
XML data integration with identification

Antonella Poggi1,2 and Serge Abiteboul1

1 INRIA Futurs - Parc Club Orsay-University
4 rue Jean Monod, F-91893 Orsay Cedex, France

Name.Surname@inria.fr
2 Dipartimento di Informatica e Sistemistica “Antonio Ruberti”

Universit̀a di Roma “La Sapienza” - Via Salaria 113, I-00198 Roma, Italy
surname@dis.uniroma1.it

Abstract. Data integration is the problem of combining data residing at different
sources, and providing the user with a virtual view, called global schema, which
is independent from the model and the physical origin of the sources. Whereas
many data integration systems and theoretical works have been proposed for rela-
tional data, not much investigation has been focused yet on XML data integration.
Our goal is therefore to address some of its related issues. In particular, we high-
light two major issues that emerge in the XML context: (i) the global schema may
be characterized by a set of constraints, expressed by means of a DTD and XML
integrity constraints, (ii) the concept ofnode identityrequires to introduce seman-
tic criteria to identify nodes coming from different sources. We proposea formal
framework for XML data integration systems based on an expressive XML global
schema, a set of XML data sources and a set of mappings specified bymeans of
a simple tree language. Then, we define an identification function that aims at
globally identifying nodes coming from different sources. Finally, we propose
algorithms to answer queries under different assumptions for the mappings.

1 Introduction

Data integration is the problem of combining data residing at different sources, and
providing the user with a virtual view, called global schema, which is independent from
the model and the physical origin of the sources. Users querythe global schema, while
the system carries out the task of suitably accessing different sources and assembling
the data retrieved at each source into the final answer to the query. Whereas many
data integration systems [8, 10] and theoretical works [9, 6, 12] have been proposed for
relational data, not much investigation has been focused yet on XML data integration.
Our goal is therefore to address some of its related issues. In particular, we highlight
two major issues that emerge in the XML context: (i) the global schema may be cha-
racterized by a set of constraints, expressed by means of a DTD and XML integrity
constraints, (ii) the concept ofnode identityrequires to introduce semantic criteria to
identify nodes coming from different sources. The latter issimilar to the well-studied
problem of identifying objects in mediators systems [11]. However, it requires some
particular solution in the context of XML data integration.

As for relational data, in order to answer a query posed over the global schema, the
system needs the specification of the relationship between the sources and the global
schema, which is calledmapping. Different approaches have been proposed to spe-
cify mappings. We chose here to focus on theLocal-As-View(LAV) approach, which

consists in characterizing the information content of the sources in terms of the global
schema. An important property of mappings concerns the accuracy of the source with
respect to the corresponding view. If a source provides onlya subset of the data ac-
cessible from the global schema throw the corresponding view, then, we say that the
mapping issound. Otherwise, if the source provides exactly the corresponding view,
we say that the mapping isexact. It is well-known that this case is more difficult to deal
with. The main contributions of our work are as follows.

– First, we propose a formal framework for XML data integration systems based on
(i) a global schema specified by means of a set of (simplified) DTD and a set of
XML integrity constraintsas defined in [5], (ii) a source schema specified by means
of DTDs, and (iii) a set of LAV mappings specified by means ofprefix-selection-
query languagethat is inspired from the query language defined in [1].

– Second, we define anidentificationfunction, that aims at globally identifying nodes
coming from different sources. As already mentioned, the need for this function is
motivated by the concept ofnode identity.

– Finally, we address the query answering problem in the XML data integration set-
ting. In particular, given the strong connection with queryanswering with incom-
plete information, we propose an approach that is reminiscent of such a context. We
provide three algorithms to answer queries under the assumptions of sound, exact
and mixed mappings, and study their complexity.

