
Knowledge Management by Querying Relational Views of
XML Data: application to Microbiology

Damiano Migliori, Marie-Christine Rousset
LRI University of Paris Sud, France

{ migliori, mcr }@lri.fr

Ollivier Haemmerlé
UMR BIA INA P-G/INRA

Ollivier.Haemmerle@inapg.inra.fr

Abstract
In this paper we present a method for integrating
and querying XML data in a relational setting.
Though this method is generic, it has been
motivated and validated by a knowledge
management application on Microbiology: the
e.dot project. The aim of the e.dot project was to
enrich an existing relational database storing
microbiological data dealing with food risk
assessment with data resulting from a continuous
Web technologic watch. The data coming from the
Web are put in XML format and must be queried
by the same relational query interface as the pre-
existing relational database. The choice that we
have made is to integrate new and possibly
heterogeneous XML data by relational views over
the schema of the existing database, called the
Reference Schema. Those relational views are
composed such that they form the so-called Global
Relational Schema of the XML data.
Microbiologist experts can then ask standard
select-project-join queries, which combine the
main query operators that are used in practice for
extracting useful information from databases. We
provide a query rewriting algorithm which
decomposes a Global Query, which is a select-
project-join query over the Global Relational
Schema, into a set of local queries expressed in
Xquery to be directly executable against the XML
data. Compared to existing mediator approaches,
the translation of join, select or project operations
are pushed as much as possible into the XML
queries, in order to optimize the execution of query
plans in function of the available XML data.

 1

Key Words: mapping techniques, mediator, mediated
schema, rewriting queries using views, XML wrapping

1 Introduction
Since XML has become a standard for data exchange, more
and more information in Knowledge Management

applications will be described by XML documents
combining text and data with a flexible structure described
in DTDs or XML schemas. Though powerful specialized
query languages exist for XML data (e.g. XQuery, which is
recommended by W3C), they are difficult to use by end-
users or practitioners, mainly because, in addition to being
complex, they require the users to know exactly the
structure (i.e. the DTD) of the documents they want to
query. In an information integration setting [RR03, TS97,
SYJ01], it is likely to have to deal with heterogeneous XML
documents, i.e. documents corresponding to different DTDs,
while being related to the same domain. Specialists of that
domain want to ask their queries in terms of a single
vocabulary, without having to express as many queries as
DTDs. In the relational setting, select-project-join queries
are widely used because they are easy to understand for
users, while powerful enough to extract useful information
from structured data. In particular, the microbiologists who
use the e.dot relational database are familiar with such
queries that they are used to pose through a user-friendly
graphical interface called MIEL.

XML source 1

mediator

user
relational
query

relational
answer

mediator
logic
layer

interface

physical
XML
data
layer XML source 2

Xquery relational view

XML source k

Xquery relational view

...

Relational query decomposition/
XQuery answers composition

...
Xquery relational view

application
layer

interface

Figure 1 A top-view of the mediator

We have designed a generic information integration
environment that permits to query in a relational way a
collection of heterogeneous data coming from XML

sources, giving the users the impression that they are
interrogating a centralized relational system. In contrast
with most existing works on transforming XML data into
relational data (see [KKN03] for a survey), we do not
materialize the XML data into relational views, but we
define relational views that remain virtual: they are used to
provide a relational schema to users who thus can query it
by relational queries while the data remain stored in XML
format possibly conform to heterogeneous DTDs. We
define a relational view of an XML source corresponding to
a given DTD by associating an XQuery query XV with a
relation R(A1, …,An) of the relational Reference Schema.
There can be several views XV1, …, XVk over the same

given relation R(A1, …,An). A same XML document
doc.xml (or DTD doc.dtd) can correspond to different
relations R1,…., Rp: for each relation Ri, there exists an
XV(Ri) query and all those XR(Ri) queries are executable
against the same doc.xml (or doc.dtd). Our information
integration system can be illustrated by Figure 1.

In Figure 2 we present two XML files conform to two
different DTDs but related to the same domain
(microbiology) and the relational view of the content of
those documents in terms of the Relational Schema of
reference of the e.dot application. It is important to point out
that in our approach such views remain virtual.

