequence, namely,
a sequence of functions that need to be invoked to transform t into the
required structure (preferably the shortest or cheapest one, according to
some criteria).

(2) If a safe rewriting does not exist, check whether at least t may rewrite to s.
If it is acceptable to do so (the sender accepts that the rewriting may fail),
try to find a successful rewriting sequence if one exists (preferably with the
least side effects on the path to find it, and at the least cost).

A variant is to combine safe and possible rewritings. For instance, one could con-
sider a mixed approach that first invokes some function calls and then attempts
from there to find safe rewritings. There are many alternative strategies.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

Exchanging Intensional XML Data • 13

We will first consider safe document rewriting, then move to possible rewrit-
ing, and finally consider the mixed approach. As in the previous section, to
simplify the presentation, we first consider the problems in the context of the
simple data model defined above. Then in Section 7 we will show that the pro-
posed solutions naturally extend to richer data/schemas and in particular to
the context of full fledged XML and XML Schema.

Before presenting solutions, let us first explain some of the difficulties that
one encounters when attempting to rewrite a document to a desired exchange
schema. While the examples given in the previous sections were rather simple—
and one could determine by a simple observation of the document which service
calls need to be materialized—things may be much more complex in general.
We explain next why this is the case and present a restriction that will make
the problem tractable.

3.1 Going Back and Forth

The rewriting sequence may depend on the answers being returned by the
functions: we may call one function at some place in the document, and then
decide, possibly based on its answer, that another function in the new data or
in a different part of the document needs to be called, and so on. In general,
this may force us to analyze the same portion of the document many times,
reexamining the same function call again and again, deciding at each iteration
whether, based on the answers returned so far, the function now needs to be
called or not. Such an iterative process may naturally be very expensive. We
thus restrict our attention here to a simpler class of “one-pass” left-to-right
rewritings12 where, for each node, the children are processed from left to right,
and once a child function is invoked, no further invocations are applied to its
left-hand sibling functions (i.e., successive children invocations are limited to
the new children functions possibly returned by the call, plus the right hand
siblings.). This restriction also applies to the results of function calls, which are
also processed in a left-to-right manner.

Observe that, in general, with this restriction, one can miss a successful
rewriting that is not left-to-right. In all the real-life examples that we consid-
ered, left-to-right rewritings were not limiting.

3.2 Infinite Search Space

The essence of safe rewriting is that it succeeds no matter what specific an-
swers, among the possible ones, the invoked functions return. The domain of
the possible answers of each function is determined by its output type. Since the
regular expression defining this type may contain starred (“*”) subexpressions,
the domain is infinite, and the safe rewriting should account for each possible
element in this infinite domain. Moreover, the result of a service call may con-
tain intensional data, namely, other function calls. In general the number of
such new functions may be unbounded. For instance, consider a Get Exhibits

12One could choose similarly right-to-left.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

14 • T. Milo et al.

function, with output type

τout(Get Exhibits) = Get Exhibit ∗.

When Get Exhibits is invoked, an arbitrarily large number of Get Exhibit
functions may be returned, and one has to check for each of the occurrences
whether this particular function call needs to be invoked and whether, after
the invocation, the document can still be (safely) rewritten into the desired
schema.

3.3 Recursive Calls

As explained above, when a function is invoked, the returned data may itself
contain new calls. To conform to the target schema, these calls may need to be
triggered as well. The answer again may contain some new calls, etc. This may
lead to infinite computations. Observe that such recursive situations do occur
in practice. For example, a search engine Web service may return, for a given
keyword, some document URLs plus (possibly) a function node for obtaining
more answers. Calling this function, one can obtain a new list and perhaps
another function node, etc. If the target schema requires plain XML data, we
need to repeatedly call the functions until all the data has been obtained. In
this example, and often in general, one may want to bound the recursion. This
suggests the following definition and our corresponding restriction:

Definition 3.1. For a rewriting sequence t
v1→ t1 · · · vn→ tn, we say that a

function node vj depends on a function node vi if vj ∈ ti but 	∈ ti−1 (namely, if
the node vj was returned by the invocation of the function vi).

We say that a rewriting sequence is of depth k if the dependency graph among
the nodes contains no paths of length greater than k.

The restriction. The restriction that we will impose below is the following:
We will consider only k-depth left-to-right rewritings.

Note that while this restriction limits the search space, the latter remains
infinite, due to the starred subexpressions appearing in the schema. However,
under this restriction, we can exhibit a finite representation (based on au-
tomata) of the search space and use automata-based techniques to solve the
safe rewriting problem.

Even with this restriction, the framework is general enough to handle most
practical cases. The problem of arbitrary safe rewriting (without the left-to-
right k-depth restriction) was recently shown to be undecidable [Muscholl et al.
2004]. Further work by the same authors [Muscholl et al. 2004; Segoufin 2003]
has shown that the left-to-right safe rewriting problem is actually decidable,
without the k-depth restriction, but the corresponding algorithms have a much
higher complexity (EXPTIME or 2EXPTIME, depending on whether the target
language is deterministic or not)—and thus are mostly of theoretical interest.

4. SAFE REWRITING

In this section, we present an algorithm for k-depth safe rewriting.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

Exchanging Intensional XML Data • 15

We are given a document tree t and a schema s0 = (L0, F0, τ0) describing the
signature of all the functions in the document (as well as the elements/functions
used in these signatures). This corresponds to having a WSDL description for
each service being used, which is a normal requirement for Web services. We
are also given a data exchange schema s = (L, F, τ), and our goal is to safely
rewrite t into s (with a k-depth left-to-right rewriting).

To simplify, we assume that function types are the same in s0 and s, including
definitions of the corresponding subelements. This is reasonable since the func-
tion definitions represent the WSDL description of the functions, as given by
the service providers. While this assumption simplifies the rewriting process,
it is not essential. The algorithm can be extended to handle distinct signatures,

For clarity, we decompose the presentation of the algorithm into three parts:

(1) The first part explains how to deal with function parameters. The main
point is that, since the parameters may themselves contain other function
calls (with parameters), the tree rewriting starts from the deepest function
calls and recursively moves upward.

(2) The second part explains how the rewriting in each such iteration is per-
formed. The key observation is that this can be achieved by traversing the
tree from top to bottom, handling one node (and its direct children) at a time.

(3) Finally, the third and most intricate part, explains how each such node,
and its direct children, is handled. In particular, we show how to decide
which of the functions among these children needs to be invoked in order
to make the node fit the desired structure.

For presentation reasons, we give here a simplified version of the actual algo-
rithm used in the implementation. To optimize the computation, a more dy-
namic variant, based on the same idea, is used there. We explain the main
principles of this variant in Section 7.

4.1 Rewriting Function Parameters

To invoke a function, its parameters should be of the right type. If they are
not, they should be rewritten to fit that type. When rewriting the parameters,
again, the functions appearing in them can be invoked only if their own pa-
rameters are (or can be rewritten into) the expected input type. We thus start
from the “deepest” functions, that is, those having no function occurrences in
the parameters, and recursively move upward:

—For the deepest functions, we verify that their parameters are indeed in-
stances of the corresponding input types. If not, the rewriting fails.

—Then moving upward, we look at a function f and its parameters. All the func-
tions appearing in these parameters were already handled—namely, their
parameters can be safely rewritten to the appropriate type. We thus ignore
the parameters of these lower level calls (together with all the functions in-
cluded in them) and just try to safely rewrite f ’s own parameters into the
required structure. If this is not possible, the rewriting fails, for the same
reason as above.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

16 • T. Milo et al.

