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Abstract. Data integration is the problem of combining data residing at different
sources, and providing the user with a virtual view, called global schesmiah

is independent from the model and the physical origin of the sourcesr&¥s
many data integration systems and theoretical works have been pidposela-
tional data, not much investigation has been focused yet on XML dataatig

Our goal is therefore to address some of its related issues. In partivelaigh-
light two major issues that emerge in the XML context: (i) the global schema m
be characterized by a set of constraints, expressed by means @ amirXML
integrity constraints, (ii) the concept nbde identityrequires to introduce seman-
tic criteria to identify nodes coming from different sources. We progo&egmal
framework for XML data integration systems based on an expressilegfobal
schema, a set of XML data sources and a set of mappings specifiaédiys of

a simple tree language. Then, we define an identification function that aims a
globally identifying nodes coming from different sources. Finally, wepase
algorithms to answer queries under different assumptions for theintggpp

1 Introduction

Data integration is the problem of combining data residihglitierent sources, and
providing the user with a virtual view, called global schemvhich is independent from
the model and the physical origin of the sources. Users gherglobal schema, while
the system carries out the task of suitably accessing diffesources and assembling
the data retrieved at each source into the final answer to ukeygWhereas many
data integration systems [8, 10] and theoretical works,[82phave been proposed for
relational data, not much investigation has been focusedry&XML data integration.
Our goal is therefore to address some of its related issngzarticular, we highlight
two major issues that emerge in the XML context: (i) the gldwdnema may be cha-
racterized by a set of constraints, expressed by means ofCadpil XML integrity
constraints, (ii) the concept ofode identityrequires to introduce semantic criteria to
identify nodes coming from different sources. The lattesimilar to the well-studied
problem of identifying objects in mediators systems [11pwdver, it requires some
particular solution in the context of XML data integration.

As for relational data, in order to answer a query posed dwegtobal schema, the
system needs the specification of the relationship betwseisdurces and the global
schema, which is callethapping Different approaches have been proposed to spe-
cify mappings. We chose here to focus on tueal-As-View(LAV) approach, which



consists in characterizing the information content of tharses in terms of the global
schema. An important property of mappings concerns theracgwf the source with
respect to the corresponding view. If a source provides andybset of the data ac-
cessible from the global schema throw the corresponding, \tleen, we say that the
mapping issound Otherwise, if the source provides exactly the correspandiew,
we say that the mapping &xact It is well-known that this case is more difficult to deal
with. The main contributions of our work are as follows.

— First, we propose a formal framework for XML data integratgystems based on
(i) a global schema specified by means of a set of (simplifiedp @and a set of
XML integrity constraintss defined in [5], (ii) a source schema specified by means
of DTDs, and (iii) a set of LAV mappings specified by meangufix-selection-
query languagehat is inspired from the query language defined in [1].

— Second, we define adentificationfunction, that aims at globally identifying nodes
coming from different sources. As already mentioned, tredrfer this function is
motivated by the concept ofode identity

— Finally, we address the query answering problem in the XMia dlategration set-
ting. In particular, given the strong connection with quanswering with incom-
plete information, we propose an approach that is remintsfesuch a context. We
provide three algorithms to answer queries under the agtomspof sound, exact
and mixed mappings, and study their complexity.

The paper is organized as follows. In Section 2, we illustil¥IL data integration and
some of its related issues by an example. In Section 3, weprdse data model and the
query language used in the paper. Then, the formal framefsoMML data integration

is introduced in Section 4, where we define the identificafimetion. In Section 5, we
introduce query answering and propose different algosttovanswer queries under the
assumption of sound, exact and mixed mappings. Section@uaes the paper with a
discussion about future works and XML data integration apsues.

Related work The only XML data integration system we are aware of, thag$ahto
account integrity constraints, is the one presented inl[3¢ authors propose the gram-
mar AlG to specify the integration of data coming from diéfat relational sources in a
document that conforms to a DTD and satisfies a set of injegpitstraints. However, in
their work (i) mappings follow th&lobal-As-View(GAV) approach which has a more
procedural flavor, since it characterizes the informatiomtent of the global schema in
terms of the sources, (ii) the sources are relational, dijavfienever the retrieved data
does not satisfy a constraint, the query evaluation is edo€loser to our work is the
investigation of [2], which concerns XML data exchange.His tsetting, the aim is to
materialize an instance of a target schema, given an irstafrecsource schema, where
both schemas are specified by means of DTDs. In particukey,dddress consistency
and query answering over the target schema. However, ol eansiders multiple
sources, whereas in data exchange the source is unique ilMenestingly, no integrity
constraints can be expressed over their target schema eindjtiery language allows
only for the extraction of tuples, whereas our query languagracts trees.