document lab-data2004.xml

<LAB_DATA>
 <ANALYSIS_RECORD idNum="2003/01" >
 <CONDITIONS>
 <TEMPERATURE value="25 C" />
 <HUMIDITY value="80%" />
 <ATMOSPHERIC_PRESSURE value="1040" />
 </CONDITIONS>
 <TARGET>
 <RECEIPT idNum="01" name="Spaghetti Bolognese">
 <FOODCOMPONENT>
 <APPELLATI Spaghetti</APPELLATION > ON>
 <CATEGORY>Pasta</CATEGORY>
 </FOODCOMPONENT>
 <FOODCOMPONENT>
 <APPELLATIO Bolognese Meat </APPELLATION> N>
 <CATEGORY> Meat </CATEGORY>
 </FOODCOMPONENT>
 <FOODCOMPONENT>
 <APPELLATION> Tomato sauce </APPELLATION>
 <CATEGORY> Vegetables </CATEGORY>
 </FOODCOMPONENT>
 <MICROORGANISM_TRACES name="listeria monocytogenes"/>
 <MICROORGANISM_TRACES name="listeria innocua"/>
 </RECEIPT>
 ...
 </TARGET>
 </ANALYSIS_RECORD>

 <ANALYSIS_RECORD idNum="2004/08" >
 <CONDITIONS>
 <TEMPERATURE value="16 C" />
 ...
 </CONDITIONS>
 ...
 </ANALYSIS_RECORD>
 ...
</LAB_DATA>

25 Clisteria innocuaTomato sauce

25 Clisteria innocuaBolognese Meat

25 Clisteria innocuaSpaghetti

25 Clisteria monocytogenesBolognese Meat

.........

25 Clisteria monocytogenesSpaghetti

25 Clisteria monocytogenesTomato sauce

FoodproductMicroorganismTemperature

MicroorganismAtmpressure
1040listeria monocytogenes

......

e.dot Relational Schema of reference={ FoodproductPH ,

Food-productStructure ,
FoodproductMicroorganismTemperature,
FoodproductFactor, MicroorganismAtmpressure }

document catalog.xml

<CATALOG>
 <YEAR>1999</YEAR>
 <FOODPRODUCT>
 <LABEL>Skimmed Milk</LABEL>
 <TEST idNum="01">
 <DURATION>Three days</DURATION>
 <TEMPERATURE>12 C</TEMPERATURE>
 <REPORT>
 <FACTOR>Z2</FACTOR>
 <BACTERIA Listeria Seeligeri /BACTERIA> > <
 <COMMENT>It still tastes good</COMMENT>
 </REPORT>
 </TEST>
 <TEST idNum="02">
 <DURATION>One month</DURATION>
 <TEMPERATURE>33 C</TEMPERATURE>
 <REPORT>
 <FACTOR>YOK</FACTOR>
 <BACTERIA>Salmonella</BACTERIA>
 <COMMENT>It smells like my socks</COMMENT>
 </REPORT>
 </TEST>
 ...
 </FOODPRODUCT>
 <FOODPRODUCT>
 <LABEL>eggs</LABEL>
 <TEST idNum="01">
 <DURATION>Five days</DURATION>
 <TEMPERATURE>18 C</TEMPERATURE>
 <REPORT>
 <FACTOR>Y0Y </FACTOR>
 <BACTERIA>Cyclospora</BACTERIA>
 <COMMENT>Abnormal Colour</COMMENT>
 </REPORT>
 </TEST>
 </FOODPRODUCT>
...
</CATALOG>

33 CSalmonellaskimmed milk

.........

18 CCyclosporaeggs

12 CListeria Seeligeriskimmed milk

FoodproductMicroorganismTemperature

Food-productFactor

......
Y0Yeggs

Z2skimmed milk

(The real e.dot application Relational
Scheme of reference is composed of 27
relation signatures)

Figure 2

 2

In Section 2, we describe the relational views of XML

documents that we consider and we explain how XQuery
queries are automatically generated from manual mappings
provided by the administrator. In Section 3, we describe the
relational queries that we consider. In Section 4, we describe
the reformulation algorithm that we have implemented in
order to transform a relational query into a union of XQuery
queries directly executable against the available XML data.
We conclude in section 5.

2 Mapping XML documents in relations of
the Reference Schema

There are different classes of XML-to-relational mappings.
User-defined: where the user specifies the mapping.
Generic: fixed mappings, data and schema independent, like
storing all the edges in a single table [FK99]. Data-driven:
mappings inferred from data, mining the document looking
for common regular patterns, building on such patterns.
Schema/DTD-driven: using the DTD or the schema to
decompose the document in tables [LWC01]. Cost-based:
mapping inferred from schema, query workload and data
[BFR02]. No solution is broadly better then the others: it
depends strongly on the information system requirements.
Our mapping is a trade-off between a user-defined and a
DTD-driven mapping. We are given a set of XML
documents (conform to some DTDs) and the relational
Reference Schema RS. Mappings from a relation of RS to
XML documents are expressed by queries defined in
XQuery. The user defined aspect is to choose which DTD
tree’s nodes (N1,…, Nn) associate with a relation
R(A1,…,An) in RS. We will not consider this aspect here,
since it is out of the scope of this paper. Once associated
the attributes A1,…,An to n nodes on the DTD tree (see
figure 4 for an example), we automatically build the
XQuery query referring to the DTD structure, ensuring the
integrity of the representation of the hierarchical XML
information in flat 1-to-1 tuples’ relations.