At the end of this process we know that all the outmost function calls in t are
fine. We can thus ignore their parameters (and whatever functions that appear
in them) and need to safely rewrite t into s by invoking only these outmost calls.

4.2 Top Down Traversal

In each iteration of the above recursive procedure we are given a tree (or a
forest) where the parameters of all the outmost functions have already been
handled, and we need to safely rewrite the tree (forest) by invoking only these
outmost functions. To do that we can traverse the tree(forest) top down, treating
at each step a single node and its immediate children.

Consider a node n whose children labels form a word w. Note that the subtree
rooted at n can be safely rewritten into the target schema s = (L, F, τ) if and
only if (1) w can be safely rewritten into a word in lang(τ (label(n)), and (2)
each of n’s children subtrees can itself be safely rewritten into an instance of
s . Note that since we assumed that s0 and s agree on function types, we only
need to rewrite the original children of n and not those that are returned by
function invocations. Therefore, we can start from the root and, going down,
for each node n try to safely rewrite the sequence of its children into a word
in lang(τ (label(n))). The algorithm succeeds if all these individual rewritings
succeed.

The safe rewriting of a word w involves the invocation of functions in w
and (recursively) new functions that are added to w by those invocations. To
conclude the description of our rewriting algorithm we thus only need to explain
how this is done.

4.3 Rewriting the Children of a Node n

This is the most intricate part of the algorithm. We are given a word w—the
sequence of labels of n’s children—and our goal is to rewrite w to fit the target
schema. Namely, we need to rewrite w so that it becomes a word in the regular
language R = τ (label(n)). The rewriting process invokes functions in w and
(recursively) new functions that are added to w by those invocations. Each
such invocation changes w, replacing the function occurrence by its returned
answer. The possible changes that the invocation of a function fi may cause
are determined by the output type R fi = τout(fi) of fi.13 For instance, if w =
a1, a2, . . . , fi, . . . , am, invoking fi changes w into some w′ = a1, a2, . . . , b1, . . . ,
bk , . . . , am where b1, . . . , bk ∈ lang(R fi).

Since the functions signatures, as well as the target schema, are given in
terms of regular expressions, it is convenient to reason about them, and about
the overall rewriting process, by analyzing the relationships between their cor-
responding finite state automata. We assume some basic knowledge of regular
languages and finite state automata, and use in our algorithm standard no-
tions such as the intersection and complement of regular languages and the
Cartesian product of automata. For basic material, see for instance Hopcroft
and Ullman [1979].

13Recall from the discussion above that the input parameters can be ignored.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

Exchanging Intensional XML Data • 17

Fig. 3. Safe rewriting of w into R.

Given the word w, the output types R f1 , . . . , R fn of the available functions,
and the target regular language R, the algorithm in Figure 3 tests if w can be
safely rewritten into a word in R. Then, if the answer is positive, the algorithm
presented in Section 4.4 finds a safe rewriting sequence.

We give the intuition behind the first algorithm next. To illustrate, we use
the newspaper document in Figure 2(a). Assume that we look at the root news-
paper node. Its children labels form the word w = title.date.Get Temp.TimeOut.
Assume that we want to find a safe rewriting for this word into a word in the
regular language τ ′(newspaper) of the schema of (**), namely,

R = title.date.temp.(TimeOut | exhibit ∗).

The process of rewriting involves choosing some functions in w and replacing
them by a possible output; then choosing some other functions (which might
have been returned by the previous calls) and replacing them by their output,
and so on, up to depth k. For each function occurrence we have two choices:
either to leave it untouched, or to replace it by some word in it output type.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

18 • T. Milo et al.

Fig. 4. The A1
w automaton from the newspaper document.

Fig. 5. The complement automaton A for schema (**).

The automaton Ak
w constructed in steps 5–10 of the algorithm represents pre-

cisely all the words that can be generated by such a k-depth rewriting process.
The fork nodes are the nodes where a choice (i.e., invoking the function or
not) exists, and the two fork options represent the possible consequent steps
in the automaton, depending on which of the two choices was made. Going
back to the above example, Figure 4 shows the 1-depth automaton A1

w for the
word w = title.date.Get Temp.TimeOut, with the signature of the Get Temp
and TimeOut functions defined as in Section 2. q2 and q3 are the fork nodes
and their two outgoing edges represent their fork options for Get Temp and
TimeOut, respectively. An ε edge represents the choice of invoking the function
while a function edge represents the choice not to invoke it.

Suppose first that we want to verify that all possible rewritings lead to a
“good” word, that is, that they belong to the target language R. To put things
in regular language terms, the intersection of the language of Ak

w, consisting of
these words, with the complement of the target language R should be empty.
A standard way to test that the intersection of two regular languages is empty
is to (i) construct an automaton A for the complement of the language R, (ii)
build a Cartesian product automaton A× = Ak

w × A for the two automata Ak
w

and A, and (iii) check whether it accepts no words.
The Cartesian product automaton of Ak

w and A is built in step 11 of the
algorithm. To continue with the above example, the complement automaton
for the regular language R = τ ′(newspaper) of the schema of (**) is given in
Figure 5. The accepting states are p0, p1, p2, and p6. For brevity we use “*”
to denote all possible alphabet transitions besides those appearing in other
outgoing edges. The Cartesian product automaton A× = A1

w × A (where A1
w and

A are the automata of Figures 4 and 5, respectively) is given in Figure 6. The
initial state is [q0, p0] and the final accepting one is [q4, p6].

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

Exchanging Intensional XML Data • 19

Fig. 6. The Cartesian product automaton A×.

Fig. 7. The complement automaton A′ for schema (***).

Note, however, that, when searching for a safe rewriting, one does not need to
verify that all possible rewritings lead to a “good word,” that is, that none of the
words in Ak

w belongs to A. We only have to verify that for each function, there
is some fork option (i.e., invoking the function or not) that, if taken, will not
lead to an accepting state. Since we are looking for left-to-right safe rewritings,
we need to check that, traversing the input from left to right, at least one such
“good” fork options exists for each function call on the way. The marking of nodes
in steps 15–17 of the algorithm achieves just that. Recall that we required in
step 4 that the complement automaton A be complete. This is precisely what
guarantees that all the fork nodes/options of Ak

w are recorded in A× and makes
the above marking possible.

The marking for our particular example is illustrated in Figure 6. The colored
nodes are the marked ones. As can be seen, the fork nodes [q2, p2] and [q3, p3] are
not marked. For the first node, this is because its ε fork option is not marked. For
the second one, it is due to the unmarked TimeOut fork option. Consequently,
the initial state is not marked as well and there is a safe rewriting of the
newspaper element to the schema of (**). We will see in Section 4.4 how to find
this rewriting.

For another example, consider the schema of (***). Here, a newspaper
is required to have the structure conforming to the regular expression
title.date.temp.exhibit ∗. The complement automaton A′ for this language is
given in Figure 7. To test whether it is possible to safely rewrite our news-
paper document into this schema, we construct a Cartesian product automaton
A′

× = A1
w × A′ (with A1

w as in Figure 4 and A′ as in Figure 7). A′
× is given in

Figure 8.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

20 • T. Milo et al.

Fig. 8. The Cartesian product automaton A′×.