The paper is organized as follows. In Section 2, we illustrate XML data integration and
some of its related issues by an example. In Section 3, we present the data model and the
query language used in the paper. Then, the formal frameworkfor XML data integration
is introduced in Section 4, where we define the identificationfunction. In Section 5, we
introduce query answering and propose different algorithms to answer queries under the
assumption of sound, exact and mixed mappings. Section 6 concludes the paper with a
discussion about future works and XML data integration openissues.
Related work The only XML data integration system we are aware of, that takes into
account integrity constraints, is the one presented in [3].The authors propose the gram-
mar AIG to specify the integration of data coming from different relational sources in a
document that conforms to a DTD and satisfies a set of integrity constraints. However, in
their work (i) mappings follow theGlobal-As-View(GAV) approach which has a more
procedural flavor, since it characterizes the information content of the global schema in
terms of the sources, (ii) the sources are relational, and (iii) whenever the retrieved data
does not satisfy a constraint, the query evaluation is aborted. Closer to our work is the
investigation of [2], which concerns XML data exchange. In this setting, the aim is to
materialize an instance of a target schema, given an instance of a source schema, where
both schemas are specified by means of DTDs. In particular, they address consistency
and query answering over the target schema. However, our work considers multiple
sources, whereas in data exchange the source is unique. Moreinterestingly, no integrity
constraints can be expressed over their target schema and their query language allows
only for the extraction of tuples, whereas our query language extracts trees.

2 XML data integration by example

In this section, we illustrate by an example XML data integration.

Suppose that an hospital offers access to information aboutpatients and their treat-
ments. Information is stored in XML documents managed in different offices of the
hospital, whereas users (e.g. statisticians), because of privacy and security reasons, have
access to a global DTDSG that has the following form:

SG :

<!ELEMENT hospital (patient+, treatment+)>
<!ELEMENT patient (SSN, name, cure*, bill?)>
<!ELEMENT treatment (trID, procedure?)>
<!ELEMENT procedure (treatment+)>

Following a common approach for XML data, we will consider XML documents as
unordered trees, with nodes labeled with elements names. The above DTD says that the
document contains data about patients and hospital treatments, where a cure is nothing
but a treatment id. Moreover, a set of keys and foreign key constraints are specified
over the global schema. In particular, we know that two patients cannot have the same
social security numberSSN, that two treatments cannot have the same numbertrID
and that all the prescribed cures have to appear among the treatments of the hospital.
Such constraints correspond respectively to two key constraints and one foreign key
constraint. Finally, assume that the sources consist in thefollowing two documents,D1

andD2, with the following DTDs. Mappings tell us thatD1 contains patients with a
name and a social security number lower than100000, andD2 contains patients that
paid a bill and were prescribed at least one dangerous cure (we assume that these have
numbers smaller than35).

D1 :

<hospital>
<patient>

<name>Parker</name>
<SSN>55577</SSN>

</patient>
<patient>

<name>Rossi</name>
<SSN>20903</SSN>

</patient>
</hospital>

S1 : <!ELEMENT hospital (patient*)>
<!ELEMENT patient (name, SSN)>

D2 :

<hospital>
<patient>

<SSN>55577</SSN>
</patient>
</hospital>

S2 : <!ELEMENT hospital (patient*)>
<!ELEMENT patient (SSN)>

Suppose now that the user asks for the following queries:

1. Find the name and the SSN for all patients having a name and aSSN, that paid a
bill and that were prescribed at least one cure.

2. Does the hospital offer dangerous treatments?

Typically, in data integration systems, the goal is to find the certain answers, e.g. the
answers that are returned by all data trees that satisfy the global schema and conform to
the data at the sources. By adapting data integration terminology [9] to our setting, we
call themlegal data trees. A crucial point here is that legal data trees can be constructed
by merging the source trees. We therefore need to identify nodes that should be merged,
using the constraints of the global schema. Note, however, that data retrieved may not
satisfy these constraints. In particular, there are two kinds of constraints violation. Data
may be incomplete, i.e. it may violate constraints by not providing all data required
according to the schema. Or, data retrieved may be inconsistent, i.e. it may violate

constraints by providing two elements that are ”semantically” the same but cannot be
merged without violating key constraints. In this paper, wewill address the problem of
answering queries in the presence of incomplete data, whilewe will assume that data
does not violate key constraints. Coming back to the example, it is easy to see that
the sources are consistent. Thus, the global schema constraints specification allows to
answer Query 1 by returning the patient with name ”Parker” and social security number
”55577”, since thanks to the key constraint we know that there cannot be two patients
with the same SSN. Note that Query 2 can also be answered with certainty. Mappings
let us actually infer that the patient named ”Parker” was prescribed a dangerous cure. In
addition, thanks to the foreign key constraint, we know thatevery cure that is prescribed
to some patient is provided by the hospital.