XQuery is a standard XML query language [XQ05]
elaborated by the W3C. The XQuery data model views an
XML document as an ordered labelled tree. For navigating
in a document, XQuery uses path expressions, whose syntax
is borrowed from the abbreviated syntax of XPath [XP99].
The evaluation of a path expression on an XML document
returns a list of information items, whose order is dictated
by the order of the corresponding elements in the document.
Typical query expressions of XQuery are FLWR
expressions (for-let-where-return). Typically, a let binds a
variable to a (path) expression, possibly nested for
expressions make variables iterate over the result of (path)
expressions, a where specifies restrictions on the variables,
and the return constructs new XML elements as output of
the query.

labData

conditions target

temperature AtmPressurehumidity

category

analysisRecord *

foodComponent +

receipt +

microorgTraces *
idNum name

appellation name

valuevalue value

Foodproduct Microorganism

Temperature

<!ELEMENT labData (analysisRecord*)>

<!ELEMENT analysisRecord (conditions, target)>
<!ELEMENT conditions(temperature, humidity,

atmosphericPressure)>
<!ELEMENT temperature (#PCDATA)>
<!ELEMENT humidity (#PCDATA)>
<!ELEMENT atmosphericPressure (#PCDATA)>

<!ELEMENT target(receipt+)>
<!ELEMENT receipt(foodComponent+, microOrganismTraces*)>

<!ELEMENT foodComponent(appellation, category)>
<!ELEMENT appellation (#PCDATA)>
<!ELEMENT category (#PCDATA)>

<!ELEMENT microOrganismTraces (#PCDATA)>
<!ATTLIST microOrganismTraces name CDATA #REQUIRED>

<!ATTLIST temperature value CDATA #REQUIRED>
<!ATTLIST humidity value CDATA #REQUIRED>
<!ATTLIST atmosphericPressure value CDATA #REQUIRED>
<!ATTLIST receipt

idNum CDATA #REQUIRED
name CDATA #REQUIRED>

labData.dtd

Mapping of the relation FoodproductMicroorganismTemperature on
the DTD’s tree, in italic the XML attribute leaves

Figure 3

Describing relational views using XQuery is an emerging
approach that presents several positive features. We have
chosen it as mapping language mainly for its declarative key
aspect because separating the logic of the mapping from
where and how it is processed makes the mediator flexible
to the evolution of the information system. Furthermore the
rich XQuery expressive power makes it possible to extend
the general mapping lines defined in this paper to the special
cases represented by an atypical use of XML syntax. The
downside of using XQuery as mapping language is that at
the execution time it could bring very poor results in terms

 3

of performance. In section 4 we describe in more details the
criteria we adopt to improve performances.

A mapping from a relation R(A1,…,An) of RS to an
XML document myDoc.xml conforming a DTD d is a query
XV(R(A1,…, An),d) defined in XQuery as follows :

XV(R(A1,…, An) ,d):

1. <TABLE>
2. let $R := doc(myDoc.xml)/root
3. for $L1 in $R/path1
4. for $L2 in path2
5. …
6. for $Lk in pathk

7. let $A1 in path’n
8. …
9. let $An in path’n

10. return
11. <TUPLE>
12. <A1> $A1/text() </A1>
13. <A2> $A2/text() </A2>
14. ……
15. <An> $An/text() </An>
16. <TUPLE>
17. </TABLE>

An XQuery variable $Ai is associated with each attribute

Ai from relation R(A1,…,An). The FOR clauses (lines 3-6)
define how to navigate the document, the LET clauses (lines
7-9) bind the $Ai variables to the appropriate paths. The
dependencies between the paths expressions
path1,...pathk, path’1,...,path’n are
defined in order to fix the context of the tuple we want to
extract. When in a DTD Z there is a ‘*’ or a ’+’ operator
associated with a node Y, it means that a document valid on
the DTD Z can present many nodes Y. Each subtree having
Y as root node represents the formal context we want to
preserve.

 For example in the document lab-data2004.xml
presented in Figure 2 (its DTD is in Figure 3), there are two
<ANALYSIS-RECORD> nodes. The relation
FoodproductMicroorganismTemperature is mapped on
three nodes belonging to the subtree having <ANALYSIS-
RECORD> as root (see Figure 3). We want all the triples of
values in the tuples (Foodproduct, Microorganism,
Temperature) belonging to the same sub-trees. Still
referring to our example we consider as a result from a
wrong mapping the tuple (“Tomato sauce”, “listeria
monocytogenes”, “16 C”) where the first two values come
from the subtree <ANALYSIS-RECORD
idNum="2003/01"> and the third value, the
temperature, from the subtree <ANALYSIS-RECORD
idNum="2004/08">.