As one can see, in this case, the two fork nodes [q2, p2] and [q3, p3] have
both their fork options marked. Consequently the initial state is marked as
well and there is no safe rewriting of w into the schema of (***). Note that
this is precisely what our intuitive discussion from Section 2 indicated: the
invocation of TimeOut may return performance elements, hence the result
may not conform to the desired structure.

The following theorem states the correctness of our algorithm.

THEOREM 4.1. The above algorithm returns true if and only if a k-depth left-
to-right safe rewriting exists.

PROOF. To prove correctness we have to show that (i) when the algorithm
returns a negative answer a safe rewriting indeed does not exist, and (ii) when
the answer is positive, there exists a safe rewriting.

Notations. We will use the following notations:

—For an automaton X and a state q ∈ X , we denote L(X , q) the language
accepted by X when making q the initial state. This is a subset of all suffixes
of words accepted by the original automaton X .

—In the automaton A×, we use A0 to denote the subautomaton “originating”
from Aw, and use Aj , 0 < j ≤ k to denote the subautomaton “originating”
from some A f added to Ak to represent the possible outputs of f , at the j th
iteration of its construction. More formally, these are the projections of A×
on nodes [q, q′] such that q belongs to Aw for A0, and to A f for Aj . Note that,
in general, several automata are added in the j th iteration. To simplify the
notation we use Aj to denote any representative of this set.

—Given a subautomaton Aj , an initial (respectively final) state of Aj is a state
[q, q′] such that q is an initial (respectively final) state of Aw/A fi .

Completeness. We start by proving that the algorithm is complete, that is,
that if it answers negatively, no k-depth left-to-right safe rewriting of Aw exists.

We first number the nodes of A× based on the order in which they got marked
by the algorithm. For a regular node, its assigned number should be greater
than the one of its marked successor that caused its marking. For a fork node
the assigned number should be greater than all the numbers of the nodes that
cause its marking. It is easy to come up with such a numbering by following

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

Exchanging Intensional XML Data • 21

the algorithm and using a counter that is incremented by one each time a node
gets marked.

We also need the following lemma.

LEMMA 4.2. If a state [q, q′] of Aj is marked, then there exists a finite path
from [q, q′] to a marked final state [p, p′] of Aj , such that all the nodes on the
path belong to Aj , are marked, and have decreasing numbers. Moreover, either
[p, p′] is a final state of A0, or there is an outgoing ε edge from it to a marked
state of some Aj−1, with a smaller number.

PROOF. First, by definition of marking, there exists a finite marked path
from [q, q′] to a final state of A×, where the nodes have decreasing numbers.
If [q, q′] is in A0, note that the final state of A× is also a final state of A0.
Otherwise, then by construction of A×, such a path must go through a marked
final state of Aj and continue, via an ε edge, to a marked state in Aj−1 with a
smaller number.

Among such paths, lets look at the one that has the longest marked prefix in
Aj .14 We denote [p, p′] the last node of the prefix. If [p, p′] is a final state of Aj

that exits via an ε edge to a marked Aj−1 node with a smaller number, we are
done. Let’s suppose it’s not.

If [p, p′] is a fork node, then it has at least two outgoing edges that lead to
marked states: a function transition, which stays in Aj , and the corresponding
ε transition, which leads to some Aj+1. By the definition of our numbering, both
successor nodes have smaller numbers than [p, p′]. Thus, we can extend our
prefix in Aj by following the function transition, which contradicts the fact that
we were on the path with the longest prefix in Aj .

If [p, p′] is not a fork node, then it must have a marked successor with a
smaller number (as otherwise it would not be marked). Its successors can either
be in Aj or be ε transitions to some Aj−1 (if it is a final state of Aj). As we
assumed above that the ε transitions did not lead to marked nodes with lower
number, [p, p′] must have a marked successor in Aj with a lower number, that
caused its marking. Note, however, that by adding this marked node to the
previous prefix, we can build a marked path with a longer prefix in Aj , having
nodes with decreasing numbers. Again, a contradiction.

We are now ready to prove direction (i). We do this again by contradiction.
Assume that our algorithm returns a negative answer, that is, that the initial
state of A× is marked, but a k-depth left-to-right safe rewriting from Aw does
exists. Recall that such rewritings discover the input word and the answers of
functions from left to right, and make their decisions (namely, to invoke func-
tions or not) as they proceed. Therefore, we can construct the counterexample
incrementally. We do not need to provide the full input word (or the functions
output) as a whole, but only “letter by letter,” as the rewriting process is going on.

Also recall that, since the rewriting is supposed to be safe, we are free to
chose any answer we want for a function call, as long as it matches its output
type. The rewriting should succeed anyway.

14Note that it is not necessarily unique.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

22 • T. Milo et al.

We will show that we can provide a finite sequence of letters (consisting
of an initial word and answers to the function calls the rewriting decides to
invoke) that stays on a marked path in A× and eventually reaches one of its
final states. This means, on the one hand, that the sequence represents a legal
k-depth rewriting (of a word accepted by Aw) and, on the other hand, that it
does not belong to the target type. Consequently the rewriting is not safe.

The sequence is constructed as follows. We begin at the initial (marked)
state of A× and start following some finite marked path in A0 leading to a
marked final state where the nodes on the paths have decreasing numbers.
Such a path must exist, by Lemma 4.2.

At each step, when we traverse an edge with a label in L, we simply output
its label. If the edge is labeled by a function name in F, we also output the label,
but our action depends on whether the rewriting process decides to invoke
the function or not: if the function is not invoked, we stay on the same path.
Otherwise, we follow an ε edge from the current automaton Ai (initially i = 0)
to a marked state of the next level automaton Ai+1. Note that such a marked
state must exist since the previous fork node was marked. Also, by definition
of the numbering, its assigned number is smaller than the one of the fork node.

Then we continue the same process at Ai+1 following a finite path, with
nodes having decreasing numbers, to its final state, and on the way possibly
moving to higher level automata, as described above.

Since all these paths are constructed as in Lemma 4.2, they end on a final
node of A× (for A0), or on a final node of Aj with an ε transition to a marked
node of Aj−1, with a smaller number. In the latter case, we simply follow this
transition, which corresponds to ending the answer of a function call.

Observe that, by the above arguments, we follow a path to a final state of A×
that consists only of marked nodes and correspond to a decreasing sequence of
numbers, which means that it is finite. Feeding the letters on this path to the
safe rewriting makes it end on a word that is not in the target language R, a
contradiction.

Soundness. We now turn to direction (ii), which states the soundness of
our algorithm—namely, that if the initial state is not marked, then every word
accepted by Aw can be rewritten to match the target schema. We start by
proving that if the algorithm succeeds, then the following proposition holds:

PROPOSITION 4.3. Let Aj be a subautomaton of A× corresponding to some
function automaton A fi (or to Aw if j = 0).

For every nonmarked state [q, q′] of Aj originating from A fi (respectively
A0), every word in L(A fi , q) (respectively L(Aw, q)) has a “safe rewriting” into
a word w′ such that w′ corresponds to a nonmarked path in A× leading to a
(nonmarked) final state of Aj .15

PROOF. We use induction on j , starting from j = k and going down to j = 0,
to show that every word in L(A fi , q) (respectively L(Aw, q)) that contains only

15We overload here, in a natural manner, the notion of safe rewriting, meaning that the above
property holds no matter what answer the function invocations return.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

Exchanging Intensional XML Data • 23

function nodes of depth ≥ j can be safely rewritten. For j = k, Aj contains no
fork nodes. A state [q, q′] is thus not marked iff all states reachable from it are
not marked and the property trivially holds.