2 XML data integration by example

In this section, we illustrate by an example XML data inté¢igma



Suppose that an hospital offers access to information giatignts and their treat-
ments. Information is stored in XML documents managed ifedint offices of the
hospital, whereas users (e.g. statisticians), because/atp and security reasons, have
access to a global DTDg that has the following form:

<! ELEMENT hospital (patient+, treatnent+)>

S - <! ELEMENT patient (SSN, nanme, curex, bill?)>
G - | <l ELEMENT treat nment (trI D, procedure?)>

<! ELEMENT procedure (treatnent+)>

Following a common approach for XML data, we will consider Xiocuments as
unordered trees, with nodes labeled with elements namesafidtve DTD says that the
document contains data about patients and hospital treéémehere a cure is nothing
but a treatment id. Moreover, a set of keys and foreign keystraimts are specified
over the global schema. In particular, we know that two pasieannot have the same
social security numbeBSN that two treatments cannot have the same nurttier
and that all the prescribed cures have to appear among #itentrats of the hospital.
Such constraints correspond respectively to two key caimésr and one foreign key
constraint. Finally, assume that the sources consist ifotlmving two documentsD,
and D5, with the following DTDs. Mappings tell us thdD; contains patients with a
name and a social security number lower th86000, and D, contains patients that
paid a bill and were prescribed at least one dangerous c@agaume that these have
numbers smaller thadb).

<hospi tal >
<patient >
<name>Par ker </ name>
<SSN>55577</ SSN>
D - </ patient> S, - <! ELEMENT hospital (patientx)>
1+] <patient> 1 -] < ELEMENT patient (nanme, SSN)>
<name>Rossi </ name>
<SSN>20903</ SSN>
</ patient>
</ hospi tal >

<hospi t al >

<patient > - -
. .| <'ELEMENT hospi tal (patientx*)>
Dy : . ;;Si'\zﬁfiﬂd SsN> S2 1| & ELEMENT patient (SSN)>

</ hospi tal >

Suppose now that the user asks for the following queries:

1. Find the name and the SSN for all patients having a name &8Ng that paid a
bill and that were prescribed at least one cure.
2. Does the hospital offer dangerous treatments?

Typically, in data integration systems, the goal is to fine ¢ertain answers, e.g. the
answers that are returned by all data trees that satisfylobalgschema and conform to
the data at the sources. By adapting data integration tetagy [9] to our setting, we
call themlegal data treesA crucial point here is that legal data trees can be cortstiuc
by merging the source trees. We therefore need to identdgsithat should be merged
using the constraints of the global schema. Note, howelvat,data retrieved may not
satisfy these constraints. In particular, there are twdkiof constraints violation. Data
may be incomplete, i.e. it may violate constraints by notvgliag all data required
according to the schema. Or, data retrieved may be incensjste. it may violate



constraints by providing two elements that are "semariyicttie same but cannot be
merged without violating key constraints. In this paperwikaddress the problem of
answering queries in the presence of incomplete data, wiglvill assume that data
does not violate key constraints. Coming back to the exaniple easy to see that
the sources are consistent. Thus, the global schema dotsspecification allows to
answer Query 1 by returning the patient with name "Parked’sotial security number
"55577", since thanks to the key constraint we know thatdl@mnot be two patients
with the same SSN. Note that Query 2 can also be answered evithirty. Mappings
let us actually infer that the patient named "Parker” wasprided a dangerous cure. In
addition, thanks to the foreign key constraint, we know #vatry cure that is prescribed
to some patient is provided by the hospital.

We conclude the section by highlighting the impact of theuagstion of having
sound/exact mappings. Suppose that no constraints weressea over the global
schema. Under the exact mapping assumption, by inspetiinggta sources, it is pos-
sible to conclude that there is only one way to merge datacesuwand satisfy the schema
constraints. Indeed, since every patient has a name and a@8ber, we can deduce
that all patients inD, with a SSN lower thari00000 belong also taD, . Therefore the
answer to Query 1 would be the same as in the presence of aimtstwhereas no an-
swer would be returned to Query 2, since no information igigign that portion of the
global schema. On the other hand, under the assumption afisoappings, since in
the absence of constraints there could be two patients hétkame SSN, both queries
would return empty answers.

3 Data model and query language

In this section we introduce our data model and query languagpired from [1].

Data trees and prefixes XML documents are represented as labeled unordered trees,
called data trees Given an infinite sef\V' of nodes, a finite set’ of element names
(labels), and a domaif’ = IV U {0} for the data values, @ata) treeT over X' is a
quadruplel’ = (¢, \, v), where:

— tis afinite rooted tree (possibly empty) with nodes fram
— ), called thdabeling function associates a label iff to each node in; and
— v, thedata mappingassigns a value ifi' to each node in.

We calldatanodeghose nodes of ¢ such that/(n) # 0. Note that0 is a special data
value that represents the empty value.