We conclude the section by highlighting the impact of the assumption of having
sound/exact mappings. Suppose that no constraints were expressed over the global
schema. Under the exact mapping assumption, by inspecting the data sources, it is pos-
sible to conclude that there is only one way to merge data sources and satisfy the schema
constraints. Indeed, since every patient has a name and a SSNnumber, we can deduce
that all patients inD2 with a SSN lower than100000 belong also toD1. Therefore the
answer to Query 1 would be the same as in the presence of constraints, whereas no an-
swer would be returned to Query 2, since no information is given on that portion of the
global schema. On the other hand, under the assumption of sound mappings, since in
the absence of constraints there could be two patients with the same SSN, both queries
would return empty answers.

3 Data model and query language

In this section we introduce our data model and query language, inspired from [1].

Data trees and prefixesXML documents are represented as labeled unordered trees,
calleddata trees. Given an infinite setN of nodes, a finite setΣ of element names
(labels), and a domainΓ = Γ ′ ∪ {0} for the data values, a(data) treeT overΣ is a
quadrupleT = 〈t, λ, ν〉, where:

– t is a finite rooted tree (possibly empty) with nodes fromN ;
– λ, called thelabeling function, associates a label inΣ to each node int; and
– ν, thedata mapping, assigns a value inΓ to each node int.

We calldatanodesthose nodesn of t such thatν(n) 6= 0. Note that0 is a special data
value that represents the empty value.

A prefixof T = 〈t, λ, ν〉 is a data treeT ′ = 〈t′, λ′, ν′〉, writtenT ′ ≤ T , such that
there exists a homomorphismh from (all) the nodes oft′ to (some of) the nodes oft
such thath is recursively defined as follows:

– if n′ is the root oft′ thenh(n′) is defined and it is the root oft; we say thath
preserves the root;

– for every noden′′ that is a child ofn′ in t′, such thath(n′) is defined,h(n′′) is
defined and it is a child ofh(n′) in t; thush preserves the parent-child relationships;

– for every noden′ in t′ such thath(n′) is defined,λ(h(n′)) = λ′(n′); thush pre-
serves the labeling;

– for every noden′ in t′ such thath(n′) is defined andν(n′) 6= 0, ν(h(n′)) = ν′(n′);
thush preserves the data mapping if and only if it maps a datanode.

Note that the empty tree, i.e. the tree that does not contain any node, denotedT∅, is a
prefix of all data trees. Moreover, ifT ′ ≤ T andT ≤ T ′, then we say thatT andT ′ are
isomorphic, written T ≃ T ′. Finally, we introduce theintersectionof two data trees.
Given two data treesT1 andT2, their intersection, denotedT ′ = T1 ∩ T2, is such that:
(i) T ′ ≤ T1, T

′ ≤ T2, and (ii) for allT ′′ not isomorphic toT ′, if T ′′ ≤ T1 andT ′′ ≤ T2,
thenT ′′ ≤ T ′, i.e.T ′ is the maximal prefix of bothT1 andT2.

Proposition 1. The intersection of two data trees is unique up to tree isomorphism.

hospital

name

patientpatient treatment

Rossi

name

20903

SSNSSN

55577 32

cure

11

cure

32

trID
Parker

treatment

11

trID

(a) Data treeT1

hospital

name

patientpatient treatment

Rossi

name

55577

SSNSSN

55577 25

cure

2000

bill

25

trID
Parker

(b) Data treeT2

hospital

name

patientpatient treatment

Rossi

nameSSNSSN

55577

cure trID

Parker

(c) IntersectionT1 ∩ T2

hospital

name

patient treatment

SSN procedurecure bill

+

?*
?

+

trID

(d) Tree type

Fig. 1.Data Model

Example 1.The data treesT1 andT2, resp. in Fig. 1(a) and 1(b), represent data about
patients and treatments of an hospital. Note that only data values different from0 are
represented and are circled. In Fig. 1(c) we show the intersection T1 ∩ T2. It is easy to
verify that it is the maximal prefix of bothT1 andT2.