We suppose now that the hypothesis holds for j + 1, and consider a word
that contains function nodes of depth ≥ j . We follow its corresponding path in
Aj . If all nodes are nonmarked, we get to a nonmarked accepting state of Aj ,
which means we are done. Otherwise, if the path contains marked nodes, we
show, by a second induction on the number of function symbols in w, how to
rewrite w to a “good” path.

The base of the induction is for a word w that doesn’t contain function nodes.
Then, clearly, all nodes on the corresponding path must be nonmarked, or else
the first one, [q, q′], would be marked as well. Suppose we know how to deal
with a word containing l function nodes, and consider a word w that contains
l + 1 function nodes. We look at the first edge e = ([v, v′], [u, u′]) on the path
where [v, v′] is not marked but [u, u′] is marked. By definition of marking, [v, v′]
must be a fork node with e labeled by some function name fi. This splits w into
subwords w = w1. fi.w2. Since [v, v′] is not marked, its other fork option (the ε

edge corresponding to fi), must lead to a nonmarked initial state of the subau-
tomaton Aj+1 corresponding to A fi . We choose to invoke this function. By the
first induction hypothesis, there is a safe rewriting of the returned result into
a word w′ whose corresponding path is not marked and leads to a nonmarked
final state of Aj+1. By the construction of A× this final state must have an
outgoing ε edge leading to a state [u, u′′] of Aj . Furthermore, observe that the
latter is not marked (or otherwise the final state of Aj+1 would be also marked).

Finally, since w2 has l function nodes, by the second induction hypothesis
it can be safely rewritten into some word w′′ whose corresponding nonmarked
path leads to a final state of Aj . It follows that the rewritten word w1.w′.w′′,
and its corresponding nonmarked path, leads from [q, q′] to a nonmarked final
state Aj via a path consisting only of nonmarked nodes.

We are now ready to prove direction (ii). If the algorithm answers positively,
a safe rewriting can be found by essentially the same construction as of the
above proposition.

Given any word w accepted by Aw, our goal is to find a safe rewriting that
yields a word w′ whose corresponding path in A× leads to a nonmarked state
[q, p], where q is an accepting state of Aw (namely, an accepting state of A0).
Note that since the final state is not marked, p is not an accepting state of A.
And since A is deterministic this implies that w′ is a “good” word that belongs
to the target language R.

The fact that such a rewriting indeed exists follows immediately from the
above proposition, taking the node [q, q′] of the proposition to be the initial
state of A×, and w as a particular input word. The actual rewriting can be
found as described in the proof. This concludes the proof of Theorem 4.1.

Complexity. We now briefly discuss the complexity of the algorithm. Recall
that we use s0 to denote the schema of the sender and s to denote the agreed
data exchange schema. The complexity of deciding whether a safe rewriting

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

24 • T. Milo et al.

Fig. 9. Finding the rewriting of w into R.

exists is determined by the size of the cartesian product automaton: we need
to construct it and then traverse and mark its nodes. More precisely, the com-
plexity is bounded by O(|A×|2) = O((|Ak

w| × |A|)2). The size of Ak
w is at most

O((|s0| + |w|)k) and the size of the complement automaton A is at most expo-
nential in the automaton being complemented [Hopcroft and Ullman 1979],
namely, at most exponential in the size of the target schema s. This exponen-
tial blow up may happen however only when s uses nondeterministic regular
expressions (i.e., regular expressions whose corresponding finite state automa-
ton is nondeterministic). Note, however, that XML Schema enforces the usage
of deterministic regular expressions. Hence, for most practical cases, the com-
plexity is polynomial in the size of the schemas s0 and s (with the exponent
determined by k).

4.4 Finding a Rewriting

The algorithm of Figure 3 checks if a safe rewriting exists. The constructive
proof we used to show its soundness entails a way to find a rewriting sequence
when a safe rewriting exists, which corresponds to the algorithm of Figure 9.

This algorithm finds the safe rewriting sequence by following a nonmarked
path. Each fork node on the path, together with its nonmarked fork option,
determines what needs to be done with the corresponding function—an ε edge
means “invoke the function” while a function edge means “do not invoke.” In
the example previously discribed, which corresponds to Figure 6, it is easy to
see (following the path with colored background) that Get Temp needs to be
invoked while TimeOut should not.

The complexity of actually performing the rewriting depends on the size of
the answers returned by the called functions. If x is the maximal answer size,
the length of the generated word is bounded by w × xk .

4.5 A Mixed Approach

As seen above, much of the work in searching for a safe rewriting comes from
the size of the automaton Ak

w that accounts for all possible outputs of function
invocation. A useful heuristic is to adopt a mixed approach, that starts by in-
voking some of the functions (e.g., the ones with no side effects or low price) to

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

Exchanging Intensional XML Data • 25

Fig. 10. Possible rewriting of w into R.

get their actual output, and then tries to safely rewrite the document. In terms
of the algorithm of Figure 3, rather than using the full function signature au-
tomaton A fi , we will use a smaller one that describes just (the type of) the actual
returned result. This may greatly simplify the resulting automaton Ak

w. More-
over, the output of the already invoked calls can be reused when performing
the actual rewriting, instead of reissuing these calls.

5. POSSIBLE REWRITING

We considered safe rewritings in the previous section. We now turn to possible
rewritings. While function signatures provide an “upper bound” of the possible
output, when invoked with the actual given parameters they may return a
restricted “appropriate” output, so a rewriting that looked nonfeasible (unsafe)
may turn to be possible after some function calls. To test if a rewriting may
exist, we follow a similar three-step procedure as for safe rewriting: (1) test
functions parameters first, (2) traverse the tree top down, and (3) check each
node individually, trying to rewrite the word w consisting of the labels of its
direct children.

Steps (1) and (2) are exactly as before. For step (3), Figure 10 provides an
algorithm to test if the children of a given node may rewrite to the target schema.
As before, we use the automaton Ak

w that describes all the words that may be
derived from the word w in a k-depth rewriting. w may rewrite to a word in
the target language R iff some of these derived words belong to R, namely, if
the intersection of the two languages, Ak

w and R, is not empty. To test this, we
construct (in step 4 of the algorithm) the Cartesian product automaton for these
two languages, and test (in step 5) whether the final state is reachable from
the initial one. This is done by a standard marking process, that starts from
the final nodes, and marks all nodes that have some edge leading to a marked
node. If the initial state is marked, this means that the intersection of the two
languages is not empty [Hopcroft and Ullman 1979].

For instance, consider the automaton A for the schema of (***) with newspa-
per structure title.date.temp.exhibit ∗ given in Figure 11. The initial state is p0
and the final accepting states are p3 and p4. The Cartesian product automaton
A× = A1

w × A (for A1
k as in Figure 4 and A as in Figure 11) is given in Figure 12.

The initial state is [q0, p0]. The final accepting states are [q4, p3] and [q4, p4],
and all states (including the initial one) have an outgoing path to a final state.
The only possible fork options left in the automaton, and which may lead to
a possible rewriting, are the ones requiring the invocation of both Get Temp

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

26 • T. Milo et al.

Fig. 11. An automaton A for schema (***).

Fig. 12. Cartesian product automaton for possible rewriting.

Fig. 13. Finding a possible rewriting of w into R.

and TimeOut functions. If TimeOut returns nothing but exhibits the rewriting
succeeds.

The correctness of this algorithm is stated below.

PROPOSITION 5.1. The above algorithm returns true iff a k-depth possible
rewriting exists.