Such dependencies between paths are defined by
visiting the DTD’s tree. Once associated a node in the
DTD’s tree with each attribute in the relation R(A1,…,An),
as in the example in figure 4, the mapping

XV(R(A1,…,An),d) is generated automatically by applying
the DTD tree recursive visit algorithm as follows:

DTD tree recursive visit algorithm:

BEGIN from the root node:

VisitNode(root, root)

VisitNode(actual node , branching ancestor):

IF actual node is a ‘+’ or a ‘*’ node

Add a for clause on path from
branching ancestor to actual node;
branching ancestor := actual node;

IF actual node is associated with a relational
attribute

Add a let clause on path from branching
ancestor to actual node;

IF actual node is not a leaf

FOR EACH child k of actual node
VisitNode(child k , branching
ancestor);

In Figure 4 there is an example of the result of the
algorithm above used to produce the view XV(
FoodproductMicroorganismTemperature,
labData.dtd).

A view generated by the DTD tree recursive visit
algorithm could present some redundancies due to the fact
that the visit associates an XQuery FOR with each ‘+’ or ’*’
node in the DTD tree. Considering the tree that represents
the mapping visit strategy (see Figure 5), such redundancies
can be eliminated respecting the rules described above. In
Figure 5, the nodes “Branching-level-k” are related to the
homonym XQuery variables in XV, and a continuous arch
between two nodes B1 and B2 represents a FOR statement
on variable V2 and a path depending on V1 from the view
XV.

Rule 1
If between two nodes “Branching-level-i” and
“Branching-level-j” there is a simple path composed
by h nodes, all the FOR instruction composing that
path can be replaced in XV by a single FOR
instruction between “Branching-level-i” and
“Branching-level-j”.

Rule 2
If, given a node “Branching-level-i”, in the subtree
having “Branching-level-i” as root there is no LET
arch, all the FOR instruction under “Branching-level-
i” can be eliminated.

 4

<TABLE>
{
let $Root := doc("archive2003.xml")/LAB_DATA

for $Branching-level-AB n $Root D i /ANALYSIS_RECOR
for $Branching-level-ABM n $Branching-level-AB ECEIPT i /R
for $Branching-level-ABMN in $Branching-level-ABM/FOODCOMPONENT
f

or $Branching-level-ABMQ in $Branching-level-ABM/MICROORGANISM_TRACES

 let $FoodProduct-COLUMN $Branching-level-ABMN := /APPELLATION/text()
 let $Microorganism-COLUMN := $Branching-level-ABMQ/@name/string()
 let $Temperature-COLUMN := $Branching-level-AB/CONDITIONS/TEMPERATURE/@value/string()

 return
 <TUPLE>
 <FOOD_PRODUCT>{ $FoodProduct-COLUMN }</FOOD_PRODUCT>
 <MICROORGANISM>{ $Microorganism-COLUMN }</MICROORGANISM>
 <TEMPERATURE>{ $Temperature-COLUMN }</TEMPERATURE>
 </TUPLE>
}
</TABLE>

An example of the view XV(FoodproductMicroorganismTemperature, lab-data2004.dtd). In bold the XQuery variables. Note that
the mapping algorithm produces XQuery variables named like “$branching-level-ABMQ” where the string “ABMQ” is easily
interpretable as “there are three FOR in cascade from root node ‘A’ branching at nodes ‘B’, ’M’ and ‘Q’ ” (see Figure 5). This depends on the
implementation of the algorithm. The letters A, B, etc… correspond to a numeration of the DTD’s nodes in relation to the in-deep tree visit.

Figure 4

labData

conditions target

temperature AtmPressurehumidity

category

analysisRecord *

foodComponent +

receipt +

microorgTraces *
idNum name

appellation name

value value

Temperature

Branching
level-ABM

value

Foodproduct Microorganism

Branching
level-AB

Root

Branching
level-ABMN

Branching
level-ABMQ

Root

Branching level AB

Temperature

Foodproduct Microorganism

Branching level ABMN Branching level ABMQ

Branching level ABM

LET

LETLET

FOR

FOR

FOR FOR

A representation of the mapping visit strategy on the DTD tree. On the left how the
XQuery variables in the query XV are associated with the DTD tree nodes. On the
right the dependences between paths in the FOR and LET statements in XV.

Figure 5

3 Queries over the Induced Relational Global
Schema

In the previous section we have seen that given a set of
XML documents, we can define a set V of relational views
of some of those documents: a (possibly empty) set of

relational views V(R)={XV(R(a1, …, an), f1), …,
XV(R(a1, …, an), fm)} is associated with each relation R of
the Reference Schema RS. The Global Schema induced by
those views is a subset of the Reference Schema RS defined
as follows.