Tree Type We call tree typeover an alphabetΣ a simplified version of DTDs that can
be represented as a triple〈Στ , r, µ〉, whereΣτ is a set of labels, i.e.Στ ⊆ Σ, r ∈ Στ

is a special label denoting the root, andµ associates to each labela ∈ Στ amultiplicity
atomsµ(a) representing thetype of a, i.e. the set of labels allowed for children of
nodes labeleda, together with some multiplicity constraints. More precisely,µ(a) is an
expressionaω1

1 ...aωk

k , whereai are distinct labels inΣ, ωi ∈ {∗,+, ?, 1}, for i = 1, ...k.
Given an alphabetΣ, we say that a data treeT over Σ satisfiesa tree typeS =

〈Στ , r, µ〉 overΣ, notedT |= S, if and only if: (i) the root ofT has labelr, and (ii) for
every noden of T such thatλ(n) = a, if µ(a) = aω1

1 ...aωk

k , then all the children ofn
have labels in{a1..ak} and the number of children labeledai is restricted as follows:

– if ωi = 1, then exactly one child ofn is labeled withai;
– if ωi =?, then at most one child ofn is labeled withai;
– if ωi = +, then at least one child ofn is labeled withai;

– if ωi = ∗, then no restrictions are imposed on the children ofn labeled withai.

Given a tree type, we callcollectiona labela such that there is an occurrence of either
a∗

i or a+
i in µ(a), for someai ∈ Σ. Moreoverai is calledmember of the collectiona.

Unary keys and foreign keysGiven a tree typeS = 〈Στ , r, µ〉, we recall and adapt to
our framework the definition of(absolute) unary keys and foreign keysfrom [5, 4]:

– Keys are assertions of the form:a.k → a, wherea ∈ Στ andk1 ∈ µ(a). The
semantics of keys is the following. Given a treeT satisfyingS, T |= a.k → a

if and only if there does not exist two nodesn, n′ of T labeleda such that their
respective unique children labeledk have the same data value.

– Foreign keys are assertions of the form:a.ha ⊆ b.kb, wherekb is a key forb,
a ∈ Στ andhω

a ∈ µ(a) for someω. In this paper, we consider in particularuniquely
localizable foreign keys, by imposing thatb is such that there is a unique label path
r, l1, .., ls, b from the root to any node labeledb, where fori = 1, .., s, li is not the
member of any collection. The semantics of foreign keys is the following. Given a
treeT satisfyingS, T |= a.ha ⊆ b.kb if and only if for every noden of T labeled
ha that is a child of a node labeleda, there exists a noden′ labeledkb, child of a
nodep′ labeledb, such thatn andn′ carry the same value (that is a key fop′).

Schema satisfactionGiven a tree typeSG , a set of keysΦK and a set of foreign keys
ΦFK , we call schemaa triple G = 〈SG , ΦK , ΦFK〉. Moreover, we say that a treeT
satisfiesthe schemaG if and only if T |= SG , T |= ΦK andT |= ΦFK .

Example 2.The DTD SG from Section 2 corresponds to the tree type, represented
graphically in Fig. 1(d), wherer =hospital andµ can be specified as follows:

hospital → patient+ treatment+

patient → SSID name cure∗ bill?

treatment → trID procedure?

Note thatpatientandtreatmentare both elements of the same collectionhospital. The
following sets of constraints express those mentioned in Section 2:

ΦK : {patient.SSN → patient;
treatment.trID → treatment}

ΦFK : {patient.cure ⊆ treatment.trID}

The tree of Fig. 1(a) satisfies the schemaG = 〈SG , ΦK , ΦFK〉, whereas the tree of
Fig. 1(b) does not since it contains two patients with the same SSN.

Prefix-selection queriesIntuitively, prefix-selection queries(shortly referred asps-
queries) browse the input tree down to a certain depth starting from the root, by reading
nodes with specified element names and possibly with data values satisfying selection
conditions. Existential subtree patterns can also be expressed. When evaluated over a
data treeT , a boolean ps-query checks for the existence of a certain tree pattern inT .
A ps-query that is not boolean returns the minimal tree that is isomorphic to the set of
all the nodes involved in the pattern, that are selected by the query.