PROOF. Since Ak
w accepts the language of all possible words obtainable by a

k-depth rewriting, the rewriting is possible iff the intersection of the language
accepted by Ak

w with the target language is not empty. This is classically checked
by computing the cross-product of the corresponding automata, and marking
nodes as described, to checked whether a final state is reachable from the initial
state.

The complexity here is again determined by the size of the Cartesian product
automaton. However, in this case, it uses the schema automaton A (rather
than its complement, as for safe rewriting). Hence, the complexity of checking
whether a rewriting may exist is polynomial in the size of the schemas s0 and
s (with the exponent determined by k).

Finding an actual rewriting is done through a heuristic described by the al-
gorithm of Figure 13. We follow a marked path, and invoke functions or not, as

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

Exchanging Intensional XML Data • 27

indicated by the fork options on the path. We have to backtrack when failing
(i.e., when the function returns a value that does not correspond to an accept-
ing path). This process ends either because we reached a final state, which
means that a rewriting was found, or because all choices were explored without
success.

6. SCHEMA REWRITING

So far, we considered the rewriting of a single document. At a higher level, to
check compatibility between applications, the sender may wish to verify that
all documents generated by her application can indeed be sent to the target
receiver. Given a schema s0 for the sender documents, and some distinguished
root label r, we want to verify that all instances of s0 with root r can be safely
rewritten to the schema s. Interestingly, it turns out that safe rewriting for
schemas is not more difficult than for documents. We decompose the algorithm
we propose for schema rewriting into two parts: first, how to check the initial
schema, by traversing it top down and second, for each type in this schema,
how to check that the corresponding regular expression safely rewrites into the
target schema.

We first show how safe rewriting can be checked for DTDs, by checking all
the element definitions of s0. Then, we sketch a top-down algorithm for checking
safe rewriting for XML Schema-like schemas. Finally, we explain how it can be
checked that any instance of a regular expression can be safely rewritten into
a target regular expression.

6.1 Rewriting DTDs

In the simple DTD-like schemas we used so far, checking that s0 safely rewrites
to s amounts to checking that, for every element definition τ0(l0) = r0 in s0,
(a) there exists an element definition for the element label l0 in s and that
(b) every instance of the regular expression r0 can be safely rewritten into the
corresponding regular expression in s, namely τ (l0). We term this last step
language safe rewriting, and give an algorithm for it in Section 6.3.

Notice that, for such simple schemas, the element definitions can be checked
independently from each other, in any order. s0 safely rewrites into s iff the
language safe rewriting succeeds for all element definitions.

6.2 Rewriting XML Schemas

Things are more involved when we consider more expressive schema languages,
in the style of XML Schema. Types are allowed to be decoupled from element
labels, but it holds that the type of an element is unambiguously determined by
its label and the type of its parent. In this case, schema rewriting can be checked
by a top-down analysis of the initial schema s0, starting from the root. The type
of the root determines the regular expression that has to be matched by its
children, and the type of the root of s determines the target regular expression
for the safe rewriting of types.

Then, recursively moving down, the types corresponding to the labels of
the children on both sides are unambiguously determined, and so are there

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

28 • T. Milo et al.

Fig. 14. Language safe rewriting of R0 into R.

corresponding regular expressions. Therefore safe rewriting of types can be
checked at the next level, and so on.

Notice that, while proceeding this way, only pairs of types for which safe
rewriting hasn’t been tested yet need to be processed. This ensures that the
algorithm terminates, even if schemas are recursive.

6.3 Language Safe Rewriting

We explain now how to check for language safe rewriting. Given two regular
expressions R0 and R, we want to check that all words in the language of
R0 have a safe rewriting into a word in the language of R. The algorithm of
Figure 14 checks just that.

This algorithm is almost identical to the one presented in Section 4, except
that the initial automaton is built to accept the language R0 instead of a single
word. The following proposition states its correctness.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

Exchanging Intensional XML Data • 29

PROPOSITION 6.1. The above algorithm returns true if and only if every word
in the language R0 has a k-depth left-to-right safe rewriting into a word of R.

PROOF. The proof of the algorithm of Section 4 naturally extends to language
safe rewriting. There, the completeness of the algorithm was shown by build-
ing a counterexample to the fact that there might be a safe rewriting although
the algorithm answers negatively. The same construction holds for language
rewriting, since it suffices to show that one word in the language R0 does not
safely rewrite into R to contradict the fact that R0 doesn’t rewrite into R. The
soundness of the algorithm of Section 4 was shown in a constructive manner,
by building a word corresponding to a nonmarked path in A×. The same con-
struction applies to each word accepted by AR0 , that is, for each word in the
language R0, which establishes the correctness of this algorithm.

7. IMPLEMENTATION

The ideas and algorithms presented in the previous sections have been imple-
mented and used in the Schema Enforcement module of the Active XML system
[Abiteboul et al. 2002] (also see the Active XML homepage of Web site http://
www.rocq.inria.fr/verso/Gemo/Projects/axml). We next present how the in-
tensional data model and schema language of the previous sections map to XML,
XML Schema, SOAP, and WSDL. Then, we briefly describe the ActiveXML sys-
tem and the Schema Enforcement module.

7.1 Using the Standards

In the implementation, an intensional XML document is a syntactically well-
formed XML document. This is because we also use an XML-based syntax to
express the intensional parts in it. To distinguish these parts from the rest of
the document, we rely on the mechanism of XML namespaces (see footnote 10).
More precisely, the namespace http://www.activexml.com/ns/int is defined
for service calls. These calls can appear at any place where XML elements are
allowed. The following example corresponds to the document of Figure 2(a):

<?xml version="1.0"?>
<newspaper xmlns:int="http://www.activexml.com/ns/int">
<title> The Sun </title>
<date> 04/10/2002 </date>
<int:fun endpointURL="http://www.forecast.com/soap"

methodName="Get_Temp"
namespaceURI="urn:xmethods-weather">

<int:params>
<int:param>
<city>Paris</city>

</int:param>
</int:params>

</int:fun>
<int:fun endpointURL="http://www.timeout.com/paris"

methodName="TimeOut">
namespaceURI="urn:timeout-program">

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

30 • T. Milo et al.

<int:params>
<int:param> exhibits </int:param>

</int:params>
</int:fun>

</newspaper>

Function nodes have three attributes that provide the necessary information
to call a service using the SOAP protocol: the URL of the server, the method
name, and the associated namespace. These attributes uniquely identify the
called function, and are isomorphic to the function name in the abstract model.

In order to define schemas for intensional documents, we use XML Schemaint,
which is an extension of XML Schema. To describe intensional data, XML
Schemaint introduces functions and function patterns. These are declared and
used like element definitions in the standard XML Schema language. In par-
ticular, it is possible to declare functions and function patterns globally, and
reference them inside complex type definitions (e.g., sequence, choice, all). We
give next the XML representation of function patterns that are described by a
combination of five optional attributes and two optional subelements: params
and return:

<functionPattern
id = NCName methodName = token
endpointURL = anyURI namespaceURI = anyURI
WSDLSignature = anyURI ref = NCName>

Contents: (params?, return?)
</functionPattern>

The id attribute identifies the function pattern, which can then be referenced
by another function pattern using the ref attribute. Attributes methodName,
endpointURL, and namespaceURI designate the SOAP Web service that im-
plements the Boolean predicate used to check whether a particular function
matches the function pattern. It takes as input parameter the SOAP identi-
fiers of the function to validate. As a convention, when these parameters are
omitted, the predicate returns true for all functions. The Contents detail the
function signature, that is, the expected types for the input parameters and the
result of the function. These types are also defined using XML Schemaint, and
may contain intensional parts.