A prefixof T = (¢, \,v) is adata tred” = (t', \,v/), writtenT’ < T, such that
there exists a homomorphisinfrom (all) the nodes of’ to (some of) the nodes of
such that: is recursively defined as follows:

— if n’ is the root oft’ thenh(n’) is defined and it is the root af we say thath
preserves the root;

— for every noden” that is a child ofn’ in ¢/, such thath(n') is defined,h(n") is
defined and itis a child di(n’) in ¢; thush preserves the parent-child relationships;



— for every noder’ in ¢’ such thath(n’) is defined A(h(n')) = N (n'); thush pre-
serves the labeling;

— for every node:’ in ¢’ such that(n’) is defined and(n’) # 0, v(h(n')) = v'(n');
thush preserves the data mapping if and only if it maps a datanode.

Note that the empty tree, i.e. the tree that does not contaimade, denotedj, is a
prefix of all data trees. Moreover, T’ < T andT < T”, then we say thaf’ and7T” are
isomorphic written T' ~ T”. Finally, we introduce théntersectionof two data trees.
Given two data tree%; andT5, their intersection, denoteéff = T7 N T, is such that:
()T <Ty,T" < Ty, and (ii) for allT” notisomorphic td”, if 7" < Ty andT” < Ty,
thenT” < T',i.e.T" is the maximal prefix of botl’, andT5.

Proposition 1. The intersection of two data trees is unique up to tree isqinism.

hospital hospital
pat;nt patient tre;{mem tr;e;{ment pati‘;nt patient tre;;menl
P 1 P N
SSN  name cure cure SSN  name trID trID SSN  name cure bill SSN  name  trID
33570 ParkepGD AD2090P Ross DG AD G372 ParkeD> 2D 200D 3570 RossD> 2D
(a) Data tredl (b) Data tre€l,
hosg’[tal hospital
patient patient treatment pati treatment
N\ p 2 N7
. Vo / . ! SN TS T o~ ~
SSN  name cure SSN name trID SSN name cure bill trID  procedure
(c) Intersectiorils N Ts (d) Tree type

Fig. 1. Data Model

Example 1.The data tree¥’ andT5, resp. in Fig. 1(a) and 1(b), represent data about
patients and treatments of an hospital. Note that only daltzeg different fron0 are
represented and are circled. In Fig. 1(c) we show the intdsel; N T5. It is easy to
verify that it is the maximal prefix of botf}; andT5.

Tree Type We calltree typeover an alphabel’ a simplified version of DTDs that can
be represented as a trip|&'-, r, u), whereX'. is a set of labels, i.e¥, C X, r € X,
is a special label denoting the root, gmdssociates to each labek Y. amultiplicity
atomsu(a) representing théype of «, i.e. the set of labels allowed for children of
nodes labeled, together with some multiplicity constraints. More pretys..(a) is an
expression; ...a;", wherea, are distinct labels i, w; € {,+,7,1},fori =1, ...k.
Given an alphabel’, we say that a data tréE over X satisfiesa tree typeS =
(X, r,uy over X, notedT” |= S, if and only if: (i) the root ofT" has label-, and (ii) for
every noden of 7" such that\(n) = a, if u(a) = a7™...a;*, then all the children of,
have labels i{a;..a; } and the number of children labelegdis restricted as follows:

— if w; = 1, then exactly one child ot is labeled witha;;
— if w; =7, then at most one child of is labeled witha;;
— if w; = +, then at least one child of is labeled witha;;



— if w; = *, then no restrictions are imposed on the children tdbeled witha;.

Given a tree type, we catiollectiona labela such that there is an occurrence of either
af ora; in u(a), for somea; € . Moreovera; is calledmember of the collection.

Unary keys and foreign keys Given a tree typ& = (X, r, u), we recall and adapt to
our framework the definition dfabsolute) unary keys and foreign kdyam [5, 4]:

— Keys are assertions of the form:k — a, wherea € X, andk! € pu(a). The
semantics of keys is the following. Given a tréesatisfyingS, T' = a.k — a
if and only if there does not exist two nodesn’ of T labeleda such that their
respective unique children labelédave the same data value.

— Foreign keys are assertions of the foramh, C b.k;,, Wherek, is a key forb,
a € X andh¥ € pu(a) for somew. In this paper, we consider in particulamiquely
localizable foreign keysy imposing thab is such that there is a unique label path
r11,..,1ls,b from the root to any node labelédwhere fori = 1, .., s, [; is not the
member of any collection. The semantics of foreign keyseasfttiowing. Given a
treeT satisfyingS, T = a.h, C b.ks if and only if for every node: of T' labeled
h, that is a child of a node labeled there exists a node’ labeledk;, child of a
nodep’ labeledb, such that, andn’ carry the same value (that is a keyf9.

Schema satisfactiorGiven a tree typeg, a set of key®, and a set of foreign keys
dri, we callschemaa tripleG = (Sg, Pk, Pri). Moreover, we say that a trég
satisfieshe schem& ifand only if T = Sg, T = &k andT = Prk.

Example 2.The DTD Sg from Section 2 corresponds to the tree type, represented
graphically in Fig. 1(d), where =hospi t al andy can be specified as follows:
hospital — patient™t treatment™
patient — SSID nanme cure* bill’
treatment — trlD procedure’
Note thatpatientandtreatmentare both elements of the same collectimspital The
following sets of constraints express those mentioned atiGe2:

Pk : {patient.SSN— patient;
treatment.triD—treatnent}
Prk : {patient.cure Ctreatnent.trl D}

The tree of Fig. 1(a) satisfies the schetha= (Sg, Pk, Pri ), Whereas the tree of
Fig. 1(b) does not since it contains two patients with thees&8N.