Definition (Induced Global Schema)

 5

Let RS be a relational Reference Schema and V be a set of
relational views over RS of a set of documents. The Global
Schema induced by V, denoted R(V,RS), is the set of
relations from RS having a non-empty associated set of
relational views.

In other words, R(V,RS) is composed of all the relations
of RS which have been mapped in at least one XML
document. For example, the induced global schema
corresponding to the views on XML documents presented in
Figure 2 is:

R(V,RS) = { FoodproductMicroorganismTemperature,

FoodproductFactor, MicroorganismAtmpressure }

The induced global schema that is composed of the relations
of interest for the user of the XML base is the “relational
point of view” that the user has on the XML base. It is
presented to the user by means of a graphical user interface
(see Figure 6).

Figure 6

We propose to query the induced Global Schema by means
of a standard join-selection-projection query language. To
be more precise, we propose to use the following operations
of the relational algebra:
 given RA(A1, …, An) ∈ R, RB(B1, …, Bm) ∈ R(V,RS)

• RA Join RB on condition (Ai = Bj) for a given
couple i,j

• Projection RA on {A’} subset of { A1, …, An}
• Selection RA on (Boolean condition on Ak)

In the current version of the application, a Join is possible
between two tables and the user can set up multiple
selection clauses on equi-conditions. The queries are
expressed by the user through a graphical user interface (see
Figure 7) that passes to the underlying mediator the
following elements:

• The two join operand relations RA(A1, …, An)
and RB(B1, …, Bm) chosen among those in the
Induced Global Schema

• The list of attributes to project among {A1, …,
An,B1, …, Bm}

• The (eventually empty) list of selection conditions.

Figure 7

The next section presents the way a relational query over the
induced Global Schema is reformulated into a union of
XQuery queries, whose execution using an XQuery engine
provides the complete set of answers of the initial relational
query.

4 Reformulation and evaluation of a
relational query in XQuery

Using XQuery to map the XML documents to the relational
views is very useful in terms of logical independence of the
mediator from the XML sources, but it could easily bring to
nested queries that tend to alter the system’s efficiency. In
addition it is important to pay attention in executing
navigational queries over very large amount of data because
it can be critical even in native XML repository that adopt
sophisticated indexing techniques. Our query-reformulation
algorithm tries to respond to these performance
requirements in two ways. We decompose the Global query
in the union of several local queries that can be executed in
parallel. Each local query involves locally no more than two
documents with a significant optimisation in the context of a
native XML repository. Moreover every local query does
not present nested queries.

While the user can access only the Induced Global
Schema, the mediator keeps an internal representation on
how the Induced Global Schema is built on a composition of
Local Views, as in Figure 8. In addition it keeps
information on how each relation R from the Induced

 6

Global Schema is mapped in views XV(R,s)1 on each source
s where R has been mapped. Referring to figure 6.A it
means that, for example, the mediator knows how to map
the relation RelA on the XML sources 1,2 and 4 in XQuery.

Induced
Global
Schema RelA RelB RelC ... Relβ

XML

source s1 XV(RelA,s1) XV(RelC,s1)

XML
source s1 XV(RelA,s1) XV(RelC,s1)

XML
source s1 XV(RelB,s3) XV(RelC,s1)

XML
source s1 XV(RelA,s1) XV(RelC,s1) XV(Relβ,s4)

…
XML

source sn XV(RelB,s3) XV(Relβ,s4)

A representation the way the Induced Global
Schema is built on a composition of local views.

Figure 8

The Global extension of a relation from the Induced Global
Schema corresponding to the set of tuples that can be
extracted from the available XML data is defined as
follows:

Definition (Global Extension).
Let

R(A1, …, An) ∈ R(V,RS) be a relation of the Global
Schema induced by a set V(R(A1, …, An)) of
relational views over the reference schema RS,
where

V(R(A1, …, An)) = {XV1(R(a1, …, an),d1), …,
XVm(R(a1, …, an),dm)}

The Global Extension GE(R) of R is the set of tuples :

 GE(R)=∪(1 ≤ i ≤ m)exec(XV(R(a1, …, an), di),

where exec(XV(R(a1, …, an)), di) is the set of tuples
resulting from the execution of the queries in XQuery
defining the mapping XV on the document di.

The Query Decomposition Algorithm is the core of the
information integration system and the one we propose here
makes it possible to produce joins between data coming
from different XML sources. Considering what we already
said we can decompose a join operation (RelA Join RelB)
defined by the user by a relational query on the Induced

1 A view of the Relation R on a XML source s XV(R,s) is

analogue to a view of the Relation R on a document f XV(R,f)
considered in section 2, considering the XML source equivalent to
an XML document.