To illustrate this syntax, consider the function pattern Forecast, which cap-
tures any function with one input parameter of element type city, returning an
element of type temp. It is simply described by

<functionPattern id="Forecast">
<params>
<param> <element ref="city"/> </param>

</params>
<result> <element ref="temp"/> </result>

</functionPattern>

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

Exchanging Intensional XML Data • 31

Functions are declared in a similar way to function patterns, by using el-
ements of type function. The main difference is that the three attributes
methodName, endpointURL, and namespaceURI directly identify the function that
can be used.

As mentioned already, function and function pattern declarations may be
used at any place where regular element and type declarations are allowed.
For example, a newspaper element with structure title.date.(Forecast | temp).
(TimeOut | exhibit ∗) may be defined in XML Schemaint as

<xsd:element name="newspaper">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="title"/>
<xsd:element ref="date"/>
<xsd:choice>
<xsi:functionPattern ref="Forecast"/>
<xsd:element ref="temp"/>

<xsd:/choice>
<xsd:choice>
<xsi:functionPattern ref="TimeOut"/>
<xsd:element ref="exhibit" minOccurs="0"

maxOccurs="unbounded"/>
<xsd:/choice>

<xsd:/complexType>
<xsd:/element>

Note that just as for documents, we use a different namespace (embodied
here by the use of the prefix xsi) to differentiate the intensional part of the
schema from the rest of the declarations.

Similarly to XML Schema, we require definitions to be unambiguous (see
footnote 10)—namely, when parsing a document, for each element and each
function node, the subelements can be sequentially assigned a correspond-
ing type/function pattern in a deterministic way by looking only at the ele-
ment/function name.

One of the major features of the WSDL language is to describe the input
and output types of Web services functions using XML Schema. We extend
WSDL in the obvious way, by simply allowing these types to describe intensional
data, using XML Schemaint. Finally, XML Schemaint allows WSDL or WSDLint
descriptions to be referenced in the definition of a function or function pattern,
instead of defining the signature explicitly (using the WSDLSignature attribute).

7.2 The ActiveXML System

ActiveXML is a peer-to-peer system that is centered around intensional XML
documents. Each peer contains a repository of intensional documents, and pro-
vides some active features to enrich them by automatically triggering the func-
tion calls they contain. It also provides some Web services, defined declara-
tively as queries/updates on top of the repository documents. All the exchanges

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

32 • T. Milo et al.

between the ActiveXML peers, and with other Web service providers/consumers
use the SOAP protocol.

The important point here is that both the services that an ActiveXML peer
invokes and those that it provides potentially accept intensional input param-
eters and return intensional results. Calls to “regular” Web services should
comply with the input and output types defined in their WSDL description.
Similarly, when calling an ActiveXML peer, the parameters of the call should
comply with its WSDL. The role of the Schema Enforcement module is (i) to
verify whether the call parameters conform to the WSDLint description of the
service, (ii) if not, to try to rewrite them into the required structure and (iii) if
this fails, to report an error. Similarly, before an ActiveXML service returns its
answer, the module performs the same three steps on the returned data.

7.3 The Schema Enforcement Module

To implement this module, we needed a parser of XML Schemaint. We had
the choice between extending an existing XML Schema parser based on DOM
level 3 or developing an implementation from scratch [Ngoc 2002]. Whereas the
first solution seems preferable, we followed the second one because, at the time
we started the implementation, the available (free) software we tried (Apache
Xerces16 and Oracle Schema Processor17) appeared to have limited extensibility.
Our parser relies on a standard event-based SAX parser.16 It does not cover all
the features of XML Schema, but implements the important ones such as com-
plex types, element/type references, and schema import. It does not check the
validity of all simple types, nor does it deal with inheritance or keys. However,
these features could be added rather easily to our code.

The schema enforcement algorithm we implemented in the module follows
the main lines of the algorithm in Section 4, and in particular the three same
stages:

(1) checking function parameters recursively, starting from the most inner ones
and going out,

(2) traversing, in each iteration, the tree top down, and
(3) rewriting the children of every node encountered in this traversal.

Steps (1) and (2) are done as described in Section 4. For step (2), recall from
above that XML Schemaint are deterministic. This is precisely what enables
the top-down traversal since the possible type of elements/functions can be
determined locally. For step (3), our implementation uses an efficient variant
of the algorithm of Section 4. While the latter starts by constructing all the
required automata and only then analyzes the resulting graph, our implemen-
tation builds the automaton A× in a lazy manner, starting from the initial state,
and constructing only the needed parts. The construction is pruned whenever
a node can be marked directly, without looking at the remaining, unexplored,

16The Xerces Java parser. Go online to http://xml.apache.org/xerces-j/.
17The Oracle XML developer’s kit for Java. Go online to http://otn.oracle.com/tech/xml/.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

Exchanging Intensional XML Data • 33

Fig. 15. The pruned automaton.

branches. The two main ideas that guide this process are the following:

—Sink nodes. Some accepting states in A are “sink” nodes: once you get there,
you cannot get out (e.g., p6 in Figures 5 and 7). For the Cartesian product au-
tomaton A×, this means that all paths starting from such nodes are marked.
When such a node is reached in the construction of A×, we can immediately
mark it and prune all its outgoing branches. For example, in Figure 15, the
top left shaded area illustrates which parts of the Cartesian product au-
tomaton of Figure 6 can be pruned. Nodes [q3, p6] and [q7, p6] contain the
sink node p6. They can be immediately be declared as marked, and the rest
of the construction (the left shaded area) need not be constructed.

—Marked nodes. Once a node is known to be marked, there is no point in explor-
ing its outgoing branches any further. To continue with the above example,
once the node [q7, p6] gets marked, so does [q7, p3] that points to it. Hence,
there is no need to explore the other outgoing branches of [q7, p3] (the shaded
area on the right).

While this dynamic variant of the algorithm has the same worst-case com-
plexity as the algorithm of Figure 3, it saves a lot of unnecessary computation
in practice. Details are available in Ngoc [2002].

8. PEER-TO-PEER NEWS SYNDICATION

In this section, we will illustrate the exchange of intensional documents, and
the usefulness of our schema-based rewriting techniques through a real-life ap-
plication: peer-to-peer news syndication. This application was recently demon-
strated in Abiteboul et al. [2003a].

The setting is the one shown on Figure 16. We consider a number of news
sources (newspaper Web sites, or individual “Weblogs”) that regularly publish
news stories. They share this information with others in a standard XML for-
mat, called RSS.18 Clients can periodically query/retrieve news from the sources
they are interested in, or subscribe to news feeds. News aggregators are special
peers that know of several news sources and let other clients ask queries to
and/or discover the news sources they know.

18RSS 1.0 specification. Go online to http://purl.org/rss/1.0.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

34 • T. Milo et al.

Fig. 16. Peer-to-peer news exchange.

All interactions between news sources, aggregators, and clients are done
through calls to Web services they provide. Intensional documents can be ex-
changed both when passing parameters to these Web services, and in the an-
swers they return. These exchanges are controlled by XML schemas, and docu-
ments are rewritten to match these schemas, using the safe/possible rewriting
algorithms detailed in the previous sections.