Prefix-selection queriesintuitively, prefix-selection querieéshortly referred aps-
querieg browse the input tree down to a certain depth starting flveroot, by reading
nodes with specified element names and possibly with dateesaatisfying selection
conditions. Existential subtree patterns can also be egptk When evaluated over a
data tre€l’, a boolean ps-query checks for the existence of a certamtatern inf".
A ps-query that is not boolean returns the minimal tree th&&dmorphic to the set of
all the nodes involved in the pattern, that are selected byjtiery.

Formally, aps-queryg over an alphabef is a quadruplét, A, cond, sel) where:

— tis arooted tree;
— ) associates to each node a labekinwhere sibling nodes have distinct labels.



— cond is a partial function that associates to each nodearconditionc that is a
boolean formula of the formgbep1b1...Pm—_1bm—_1Pm, Wherep; are predicates
to be applied to datanodes values &pa@re boolean operators foe= 0..m, m > 0
andj = 0..m — 1; for example, if” = Q, then predicates that can be applied to
datanodes values have the fosmv, whereop € {=,#,<,>, <, >} andv € Q;

— sel is a total function that assigns to each nodé i boolean value such that if
sel(n) = false thensel(n') = false, for every childrem’ of n; intuitively, sel
indicates whether a node is selected by the query, with thstint that whenever
n is not selected, then all the nodes of the subtree rootedahnot be selected.

We call boolean ps-query queryg = (t, A, cond, sel) such thatsel,(r,) = false,
wherer, is the root label of,,.

We next formalize the notion of answer to a ps-query usingatindliary concepts
of valuation and query valuation image. Given a queey (t,, Aq, condy, sel,) and a
data tre€l’ = (¢, A\, v), avaluationy from g toT" is a homomorphism from the nodes
of ¢, to the nodes of preserving the root, the parent-child relationships, #ieling
and such that: for every, € t,, if cond,(n,) is defined then(y(n,)) is a datanode,
i.e.v(y(ng)) # 0, andv(y(n,)) satisfiesond,(n,). Thevaluation imagel of ¢ posed
over T is the subset of nodes df that are in the image of some valuation. We call
positive subseP(I) of I the subset of such that for every. € P(I), there exists a
valuationy such thatsel,(y~'(n)) = true. Intuitively, P(I) represents the subset of
nodes off that are selected hy.

We now define the semantics of answerto a ps-query; posed ovefl’, denoted as
q(T). If the valuation image of posed ovef is empty, thery(T') = false. Otherwise,
q(T) is adata tree such that ¢§7") is isomorphic taP(I) and (i) there does not exist a
data treel”, not isomorphic tg/(7'), such thafl” < ¢(T") andT” is isomorphic taP (1)
(i.e. ¢(T) is the minimal tree that is isomorphic #8()). Note that if P(I) is empty,
theng(T) is the empty tree, i.ex(T) = Tj. This case occurs whepis boolean and it
returnstrue.

hospital hospital hospital hospital
patient patient patient patient patient
/N N\ N — T
SSN name SSN name SSN name SSN cure<35 bill SSN
<100000> Q5572Parker> 20903 RossiD> G5572
(a) Ps-quen\i; (b) Answer toM; (c) Ps-quernyM, (d) Answer tolM,

Fig. 2. Querying a data tree

Proposition 2. Given a ps-query and a data tred” over Y, the answeg/(7') is unique
(up to tree isomorphism). MoreovergfT') # false, theng(T) is the minimal prefix of
T such that there exists a homomorphisrflom P(I) to ¢(T') preserving parent-child
relationships among nodes, labeling and data mapping.

Example 3.Consider the queries in Fig. 2(a) and 2(c) posed over theofreey. 1(a).
They select respectively (i) the name and the SSN of patieaigig a SSN smaller
than 100000, (ii) the SSN of patients that paid a bill and were prescribetéast one



dangerous cure (i.e. a cure with id lower ti&i). The answers to the queries are given
in Fig. 2(b) and 2(d). Note that we graphically representxdstential subtree pattern
in a query by underlying the label of its root.

4 Data integration framework

In this section we first formally define a data integrationteys Then we start dis-
cussing query answering by introducingidentification function

4.1 Formal definition
An XML data integration systerfi can be characterized by a triplg, S, M), where:

— The XML global schem& = (Sg,?x,Prk) is expressed in terms of a tree type
Sg = (X, r,u), a setdy of key constraints and a sétzx of uniquely localiz-
able foreign keys. We assume that at most one key constsaémpressed for each
element (e.gl  areprimary keyq5]);

— S is a set of source schem&s= {5, 5s, ..., S;n }, wheresS; is a tree typej =
1,...,m; note that dealing with such kind a sources is not restgctimce we can
assume that suitable wrappers are available that presestthices in this format;

— M is the set of (LAV) mappings betwe&handsS, one for each data sourég in
S; they are expressions of the forigs;, M;, as;), fori = 1,...,m, whereas; €
{sound, exact} andM; is a ps-query (not boolean) thatdsherent withS;, i.e. for
every D; satisfying$;, there exist§” such thatD; < T andM;(T) ~ D;.