Formally, aps-queryq over an alphabetΣ is a quadruple〈t, λ, cond, sel〉 where:

– t is a rooted tree;
– λ associates to each node a label inΣ, where sibling nodes have distinct labels.

– cond is a partial function that associates to each node int a conditionc that is a
boolean formula of the formp0b0p1b1...pm−1bm−1pm, wherepi are predicates
to be applied to datanodes values andbj are boolean operators fori = 0..m, m ≥ 0
andj = 0..m − 1; for example, ifΓ ′ = Q, then predicates that can be applied to
datanodes values have the formop v, whereop ∈ {=, 6=,≤,≥, <,>} andv ∈ Q;

– sel is a total function that assigns to each node int a boolean value such that if
sel(n) = false thensel(n′) = false, for every childrenn′ of n; intuitively, sel

indicates whether a node is selected by the query, with the constraint that whenever
n is not selected, then all the nodes of the subtree rooted atn cannot be selected.

We call boolean ps-querya queryq = 〈t, λ, cond, sel〉 such thatselq(rq) = false,
whererq is the root label oftq.

We next formalize the notion of answer to a ps-query using theauxiliary concepts
of valuation and query valuation image. Given a queryq = 〈tq, λq, condq, selq〉 and a
data treeT = 〈t, λ, ν〉, a valuationγ from q toT is a homomorphism from the nodes
of tq to the nodes oft preserving the root, the parent-child relationships, the labeling
and such that: for everynq ∈ tq, if condq(nq) is defined thenν(γ(nq)) is a datanode,
i.e.ν(γ(nq)) 6= 0, andν(γ(nq)) satisfiescondq(nq). Thevaluation imageI of q posed
over T is the subset of nodes ofT that are in the image of some valuation. We call
positive subsetP (I) of I the subset ofI such that for everyn ∈ P (I), there exists a
valuationγ such thatselq(γ−1(n)) = true. Intuitively, P (I) represents the subset of
nodes ofI that are selected byq.

We now define the semantics of ananswerto a ps-queryq posed overT , denoted as
q(T). If the valuation image ofq posed overT is empty, thenq(T) = false. Otherwise,
q(T) is a data tree such that (i)q(T) is isomorphic toP (I) and (ii) there does not exist a
data treeT ′, not isomorphic toq(T), such thatT ′ ≤ q(T) andT ′ is isomorphic toP (I)
(i.e. q(T) is the minimal tree that is isomorphic toP (I)). Note that ifP (I) is empty,
thenq(T) is the empty tree, i.e.q(T) = T∅. This case occurs whenq is boolean and it
returnstrue.

hospital

patient

name
<100000
SSN

(a) Ps-queryM1

hospital

Parker

name

patientpatient

Rossi

name
20903

SSNSSN

55577

(b) Answer toM1

hospital

patient

cure·35SSN bill

(c) Ps-queryM2

hospital

patient

SSN

55577

(d) Answer toM2

Fig. 2.Querying a data tree

Proposition 2. Given a ps-queryq and a data treeT overΣ, the answerq(T) is unique
(up to tree isomorphism). Moreover, ifq(T) 6= false, thenq(T) is the minimal prefix of
T such that there exists a homomorphismh fromP (I) to q(T) preserving parent-child
relationships among nodes, labeling and data mapping.

Example 3.Consider the queries in Fig. 2(a) and 2(c) posed over the treeof Fig. 1(a).
They select respectively (i) the name and the SSN of patientshaving a SSN smaller
than100000, (ii) the SSN of patients that paid a bill and were prescribedat least one

dangerous cure (i.e. a cure with id lower than35). The answers to the queries are given
in Fig. 2(b) and 2(d). Note that we graphically represent an existential subtree pattern
in a query by underlying the label of its root.

4 Data integration framework

In this section we first formally define a data integration system. Then we start dis-
cussing query answering by introducing anidentification function.