Global Schema into the operation on the global extensions (
GE(RelA) Join GE(RelB)), which are sets of tuples, as
follows:

 (GE(RelA) Join GE(RelB)) =

= (∪(1 ≤ i ≤ m)exec(XV(RelA, di))

Join (∪(1 ≤ j ≤ m)exec(XV(RelB, dj))

in view of the fact that a join operation is a Cartesian
product on two collections of tuples plus a selection we can
produce the subsequent equivalent decomposition:

(GE(RelA) Join GE(RelB))=

=∪i ,j (exec(XV(RelA,si) Join exec(XV(RelB,sj))

The initial relational query (RelA Join RelB) defined by
the user on the Induced Global Schema, (and consequently
to be executed on the whole set of XML sources) is now
reformulated in the union of several XQuery queries which
accomplish the (exec(XV(RelA,si) Join exec(XV(RelB,sj))
basic operation over no more than two sources; we call such
queries atomic join queries. (See Query 3 for an example)

Mediator
Abstract
level

user
Relational Query on

the Global Schema
Answer
Table

XQuery
engine

k atomic queries

XML source n

k answer tables

XML source 1

... ...

Parallel execution

query
decomposition answer tables

union

...

Local Schemas
informations

XML-to-RDB
XQuery

mappings

The mediator internal functioning. The user’s Relational Query
over the Global Schema produces k XQuery atomic-queries like the
one in Query 4. A parallel execution of the k atomic-queries
returns k sets of tuples (called answer tables). The k sets of tuples
are put together forming the answer table returned to the user.

Figure 9

The execution of the k atomic queries generated from the
initial relational query over the Global Schema generate k
sets of matching tuples; these k sets of tuples are put
together by the mediator and returned to the user as an
answer table. The mediator internal functioning is summed
up in Figure 9.

 7

The execution of an atomic join query involves two
nested queries: exec(XV(RelA,si)) and exec(XV(RelB,sj))
with an undesired temporary materialization of the
Relational Views XV(RelA,si) and XV(RelB,sj) (example
in Query 2 and in Query 3). Using the XQuery equivalence
rules, such a query can be easily rearranged in an equivalent
query where there is no temporary materialization of the
Relational Views XV. We use the same navigational
statements of the relational views XV(RelA,si) and
XV(RelA,sj) (an example in Query 2 lines 3-10, Query 3
lines 3-7) directly in the navigational context of a single

optimized atomic-join-query (see Query 4). Our mediator
implementation starting from a relational query on the
Global Schema produces directly a set of k optimized atomic
queries with no nested queries, that means materializing
only the tuples returned to the user in the answer table.

An atomic join query can also take care of the projection
and selection specifications of the relational query set up by
the user by: 1) adding the selection Boolean condition in
and-cascade to the join condition into the WHERE clause
(line 16 in the Query 4). 2) Choosing which attributes
return in the RETURN clause (lines 19-22 in the Query 4).

<TABLE>
{

let $TAB1 := doc(XV(FoodproductMicroorganismTemperature, lab-data2004.xml))/TABLE
for $TAB1-tuple in $TAB1/TUPLE
 let $TAB1-FoodProduct-COLUMN := $TAB1-tuple/FOODPRODUCT
 let $TAB1-Microorganism-COLUMN := $TAB1-tuple/MICROORGANISM
 let $TAB1-Temperature-COLUMN := $TAB1-tuple/TEMPERATURE

let $TAB2 := doc(XV(FoodproductFactor, catalog.xml))/TABLE
for $TAB2-tuple in $TAB2/TUPLE
 let $TAB2-FoodProduct-COLUMN := $TAB2-tuple/FOODPRODUCT
 let $TAB2-Factor-COLUMN := $TAB2-tuple/FACTOR
the join condition:
where ($TAB1-FoodProduct-COLUMN = $TAB2-FoodProduct-COLUMN)

 return
<TUPLE>
 <FOODPRODUCT>{ $TAB1-FoodProduct-COLUMN }</FOOD_PRODUCT>
 <MICROORGANISM>{ $TAB1-Microorganism-COLUMN }</MICROORGANISM>
 <TEMPERATURE>{ $TAB1-Temperature-COLUMN }</TEMPERATURE>
 <FACTOR>{ $TAB1-Factor-COLUMN /string()}</FACTOR>
 </TUPLE>
}
</TABLE>

Query 1 - atomic join query (exec(XV(RelA,si) Join exec(XV(RelA,sj))