Example 4.Consider the data integration systdm= (G, S, M) that corresponds to
the one discussed in Section 2. The global schéma(Sg, @i, Prx ) is the one of the
Example 2. The source schemasis= {51, S2}, whereS;, S3 correspond to the DTDs
of Section 2. Finally, the mappiny! is a set of expressions of the forif;, M;, as;),
fori = 1,2, whereM;’s are those of Fig. 2(a) and Fig. 2(c) am¢l € {sound, exact}.

Given a set of data sourcd® = {Dq,..., D,,} that conform toS = {Si,...,Sm}
(i.,e.D; E S;,i = 1,...,m), the semantics of a data integration system consists of all
the legal data trees that conform to the schghend satisfy the mapping$1. More
precisely, we have the following:
sem(Z, D) = {T|T ': Sg,T ': @K,T ': @FK,
Vi=1,..m,D; < M;(T)if as; = sound
D; ~ M;(T) if as; = exact}

According to the above definition, it may happen that no letgh tree exists that
belongs tasemn(Z, D). In this case, the setting isconsistentThis may happen for the
following reasons.

— The global schema specification mayiheonsistenti.e. there may not exist any
tree that satisfies botf; and the set of constraints. It was shown in [5], that in the
case of ageneral DTD, the problem is decidable and its codityple NP-complete.



— A mapping may bérivially inconsistenti.e. for every tred” that satisfies the global
schemaM;(T) = Ty. It is possible to check whether a mapping is trivially ineon
sistent by verifying that, given the global scheSwa = (X, r, 1) and a mapping
(Siy My, as;) € M, with M; = (t,,, A\, cond,,, sely,), we have that for every
n € tg,: (i) if nis the root oft,,, theniy, (n) = r, (i) if Ay, (n) = q, all children
n; of n have distinct labels among thoseitu). This check is clearly polynomial.

— There may be aempty mappingi.e. given a sourc®;, there might not exist any
data treel” such thatM;(T) < D,. This problem is also decidable. A PTIME
algorithm would consist in building from/; the queryM that results by ignoring
the existential subtree patterns/df, and then checking whethéf/(D;) ~ D,.

— Finally, there may occur some inconsistencies among datxe® and;. In our
example this would happen if two sources contain patientis thie same SSN but
different names.

In what follows, we will assume to deal with consistent dategration systems (note
that decidability of data integration consistency probleran open problem).

4.2 Query answering with identification

The main task of a data integration system is obviously tevansgjueries. Following
the classical approach, we defineertain answerto a ps-query posed over a data
integration systerff = (G, S, M) w.r.t. to a set of data sourcés, as follows:

T= () D)

Tesem(Z,D)

i.e.¢>P is the intersection of the answersg¢over all legal data trees.r.t. Z.

Theorem 1. Given a set of sourcéB, a consistent data integration systém= (G, S, M)
and a ps-query;, ¢©'? is the maximal data tree that is a prefixgfl), for every legal
data treeT w.r.t. t0 Z.

Remark The certain answer to a quegyposed over a data integration systém.r.t.
to a set of data sourceB is a data tred” such that there may not exist affyy such
thatq(7”) = T'. This is not surprising since by the previous theorem we hiaatthe
certain answer is the maximptefix of the answer® ¢ over all legal data trees, which
only means that for every legal data trE&, T is a prefix of the answey(T").

To illustrate identification, let us observe the followir8uppose that no existential
tree patterns were expressed in any mapping and that nodeidsavailable that were
shared among data sources. Then computing the certain answél basically con-
sists in merging the data sources, adding nodes to satisfyahstraints, querying the
resulting tree and returning the "certain” prefix of the aaswrollowing this intuition,
we possibly extend each data soufeeby a data sourc®, = (t/, \;, v}) that is ob-
tained fromD; by adding nodes whose presence can be inferred in everydatsatree
from the mapping specificatiofb;, M;, as;), whereas; € {sound, complete}. These
nodes correspond to existential tree patterns nodés; iltMore precisely, for each leaf



n € D; = (t;, A\, v;) labeleda;, we consider the node, of ¢, such that there exists a
valuationy from ¢, to D; with y(n,) = n (note that this node exists and is unique since
we assumed thalt/; is coherent withS; and mappings are neither trivially inconsistent,
nor empty). Ifm, is a child ofn, such thatsel,(m,) = false, then we recursively
proceed as follows. For every node, in the subtree rooted at,, a nodem is added

in D; = (t;, \i, v;) such that we can extendby definingy(my,) = m, where:

— mis child of the node of ¢/ such thaty~!(n) is defined and it is the parent of

- )\;(m) = )‘q(mq); _ _

— if condy(my) is defined, thew(m) = v wherewv; is a fresh Skolem constant such
thatcond,(m,) is satisfied.