4.1 Formal definition

An XML data integration systemI can be characterized by a triple〈G,S,M〉, where:

– The XML global schemaG = 〈SG , ΦK , ΦFK〉 is expressed in terms of a tree type
SG = 〈Στ , r, µ〉, a setΦK of key constraints and a setΦFK of uniquely localiz-
able foreign keys. We assume that at most one key constraint is expressed for each
element (e.g.ΦK areprimary keys[5]);

– S is a set of source schemasS = {S1, S2, ..., Sm}, whereSi is a tree type,i =
1, ...,m; note that dealing with such kind a sources is not restrictive since we can
assume that suitable wrappers are available that present the sources in this format;

– M is the set of (LAV) mappings betweenG andS, one for each data sourceSi in
S; they are expressions of the form:(Si,Mi, asi), for i = 1, ...,m, whereasi ∈
{sound, exact} andMi is a ps-query (not boolean) that iscoherent withSi, i.e. for
everyDi satisfyingSi, there existsT such thatDi ≤ T andMi(T) ≃ Di.

Example 4.Consider the data integration systemI = 〈G,S,M〉 that corresponds to
the one discussed in Section 2. The global schemaG = 〈SG , ΦK , ΦFK〉 is the one of the
Example 2. The source schema isS = {S1, S2}, whereS1, S2 correspond to the DTDs
of Section 2. Finally, the mappingM is a set of expressions of the form:(Si,Mi, asi),
for i = 1, 2, whereMi’s are those of Fig. 2(a) and Fig. 2(c) andasi ∈ {sound, exact}.

Given a set of data sourcesD = {D1, ...,Dm} that conform toS = {S1, ..., Sm}
(i.e. Di |= Si, i = 1, ...,m), the semantics of a data integration system consists of all
the legal data trees that conform to the schemaG and satisfy the mappingsM. More
precisely, we have the following:

sem(I,D) = {T |T |= SG , T |= ΦK , T |= ΦFK ,

∀i = 1, ...m,Di ≤ Mi(T) if asi = sound

Di ≃ Mi(T) if asi = exact}
According to the above definition, it may happen that no legaldata tree exists that
belongs tosem(I,D). In this case, the setting isinconsistent. This may happen for the
following reasons.

– The global schema specification may beinconsistent, i.e. there may not exist any
tree that satisfies bothSG and the set of constraints. It was shown in [5], that in the
case of a general DTD, the problem is decidable and its complexity is NP-complete.

– A mapping may betrivially inconsistent, i.e. for every treeT that satisfies the global
schema,Mi(T) = T∅. It is possible to check whether a mapping is trivially incon-
sistent by verifying that, given the global schemaSG = 〈Στ , r, µ〉 and a mapping
(Si,Mi, asi) ∈ M, with Mi = 〈tqi

, λqi
, condqi

, selqi
〉, we have that for every

n ∈ tqi
: (i) if n is the root oftqi

, thenλqi
(n) = r, (ii) if λqi

(n) = a, all children
ni of n have distinct labels among those inµ(a). This check is clearly polynomial.

– There may be anempty mapping, i.e. given a sourceDi, there might not exist any
data treeT such thatMi(T) ≤ Di. This problem is also decidable. A PTIME
algorithm would consist in building fromMi the queryM ′

i that results by ignoring
the existential subtree patterns ofMi, and then checking whetherM ′

i(Di) ≃ Di.
– Finally, there may occur some inconsistencies among data sources andG. In our

example this would happen if two sources contain patients with the same SSN but
different names.

In what follows, we will assume to deal with consistent data integration systems (note
that decidability of data integration consistency problemis an open problem).

4.2 Query answering with identification

The main task of a data integration system is obviously to answer queries. Following
the classical approach, we define acertain answerto a ps-queryq posed over a data
integration systemI = 〈G,S,M〉 w.r.t. to a set of data sourcesD, as follows:

qI,D =
⋂

T∈sem(I,D)

q(T)

i.e. qI,D is the intersection of the answers toq over all legal data treesw.r.t. I.

Theorem 1. Given a set of sourcesD, a consistent data integration systemI = 〈G,S,M〉
and a ps-queryq, qI,D is the maximal data tree that is a prefix ofq(T), for every legal
data treeT w.r.t. to I.