1. <TABLE>
2. {
3. let $TAB1-Root := doc("lab-data2004.xml")/LAB_DATA
4. for $TAB1-lev-AB in TAB1-$Root/ANALYSIS_RECORD
5. for $TAB1-lev-ABM in $TAB1-level-AB/RECEIPT
6. for $TAB1-lev-ABMN in $TAB1-level-ABM/FOODCOMPONENT
7. for $TAB1-lev-ABMQ in $TAB1-level-ABM/MICROORGANISM_TRACES
8. let $TAB1-FoodProduct-COLUMN := $TAB1-lev-ABMN/APPELLATION/text()
9. let $TAB1-Microorganism-COLUMN := $TAB1-lev-ABMQ/@name/string()
10. let $TAB1-Temperature-COLUMN := $TAB1-lev-AB/CONDITIONS/TEMPERATURE/@value/string()

11. return
12. <TUPLE>
13. <FOODPRODUCT>{ $TAB1-FoodProduct-COLUMN FOOD_PRODUCT> }</
14. <MICROORGANISM> $TAB1-Microorganism-COLUMN }</MICROORGANISM> {
15. <TEMPERATURE>{ $TAB1-Temperature-COLUMN }</TEMPERATURE>
16. </TUPLE>
17. }
18. </TABLE>

Query 2 - view XV(FoodproductMicroorganismTemperature, lab-data2004.xml)

 8

1. <TABLE>
2. {
3. let $TAB2-Root := doc("catalog.xml")/CATALOG
4. for $TAB2-lev-AC in $TAB1/FOODPRODUCT
5. for $TAB2-lev-ACE in $TAB1-lev-AC/TEST
6. let $TAB2-FoodProduct-COLUMN := $TAB2-lev-AC/LABEL
7. let $TAB2-Factor-COLUMN := $TAB2-lev-ACE/REPORT/FACTOR

8. return
9. <TUPLE>
10. <FOODPRODU $TAB1-FoodProduct-COLUMN /text()}</FOODPRODUCT> CT>{
11. <FACTOR>{ $TAB1-Factor-COLUMN /string()}</FACTOR>
12. </TUPLE>
13. }
14. </TABLE>

Query 3 - view XV(FoodproductFactor, catalog.xml)

1. T
2. {

< ABLE>

mapping for relation FoodproductMicroorganismTemperature on source lab-data2004.xml:
3. let $TAB1-Root := doc("lab-data2004.xml")/LAB_DATA
4. for $TAB1-lev-AB in TAB1-$Root/ANALYSIS_RECORD
5. for $TAB1-lev-ABM in $TAB1-level-AB/RECEIPT
6. for $TAB1-lev-ABMN in $TAB1-level-ABM/FOODCOMPONENT
7. for $TAB1-lev-ABMQ in $TAB1-level-ABM/MICROORGANISM_TRACES
8. let $TAB1-FoodProduct-COLUMN := $TAB1-lev-ABMN/APPELLATION/text()
9. let $TAB1-Microorganism-COLUMN := $TAB1-lev-ABMQ/@name/string()
10. let $TAB1-Temperature-COLUMN := $TAB1-lev-AB/CONDITIONS/TEMPERATURE/@value/string()

mapping for relation FoodproductFactor on source file catalog.xml
11. let $TAB2-Root := doc("catalog.xml")/CATALOG
12. for $TAB2-lev-AC in $TAB1/FOODPRODUCT
13. for $TAB2-lev-ACE in $TAB1-lev-AC/TEST
14. let $TAB2-FoodProduct-COLUMN := $TAB2-lev-AC/LABEL
15. let $TAB2-Factor-COLUMN := $TAB2-lev-ACE/REPORT/FACTOR

the join condition:
16. where ($TAB1-FoodProduct-COLUMN = $TAB2-FoodProduct-COLUMN)

17. return
18. <TUPLE>
19. <FOODPRODUCT>{ $TAB1-FoodProduct-COLUMN }</FOOD_PRODUCT>
20. <MICROORGANISM>{ $TAB1-Microorganism-COLUMN }</MICROORGANISM>
21. <TEMPERATURE>{ $TAB1-Temperature-COLUMN }</TEMPERATURE>
22. <FACTOR>{ $TAB1-Factor-COLUMN /string()}</FACTOR>
23. </TUPLE>
24. }
25. </TABLE>

Query 4 - optimized atomic join query (XV(RelA,si) Join XV(RelA,sj))

5 Conclusion
The method described in this paper for integrating and
querying XML data through relational views has been
implemented in the setting of the e.dot project. The e.dot
project aimed at enriching an existing relational database
(called Sym’Previus) dealing with predictive
microbiology with XML data extracted from the Web.
The Sym’Previus database [BHT03] is being developed
since 1999, in order to gather data concerning the
microbiological risk in food products. Such a database is
of large interest for the governmental institutions as well
as the food industry, since it can help them to understand
the previous safety problems and to prevent new crisis.
The Sym’Previus database contains about 10.000 pieces
of information extracted manually from the scientific

bibliography in microbiology, but also given by the
industrial partners of the project. That base is accessible
through a Web interface to the Sym’Previus partners and
subscribers who query it by means of a relational-like
language.