This mechanism is used to provide several versions of a service, without
changing its implementation, merely by using different schemas for its in-
put parameters and results. For instance, the same querying service is eas-
ily customized to be used by distinct kinds of participants, for example, various
client types or aggregators, with different requirements on the type of its input/
output.

More specifically, for each kind of peer we consider (namely, news sources and
aggregators), we propose a set of basic Web services, with intensional output
and input parameters, and show how they can be customized for different clients
via schema-based rewriting. We first consider the customization of intensional
outputs, then the one of intensional inputs.

8.1 Customizing Intensional Outputs

News sources provide news stories, using a basic Web service named getStory,
which retrieves a story based on its identifier, and has the following signature:

<function id="GetStory">
<params>
<param>
<xsd:simpleType ref="xsd:string" />

</param>
</params>

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

Exchanging Intensional XML Data • 35

<result>
<xsd:element name="story" type="xsd:string" />

</result>
</functionPattern>

Note that the output of this service is fully extensional. News sources also
allow users to search for news items by keywords,19 using the following service:

<function id="GetNewsAbout">
<params>
<param>
<xsd:simpleType ref="xsd:string" />

</param>
</params>
<result>
<xsd:complexType ref="ItemList2" />

</result>
</functionPattern>

This service returns an RSS list of news items, of type ItemList2, where the
items are given extensionally, except for the story, which can be intensional. The
definition of the corresponding function pattern, intensionalStory is omitted.

<xsd:complexType name="ItemList2">
<xsd:sequence>
<xsd:element name="item" type="Item"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Item">
<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>
<xsd:element ref="pubDate" type="xsd:dateTime"/>
<xsd:element ref="description" type="xsd:string"/>
<xsd:choice>
<xsi:functionPattern ref="intensionalStory"/>
<xsd:element name="story" type="xsd:string"/>

</xsd:choice>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:NMTOKEN"/>

</xsd:complexType>

A fully extensional variant of this service, aimed for instance at PDAs that
download news for offline reading, is easily provided by employing the Schema
Enforcement module to rewrite the previous output to one that complies to a
fully extensional ItemList3 type, similar to the one above, except for the story
that has to be extensional.

19More complex query languages, such as the one proposed by Edutella could also be used (go online
to http://edutella.jxta.org).

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

36 • T. Milo et al.

A more complex scenario allows readers to specify a desired output type at
call time, as a parameter of the service call. If there exists a rewriting of the
output that matches this schema, it will be applied before sending the result,
otherwise an error message will be returned.

Aggregators act as “superpeers” in the network. They know a number of news
sources they can use to answer user queries. They also know other aggregators,
which can relay the queries to additional news sources and other aggregators,
transitively. Like news sources, they provide a getNewsAbout Web service, but
allow for a more intensional output, of type ItemList, where news items can
be either extensional or intensional. In the latter case they must match the
intensionalNews function pattern, whose definition is omitted.

<xsd:complexType name="ItemList">
<xsd:sequence>
<xsd:choice>
<xsi:functionPattern ref="intensionalNews"/>
<xsd:element name="item" type="Item"/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>

When queried by simple news readers, the answer is rewritten, depending if
the reader is a RSS customer or a PDA, into a Itemlist2 or Itemlist3 version,
respectively. On the other hand, when queried by other aggregators that prefer
compact intensional answers which can be easily forwarded to other aggrega-
tors, no rewriting is performed, with the answer remaining as intensional as
possible, preferably complying to the type below, which requires the information
to be intensional.

<xsd:complexType name="ItemList4">
<xsd:sequence>
<xsi:functionPattern ref="intensionalNews"/>

</xsd:sequence>
</xsd:complexType>

Note also that aggregators may have different capabilities. For instance,
some of them may not be able to recursively invoke the service calls they get
in intensional answers. This is captured by having them supply, as an input
parameter, a precise type for the answer of getNewsAbout, that matches their
capabilities (e.g., return me only service calls that return extensional data).

8.2 Intensional Input

So far, we considered the intensional output of services. To illustrate the
power of intensional input parameters, we define a continuous version of the
getNewsAbout service provided by news sources and aggregators.

Clients call this service only once, to subscribe to a news feed. Then, they
periodically get new information that matches their query (a dual service exists,
to unsubscribe). Here, the input parameter is allowed to be given intensionally,

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

Exchanging Intensional XML Data • 37

so that the service provider can probe it, adjusting the answer to the parameter’s
current value. For instance, consider a mobile user whose physical location
changes, and wants to get news about the town she is visiting. The zip code
of this town can be provided by a Web service running on her device, namely
a GPS service. A call to this service will be passed as an intensional query
parameter, and will be called by the news source in order to periodically send
her the relevant local information.

This continuous news service is actually implemented using a wrapper
around a noncontinuous getNewsAbout service, calling the latter periodically
with the keyword parameter it received in the subscription. Since getNewsAbout
doesn’t accept an intensional input parameter, the schema enforcement module
rewrites the intensional parameter given in the subscription every time it has
to be called.

8.3 Demonstration Setting

To demonstrate this application [Abiteboul et al. 2003a], news sources were
built as simple wrappers around RSS files provided by news websites such
as Yahoo!News, BBC Word, the New York Times, and CNN. The news from
these sources could also be queried through two aggregators providing the
GetNewsAbout service, but customized with different output schemas. The cus-
tomization of intensional input parameters was demonstrated using a contin-
uous service, as explained above, by providing a call to a getFavoriteKeyword
service as a parameter for the subscription.

9. CONCLUSION AND RELATED WORK

As mentioned in the Introduction, XML documents with embedded calls to Web
services are already present in several existing products. The idea of including
function calls in data is certainly not a new one. Functions embedded in data
were already present in relational systems [Molina et al. 2002] as stored pro-
cedures. Also, method calls form a key component of object-oriented databases
[Cattell 1996]. In the Web context, scripting languages such as PHP (see foot-
note 2) or JSP (see footnote 1) have made popular the integration of processing
inside HTML or XML documents. Combined with standard database interfaces
such as JDBC and ODBC, functions are used to integrate results of queries (e.g.,
SQL queries) into documents. A representative example for this is Oracle XSQL
(see footnote 17). Embedding Web service calls in XML documents is also done
in popular products such as Microsoft Office (Smart Tags) and Macromedia MX.

While the static structure of such documents can be described by some DTD
or XML Schema, our extension of XML Schema with function types is a first
step toward a more precise description of XML documents embedding compu-
tation. Further work in that direction is clearly needed to better understand
this powerful paradigm. There are a number of other proposals for typing XML
documents, for example, Makoto [2001], Hosoya and Pierce [2000], and Cluet
et al. [1998]. We selected XML Schema (see footnote 10) for several reasons.
First, it is the standard recommended by the W3C for describing the struc-
ture of XML documents. Furthermore, it is the typing language used in WSDL

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

38 • T. Milo et al.

to define the signatures of Web services (see footnote 3). By extending XML
Schema, we naturally introduce function types/patterns in WSDL service sig-
natures. Finally, one aspect of XML Schema simplifies the problem we study,
namely, the unambiguity of XML Schema grammars.

In many applications, it is necessary to screen queries and/or results ac-
cording to specific user groups [Candan et al. 1996]. More specifically for us,
embedded Web service calls in documents that are exchanged may be a se-
rious cause of security violation. Indeed, this was one of the original mo-
tivations for the work presented here. Controlling these calls by enforcing
schemas for exchanged documents appeared to us as useful for building se-
cure applications, and can be combined with other security and access models
that were proposed for XML and Web services, for example, in Damiani et al.
[2001] and WS-Security.20 However, further work is needed to investigate this
aspect.