Remark The certain answer to a queryq posed over a data integration systemI w.r.t.

to a set of data sourcesD is a data treeT such that there may not exist anyT ′ such
thatq(T ′) = T . This is not surprising since by the previous theorem we havethat the
certain answer is the maximalprefix of the answersto q over all legal data trees, which
only means that for every legal data treeT ′′, T is a prefix of the answerq(T ′′).

To illustrate identification, let us observe the following.Suppose that no existential
tree patterns were expressed in any mapping and that node idswere available that were
shared among data sources. Then computing the certain answer would basically con-
sists in merging the data sources, adding nodes to satisfy the constraints, querying the
resulting tree and returning the ”certain” prefix of the answer. Following this intuition,
we possibly extend each data sourceDi by a data sourceD′

i = 〈t′i, λ
′
i, ν

′
i〉 that is ob-

tained fromDi by adding nodes whose presence can be inferred in every legaldata tree
from the mapping specification(Si,Mi, asi), whereasi ∈ {sound, complete}. These
nodes correspond to existential tree patterns nodes inMi. More precisely, for each leaf

n ∈ Di = 〈ti, λi, νi〉 labeledaj , we consider the nodenq of tq such that there exists a
valuationγ from tq to Di with γ(nq) = n (note that this node exists and is unique since
we assumed thatMi is coherent withSi and mappings are neither trivially inconsistent,
nor empty). Ifmq is a child ofnq such thatselq(mq) = false, then we recursively
proceed as follows. For every nodem′

q in the subtree rooted atmq, a nodem is added
in Di = 〈ti, λi, νi〉 such that we can extendγ by definingγ(m′

q) = m, where:

– m is child of the noden of t′i such thatγ−1(n) is defined and it is the parent ofm′
q;

– λ′
i(m) = λq(mq);

– if condq(mq) is defined, thenν′
i(m) = vs wherevs is a fresh Skolem constant such

thatcondq(mq) is satisfied.

Next, we define theIdentificationfunction whose aim is to obtain from each ex-
tended data sourceD′

i a new data source, calledidentified data source, whose nodes
have global ids that depend onG, such that two nodes have the same global id only if
they are merged in every legal data tree. In order to introduce the identification, we start
by recursively defining the domainN I of global ids:

– ǫ ∈ N I ;
– if n ∈ N I , thenn.ai[.γi] ∈ N I , whereai ∈ Σ andγi is an optional value in

Γ̄ = Γ ∪ VS , whereVS is a set of Skolem constants.

Finally,Id(D) is obtained by recursively associating to each noden in D′
i = 〈t′i, λ

′
i, ν

′
i〉

a global ididn in N I :

– if n is the root oft′i, thenidn = ǫ;
– if n labeledaj is child of a nodep labeleda, idn = idp.aj [.γ] whereγ is an

optional value appearing if:
• either there existsaj .k → aj ∈ ΦK ; then if n has a childm labeledk, then

γ = ν(m), otherwiseγ = vs wherevs is a fresh constant inVS ;
• or a

ωj

j ∈ µ(a), whereωj ∈ {+, ∗}; thenγ = vs, with vs fresh constant inVS .

Note that, by an abuse of notation, we denoteId(Di) the data source obtained by first
extending the original data source and then identifying nodes as described.Id(Di) is
such that all its nodes have a global id. Ifidn does not contain any Skolem constant, we
say thatn is uniquely identified. In the following example, we illustrate identification.

Example 5.Given the data integration system of Example 4 and the sourceD1 given
in Fig. 2(d),Id(D1) is represented in Fig. 3, where the labels of nodes added by the
identification are boxed, the global ids are marked in bold and γi represent Skolem
constants inVS , for i = 1, 2. Note that all nodes are uniquely identified, except for the
node labeledcure. Moreover,γ1 represents a data value lower than 35.

By identifying data sources, clearly, two nodes are assigned the same global id only if
they are merged in every legal data tree. Moreover, the data sources extension does not
modify the sources content that is mapped to every legal datatree. It therefore does not
affect certain answers. Indeed, it is straightforward to prove the following theorem.