One of the specificities of the Sym’Previus database is
its incompleteness, since the number of experiments
involving each bacterium with each food product in every
experimental condition is potentially infinite. So a way of
complementing the database with data automatically
found on the Web as it is proposed in the e.dot project is a
real asset for such a database. The integration of the data
coming from the relational database and the XML
documents coming from the Web by means of a
relational-like query language is a point of interest of our

 9

approach since the microbiologists already know that
interface.

Many researchers have studied the problem of storing
XML documents into relational tables [BFR02, ADF04,
BFR02, FK99], and also the converse problem of
exporting relational data into XML [HJLPM04, FFHS02].
The practical motivation of the former problem is that
native XML storage and querying technologies are still
too young to offer performances and robustness
comparable to the mature DBMS systems. The practical
motivation of the latter problem is that XML is becoming
the standard format for exchanging data. Our work is at
the confluence of those two lines of work. It makes
cohabit nicely the two data models by combining their
respective advantages: the relational data model is
exploited for its logical simplicity thus providing a simple
and synthetic query interface for end-users while the
XML format is exploited for extracting and integrating
possibly heterogeneous data coming from the Web.

In our current work, the instances of the relational
views of XML documents are atomic textual data (strings
at the leaves of the trees representing the queried XML
documents). We plan to extend our work to allow that
relational queries over XML documents possibly deal
with tree-structured fragments of XML documents.

References
[ADF04] Sihem Amer-Yahia, Fang Du, Juliana Freire. A

comprensive solution to the XML-to-Relational
Mapping Problem. In Proceedings of WIDM, 2004

 [BFR02] P. Bohannon, J. Freire, P. Roy, J. Simeon. From
XML Schema to Relations: A Cost-Based Approach
to XML Storage, In Proc. of Intl. Conf. on Data
Engineering (ICDE), 2002.

[BHT03] Patrice Buche, Ollivier Haemmerlé, Rallou
Thomopoulos. Integration of heterogeneous,
imprecise and incomplete data: an application to the
microbiological risk assessment. . In Proceedings of
the 14th International Symposium on Methodologies
for Intelligent Systems, ISMIS’2003, Maebashi,
Japan, October 2003, Lecture Notes in AI #2871,
Springer, pp. 98-107.

[FFHS02] Catalina Fan, Jhon Funderburk, Hou-in Lam,
Jayvel Shanmugasundaram. XTABLES: Bridging
Relational Tecnology and XML. IBM Systems
Journal, 2002

[FK99] D. Florescu, D. Kossman. Storing and Querying XML
data using an RDMBS, IEEE Data Engineering Bulletin,
22(3):27–34, 1999.

[HJLPM04] Alan Halverson, Vanja Josifovski, Guy M.
Lohman, Hamid Pirahesh, Mathias Mörschel: ROX:
Relational Over XML. VLDB 2004: 264-275

[KKN03] R. Krishnamurthy, R. Kaushik, J. F. Naughton.
XML-to.SQL Query Translation Literature: The
state of the Art and Open Problems. In XML
Database Symposium, 2003.

[LWC01] D. Lee, Wesley W. Chu. Constraints-Preserving
Inlining Algorithm for Mapping XML DTD to
Relational Schema, J. Data & Knowledge
Engineering (DKE), 39(1):3{25, Oct. 2001.

[RR03] Marie-Christine Rousset, Chantal Reynaud.
Knowledge Representation for Information
Integration. Information Systems International
Journal, Special issue: Web-Universal Integration,
Volume 29, Number 1, p. 3-22.

[SYJ01] H eekyoung Seo, Jaeyoung Yang, Joongmin
Choi. Knowledge-based Wrapper Generation by
Using XML. IJCAI-2001 Workshop on Adaptive
Text Extraction and Mining (ATEM 2001), pp. 1-8,
Seattle, USA, 2001.

[TS97] Mary Tork Roth, Peter Schwarz. Don’t Scrap it,
Wrap it! A Wrapper Architecture for Legacy Data
Sources. In Proceeding of the 23th VLDB
Conference, Athens, pp. 266-275, Greece, 1997.

[XP99] J. Clark and DeRose, XML Path Language
(XPath), version 1.0, W3C Recommendation,
http://www.w3.org/TR/xpath, November 1999

[XQ05] D. Chamberlin, D. Florescu, J. Robie, J. Simeon
and M. Stefanescu, XQuery: A Query Language for
XML, W3C Working Draft,
http://www.w3.org/TR/xquery February 2005.

 10

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xquery

	Damiano Migliori, Marie-Christine Rousset
	Ollivier Haemmerlé
	Rule 1
	Rule 2