The work presented here is part of the ActiveXML [Abiteboul et al. 2002,
2003b] (see also the Active XML homepage of the Web site: http://www.rocq.
inria.fr/verso/Gemo/Projects/axml) project based on XML and Web services.
We presented in this article what forms the core of the module that, in a peer,
supports and controls the dialogue (via Web services) with the rest of the world.
This particular module may be extended in several ways. First, one may intro-
duce “automatic converters” capable of restructuring the data that is received
to the format that was expected, and similarly for the data that is sent. Also,
this module may be extended to act as a “negotiator” who could speak to other
peers to agree with them on the intensional XML Schemas that should be used
to exchange data. Finally, the module may be extended to include search capa-
bilities, for example, UDDI style search (see footnote 4) to try to find services
on the Web that provide some particular information.

In the global ActiveXML project, research is going on to extend the frame-
work in various directions. In particular, we are working on distribution and
replication of XML data and Web services [Abiteboul et al. 2003a]. Note that
when some data may be found in different places and a service may be per-
formed at different sites, the choice of which data to use and where to perform
the service becomes an optimization issue. This is related to work on distributed
database systems [Ozsu and Valduriez 1999] and to distributed computing at
large. The novel aspect is the ability to exchange intensional information. This
is in spirit of Jim and Suciu [2001], which considers also the exchange of inten-
sional information in a distributed query processing setting.

Intensional XML documents nicely fit in the context of data integration, since
an intensional part of an XML document may be seen as a view on some data
source. Calls to Web services in XML data may be used to wrap Web sources
[Garcia-Molina et al. 1997] or to propagate changes for warehouse maintenance
[Zhuge et al. 1995]. Note that the control of whether to materialize data or not
(studied here) provides some flexible form of integration that is a hybrid of
the warehouse model (all is materialized) and the mediator model (nothing is).

20The WS-Security specification. Go online to http://www.ibm.com/webservices/library/

ws-secure/.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

Exchanging Intensional XML Data • 39

On the other hand, this is orthogonal to the issue of selecting the views to
materialize in a warehouse, studied in, for example, Gupta [1997] and Yang
et al. [1997].

To conclude, we mention some fundamental aspects of the problem we stud-
ied. Although the k-depth/left-to-right restriction is not limiting in practice and
the algorithm we implemented is fast enough, it would be interesting to under-
stand the complexity and decidability barriers of (variants of) the problem.
As we mentioned already, many results were found by Muscholl et al. [2004].
Namely, they proved the undecidability of the general safe rewriting problem
for a context-free target language, and provided tight complexity bounds for
several restricted cases.

We already mentioned the connection to type theory and the novelty of our
work in that setting, coming from the regular expressions in XML Schemas.
Typing issues in XML Schema have recently motivated a number of interesting
works such as Milo et al. [2000], which are based on tree automata.

REFERENCES

ABITEBOUL, S., AMANN, B., BAUMGARTEN, J., BENJELLOUN, O., NGOC, F. D., AND MILO, T. 2003a. Schema-
driven customization of Web services. In Proceedings of VLDB.

ABITEBOUL, S., BENJELLOUN, O., MANOLESCU, I., MILO, T., AND WEBER, R. 2002. Active XML: Peer-to-
peer data and Web services integration (demo). In Proceedings of VLDB.

ABITEBOUL, S., BONIFATI, A., COBENA, G., MANOLESCU, I., AND MILO, T. 2003b. Dynamic XML docu-
ments with distribution and replication. In Proceedings of ACM SIGMOD.

CANDAN, K. S., JAJODIA, S., AND SUBRAHMANIAN, V. S. 1996. Secure mediated databases. In Proceed-
ings of ICDE. 28–37.

CATTELL, R., Ed. 1996. The Object Database Standard: ODMG-93. Morgan Kaufman, San
Francisco, CA.

CLUET, S., DELOBEL, C., SIMÉON, J., AND SMAGA, K. 1998. Your mediators need data conversion! In
Proceedings of ACM SIGMOD. 177–188.

DAMIANI, E., DI VIMERCATI, S. D. C., PARABOSCHI, S., AND SAMARATI, P. 2001. Securing XML docu-
ments. In Proceedings of EDBT.

DOAN, A., DOMINGOS, P., AND HALEVY, A. Y. 2001. Reconciling schemas of disparate data sources:
a machine-learning approach. In Proceedings of ACM SIGMOD. ACM Press, New York, NY,
509–520.

GARCIA-MOLINA, H., PAPAKONSTANTINOU, Y., QUASS, D., RAJARAMAN, A., SAGIV, Y., ULLMAN, J., AND WIDOM,
J. 1997. The TSIMMIS approach to mediation: Data models and languages. J. Intel. Inform.
Syst. 8, 117–132.

GUPTA, H. 1997. Selection of views to materialize in a data warehouse. In Proceedings of ICDT.
98–112.

HOPCROFT, J. E. AND ULLMAN, J. D. 1979. Introduction to Automata Theory, Languages and Com-
putation. Addison-Wesley, Reading, MA.

HOSOYA, H. AND PIERCE, B. C. 2000. XDuce: A typed XML processing language. In Proceedings of
WebDB (Dallas, TX).

JIM, T. AND SUCIU, D. 2001. Dynamically distributed query evaluation. In Proceedings of ACM
PODS. 413–424.

MAKOTO, M. 2001. RELAX (Regular Language description for XML). ISO/IEC Tech. Rep.
ISO/IEC, Geneva, Switzerland.

MILO, T., SUCIU, D., AND VIANU, V. 2000. Typechecking for XML transformers. In Proceedings of
ACM PODS. 11–22.

MITCHELL, J. C. 1990. Type systems for programming languages. In Handbook of Theoretical
Computer Science: Volume B: Formal Models and Semantics, J. van Leeuwen, Ed. Elsevier,
Amsterdam, The Netherlands, 365–458.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

40 • T. Milo et al.

MOLINA, H., ULLMAN, J., AND WIDOM, J. 2002. Database Systems: The Complete Book. Prentice
Hall, Englewood Cliffs, NJ.

MUSCHOLL, A., SCHWENTICK, T., AND SEGOUFIN, L. 2004. Active context-free games. In Proceed-
ings of the 21st Symposium on Theoretical Aspects of Computer Science (STACS ’04; Le Comm,
Montpelier, France, Mar. 25–27).

NGOC, F. D. 2002. Validation de documents XML contenant des appels de services. M.S. thesis.
CNAM. DEA SIR (in French) University of Paris VI, Paris, France.

OZSU, T. AND VALDURIEZ, P. 1999. Principles of Distributed Database Systems (2nd ed.). Prentice-
Hall, Englewood Cliffs, NJ.

SEGOUFIN, L. 2003. Personal communication.
YANG, J., KARLAPALEM, K., AND LI, Q. 1997. Algorithms for materialized view design in data ware-

housing environment. In VLDB ’97: Proceedings of the 23rd International Conference on Very
Large Data Bases. Morgan Kaufman Publishers, San Francisco, CA, 136–145.

ZHUGE, Y., GARCı́A-MOLINA, H., HAMMER, J., AND WIDOM, J. 1995. View maintenance in a warehous-
ing environment. In Proceedings of ACM SIGMOD. 316–327.

Received October 2003; accepted March 2004

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.