) .
q’

Next, we define thedentificationfunction whose aim is to obtain from each ex-
tended data sourcB; a new data source, callédentified data sourgewhose nodes
have global ids that depend ¢h such that two nodes have the same global id only if
they are merged in every legal data tree. In order to intredie identification, we start
by recursively defining the domaik™ of global ids:

—ec N,
—ifn e NI, thenn.a;[.y;] € N, wherea; € ¥ and~; is an optional value in
I = U VS, whereV? is a set of Skolem constants.

Finally, Id(D) is obtained by recursively associating to each nedeD; = (¢, A}, v})
a global idid,, in N7

— if n is the root oft}, thenid,, = ¢;
— if n labeledq; is child of a nodep labeledq, id,, = idp.a;[.7] where~y is an
optional value appearing if:
o either there exista;.k — a; € @g; then ifn has a childn labeledk, then
v = v(m), otherwisey = v, whereu, is a fresh constant in*;
e ora;’ € pu(a), wherew; € {+, }; theny = v, with v, fresh constant i’

Note that, by an abuse of notation, we denbiéD;) the data source obtained by first
extending the original data source and then identifyingesoals describedd(D;) is
such that all its nodes have a global ididf, does not contain any Skolem constant, we
say that is uniquely identified. In the following example, we illuate identification.

Example 5.Given the data integration system of Example 4 and the sallgcgiven

in Fig. 2(d), Id(D,) is represented in Fig. 3, where the labels of nodes addedeby th
identification are boxed, the global ids are marked in bold anrepresent Skolem
constants in®, fori = 1, 2. Note that all nodes are uniquely identified, except for the
node labeled¢ur e. Moreover,y; represents a data value lower than 35.

By identifying data sources, clearly, two nodes are assighe same global id only if
they are merged in every legal data tree. Moreover, the datzas extension does not
modify the sources content that is mapped to every legaltoegalt therefore does not
affect certain answers. Indeed, it is straightforward twvprthe following theorem.

Theorem 2. Given a set of data sourcésand a data integration systef= (G, S, M),

the following holds:

qI7D = ﬂTGscm(I,D) q(T) - ﬂTGSGm(I’Id(D)) q(T)
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Fig. 3. Identified treeld(D)

From now on, the previous theorem will let us considem(Z, Id(D)) rather than
sem(Z, D).

5 Query answering algorithms

In this section, we provide three algorithms that use idieation to answer ps-queries
overZ, under the assumption of sound, exact and mixed mappinggréposed al-
gorithms follow an approach that is typical in the preserfda@mplete information.
This is not surprising since it is well-known [6] that LAV deintegration query answer-
ing is strongly related to the problem of querying an incagtpldatabase. Indeed, data
sources provide only partial information on legal datagréiéhus, our algorithms are
all based on the idea of constructing a weak representaygieaT [7], to represent
all legal trees (i.esem(T) = sem(Z, Id(D))), such that for eacll’ and each ps-query
q there exists a representatiq(iT') such tha{ \{T'|T" € sem(q(T))} = ({¢(T)|T €
sem(T)}. It follows that the complexity is given by (i) the complexiof computing
T, (i) the complexity of constructing(T), and (iii) the complexity of computing the
intersection of answers representedggiT’).

5.1 Query answering under sound mappings

Before introducing the algorithm for query answering, wghfight that, as mentioned
earlier, it is based on the idea of building a weak represientaystemT'. Because of
lack of space, instead of introducing formally, we intuitively present it as a special
tree with values in’". In particular,T may have Skolems as data values that are con-
strained to satisfy conditions similar to those expressegdqueries (note that this
may happen, for example, when nodes are added in order sfysatistential subtree
patterns in the mappings, or a constraint of the schema)vdlnation of a query over
T has to be modified accordingly. In particulgf,T) may contain Skolem constants for
data values, since it has to be equivaleriTtérom the point of view of certain answers
tog.

Given a query;, a systent and a set of sourcé3 = {Dy, ..., D, }, our algorithm
for query answering under the assumption of sound mappirgrepeds as follows.

1. We computdd(D) w.r.t. to G and obtain a data tree with global ids and with data
values inl". However, this tree may contain nodes that are semantieglijvalent,
i.e. they represent the same node in every legal data tredabe different node
identifiers. In particular, this may happen whaf(D;) andId(D;) contain resp.
nodesn;, n; labeleda uniquely identified by the same id,, and nodesn;, m;, la-
beledb, resp. children ofi;, n;, that are identified with different global ids, whereas



according taSg, nodes labeled should have at most one child labeledio sim-

plify, suppose that they are not datanodes. If at least or@ngm;, m;, saym;,

is not uniquely identified, then the sources are consistedivee say thatn;, m;

can beunified by replacing the global id of; with the id of n;. We then obtain

theretrieved global data tree.r.t. to D, denoted-et(Z, D). Itis possible to prove
that if the setting is consistent, theet(Z, D) is such thatet(Z, D) < T, for every
legal data treq’.

2. We compute the representation syst&m= (t*, \*,v*) for all legal data trees,
by adding nodes toet(Z, D) in order to satisfyG. More precisely, we proceed by
applying the following rules:

(a) Foreaclplabeledq, if a;* € pu(a) wherew; € {1,+} andn’ has not any child
labeleda;, then we add td the childn of p, with \*(n) = a; andv*(n) = 0.

If a;.k — a; € Pk Orw; = +, thenid, = idp.a;.7s Wherevy, is a fresh
constant fronV?, otherwiseid,, = idp.a;.

(b) For eachn, labeledh,, child of n, labeleda, if a.h, C b.k, € Prg, and
there is not any node labelédwith key valuev(m,), then we add a set of
nodes, one node’ for each label that occurs from the root to the parent
of the node labeled in Sg, whereX*(n’) = [ andv*(n’) = 0, so that the
tree satisfies the global schema. Note that since the fokelgeonstraints are
uniquely localizable, all these nodes are uniquely idestdtifind therefore their
global ids depend only of. Suppose that is the last node that is added, and
that its global id isid,. Then we add the node, child of p, with global id
idn, = idp.v(m,) and such thah*(n,) = b andv*(n,) = 0. Moreover, we
add the childn,, of ny,, with global ididy,, = idy,, .k, such that\*(m;) = ks
andv*(my) = v(my).

Intuitively, this step corresponds to computing the welbln technique of the

Chaseover ret(Z, D). Since the Chase may not stop and lead to an infinite data

tree, we proceeds as long as the algorithm adds nodes (thae@uired by the

schema) that have either the foidh, = idy.a or the formid,, = idy.a.ys where

a € Y., vs € V°is a Skolem constant and there is not any node with global id

id, = idp.a.7, wherey, € V5 ~L # .. - ~

3. We computey(T) and return its certain prefik = (¢, A, v). Note in particular that
for everyn in g(T) such that*(n) is a Skolem, we set(n) = 0.

Claim. Given a consistent data integration system, the aboveidigoterminates.

Theorem 3. Given a consistent data integration systémwith sound mappings, a set
of sources and a ps-quety ¢>>P = T, whereT is computed as above.

Complexity Let us discuss the computational complexity of the aboverdlgnm. In
particular, we focus on data complexity, which refers todilze of the set of data sources
D. Itis easy to see that the construction of the dataTrés polynomial in the size of
D. Moreover, the size o is polynomial. Then, since the construction @fT) is
polynomial in the size ofl’, we have that our algorithm is PTIME.

5.2 Query answering under exact mappings

Suppose now that mappings are exact. As for the represamtatiegal data trees, we
can use incomplete trees of [1], known to be a strong reptasen system for ps-



queries. However, we have to deal with three major diffeesncr.t. [1]. The first is
that persistent node ids are not available in our settingoAglobal ids obtained by first
identifying the sources and then computing possible unifina, there still may occur
two nodes with different global ids that represent the saaterin every legal data tree.
Recall the example from the end of Section 2. Let us«eall; the two nodes labeled
pat i ent belonging toD1, n3 the node with the same label belongingl¥e. Without
keys,n1, no, ng would be assigned different global ids. However, as alrehisijussed,
under exact mappings, we can conclude thaandns are the same in every legal tree.
Thus, in order to correctly identify source nodes, view dééins should also be taken
into account. Of course, this would notably increase theygaeswering complexity.
Therefore, we introduce thésible Keys Restriction (VKRYr Z:

— For every element, member of a collection ofg, there existai.k — a € Pk.
— For every view); such that(S;, M;, exact) € M, M; is such that whenever it
selects an element with a key, it also selects its key.

This ensures that all nodes can be uniquely identified. Tinerdentifying the sources,
we reduce our setting to the case of [1] where global ids glayrdle of persistent ids.

The second major differenae.r.t. [1] is the ps-query language. In this paper, we
extend ps-queries of [1] in order to make them express etiatesubtree patterns. It is
possible to prove that such an extension maintains all the gooperties of ps-queries.
In particular, incomplete trees (whose construction ioetiagly modified) are still a
strong representation system for our query language.

The third major differencev.r.t. [1] is the presence of foreign keys. Intuitively, we
introduce additional sources that contain the data redqtirsatisfy foreign keys. More
precisely, given a foreign key.h, C b.k, € P, for each sequence of labels from the
root to nodes labeled, in Id(D), we introduce a sourc®,,,.; containing all nodes
mg in Id(D) labeledh, characterized by that sequence of labels, together with the
ancestors. Moreover, the source will contain all the nod®s the root to nodes,, m,,
with respective label$, k;, such that for each node, there is a nodey, with key
valuerv(my,) = v(m,). Note that, after identification, under the assumption dafuely
localizable foreign keys, all the ancestors of nodes labiebre uniquely identified.

Under VKR assumption, the algorithm with exact mappingspeds as follows.

1. We computdd(D).

2. To guarantee the satisfaction of foreign key constrafotseverya.h, C b.k;, €
& and for every different sequence of labels from the root esa € 1d(D)
labeleda, we build a data source and the corresponding view defirgtiatescribed
above. We calD,,, 1, ... D,,, 1+, the new data sources. Then we add the correspond-
ing exact mappings taA, for everyj = m+1,...m + k.

3. We compute the incomplete tré& s.t. sem(T;) = {T|M;(T) ~ Id(D;)}, for
i=1,..,mandTjs.t.sem(T;) = {T|M;(T) ~ Id(D,)},forj = m+1,..,m+k.

4. We compute the incomplete tré such thatem(T') = (V;cq 4y sem(Th).

5. In order to take into account the tree tyfig, we compute the incomplete trde
such thatsem(T) = sem(T’) N sem(Sg).

6. We query the incomplete tr& and obtain the representatiq(T).

Theorem 4. Given a consisterif = (G, S, M), with M all exact, a set of sourceB
for Z and a ps-query;, under the VKR assumptiogt-? = N{T'|T € sem(q(T))}.



Complexity In [1], it was shown that computing(T) is PTIME in data complexity.
Moreover, checking wheth@t is a certain prefix of(T) is PTIME in the size of(T),
itself PTIME. We strongly conjecture that checking whetfieis the maximal certain
prefix is also PTIME. On the other hand, it was also shown irttia} the problem of
deciding whethefl is a certain prefix ot(T) is NP-complete in the sequence of ps-
queries. We therefore conjecture that checking whethisra certain answer af over

7 is NP-complete in the number of data sources.

5.3 Query answering under mixed mappings

We now present an algorithm to answer queries under soundragxhct mappings.
Suppose that a different coldr; is associated to each sourfg characterized by a
sound mapping. The idea is to reduce the query answeringtiigounder mixed map-
pings to query answering with exact mappings. Suppose thatave a collection of
nodes labeled; in Sg and a sourcé; provides some sound information about this
collection. We can abstractly considey; as the source providing exactly the nodes
with labela; and colorC;. This requires to add the information about the color to each
node of the collection. Then, under the VKR assumption, wehte to answer queries.

1. We compute the extended tree type= (2., r, /i) by modifyingSg so that2, =
Y1 UC, andji is defined as follows:

S 1(a)C* if a is a member of some collection

Va € 2, jifa) = {/,Lga; otherwise o

2. For every sound mapping, we build; = (£;, \;, cond;, sel;) by modifying M; =
(ti, N, cond;, sel;) so that for every node € t¢; such thatXi(n) = a, Where
a is a member of some collection ifig, n has a childm labeledC, such that
cond;(m) =" = C;”, whereC; is the color ofD;.

3. For every data sourde; with color C;, characterized by a sound mapping, we build
the data sourc®), = (t}, ):i, v;) by adding to every node € D;, labeled with a
member of a collection, a child data nodelabeled withC such that’;(m) = C;.

4. We apply the algorithm described in the previous sectimhabtain the incomplete
treeT. Then we query it and obtain the representat'l()ﬁ‘).

Theorem 5. Given a consisterif = (G, S, M), with M mixed, a set of sources for
7 and a ps-query, under the VKR assumptiop?? = N{T|T € sem(q(T))}.

Complexity Obviously, the complexity is the same as in the previous.case

6 Discussion and future works

We have presented a formal framework for XML data integratizpased on an ex-
pressive global schema specified by means of a simplified DAdDXML keys and
foreign keys. We have shown how to address the issue of fgrgtinodes coming
from different sources. Then, we have proposed query afisgvalgorithms assuming
that mappings are sound and/or exact. It turns out that ws@erd mappings assump-
tion, we are able to answer queries in polynomial time in dataplexity. In the exact
case, in order to limit the complexity, we have introduceceatra condition, namely



the Visible Key Restriction (VKR)Ve strongly conjecture that, under this assumption,
the query answering problem is NP in the number of views. @pjzarent loss allows
to gain very much in terms of expressivity of the represématystem that we use to
answer queries. In particular, we may ask fossible answerdNVe may also extract a
precise description about missing information as showrl]nThis information may
be used to guide our system in finding additional data souocasswer queries. More-
over, we showed how to incorporate information about the daigin. This may be
very useful to optimize query answering. In fact, our alforis are all naive, in that
they proceed by first constructing a representation of ghllelata trees and then by
querying it. The next step is to propose more efficient atbors that do not need to
build such representation but only the portion of interesh wespect to the query.

In the future, we plan to follow several other research dioes. In particular, we
will study more carefully the complexity of query answerindhe exact case. Then, we
plan to consider more expressive query languages for treifagion of the mappings
as well as for querying the system. An orthogonal issue weualtcern data sources
inconsistencies. To this aim, repair techniques for XMLadabuld be required.
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