Theorem 2. Given a set of data sourcesD and a data integration systemI = 〈G,S,M〉,
the following holds:

qI,D =
⋂

T∈sem(I,D) q(T) =
⋂

T∈sem(I,Id(D)) q(T).

name cure bill

hospital

patient

SSN

55577

id0=

id1.cure. 2id1.SSN id1.billid1.name

id1=id0.patient.55577

Fig. 3. Identified treeId(D)

From now on, the previous theorem will let us considersem(I, Id(D)) rather than
sem(I,D).

5 Query answering algorithms

In this section, we provide three algorithms that use identification to answer ps-queries
over I, under the assumption of sound, exact and mixed mappings. All proposed al-
gorithms follow an approach that is typical in the presence of incomplete information.
This is not surprising since it is well-known [6] that LAV data integration query answer-
ing is strongly related to the problem of querying an incomplete database. Indeed, data
sources provide only partial information on legal data trees. Thus, our algorithms are
all based on the idea of constructing a weak representation systemT [7], to represent
all legal trees (i.e.sem(T) = sem(I, Id(D))), such that for eachT and each ps-query
q there exists a representationq(T) such that

⋂

{T |T ∈ sem(q(T))} =
⋂

{q(T)|T ∈
sem(T)}. It follows that the complexity is given by (i) the complexity of computing
T, (ii) the complexity of constructingq(T), and (iii) the complexity of computing the
intersection of answers represented byq(T).

5.1 Query answering under sound mappings

Before introducing the algorithm for query answering, we highlight that, as mentioned
earlier, it is based on the idea of building a weak representation systemT. Because of
lack of space, instead of introducing formallyT, we intuitively present it as a special
tree with values inΓ̄ . In particular,T may have Skolems as data values that are con-
strained to satisfy conditions similar to those expressed by ps-queries (note that this
may happen, for example, when nodes are added in order to satisfy existential subtree
patterns in the mappings, or a constraint of the schema). Thevaluation of a queryq over
T has to be modified accordingly. In particular,q(T) may contain Skolem constants for
data values, since it has to be equivalent toT from the point of view of certain answers
to q.

Given a queryq, a systemI and a set of sourcesD = {D1, ...,Dm}, our algorithm
for query answering under the assumption of sound mappings proceeds as follows.

1. We computeId(D) w.r.t. to G and obtain a data tree with global ids and with data
values inΓ̄ . However, this tree may contain nodes that are semanticallyequivalent,
i.e. they represent the same node in every legal data tree, but have different node
identifiers. In particular, this may happen whenId(Di) andId(Dj) contain resp.
nodesni, nj labeleda uniquely identified by the same ididn and nodesmi,mj , la-
beledb, resp. children ofni, nj , that are identified with different global ids, whereas

according toSG , nodes labeleda should have at most one child labeledb. To sim-
plify, suppose that they are not datanodes. If at least one amongmi,mj , saymi,
is not uniquely identified, then the sources are consistent and we say thatmi,mj

can beunified, by replacing the global id ofni with the id ofnj . We then obtain
theretrieved global data treew.r.t. toD, denotedret(I,D). It is possible to prove
that if the setting is consistent, thenret(I,D) is such thatret(I,D) ≤ T , for every
legal data treeT .

2. We compute the representation systemT = 〈t∗, λ∗, ν∗〉 for all legal data trees,
by adding nodes toret(I,D) in order to satisfyG. More precisely, we proceed by
applying the following rules:
(a) For eachp labeleda, if aωi

i ∈ µ(a) whereωi ∈ {1,+} andn′ has not any child
labeledai, then we add toT the childn of p, with λ∗(n) = ai andν∗(n) = 0.
If ai.k → ai ∈ ΦK or ωi = +, thenidn = idp.ai.γs whereγs is a fresh
constant fromVs, otherwiseidn = idp.ai.

(b) For eachma labeledha, child of na labeleda, if a.ha ⊆ b.kb ∈ ΦFK , and
there is not any node labeledb with key valueν(ma), then we add a set of
nodes, one noden′ for each labell that occurs from the root to the parent
of the node labeledb in SG , whereλ∗(n′) = l andν∗(n′) = 0, so that the
tree satisfies the global schema. Note that since the foreignkey constraints are
uniquely localizable, all these nodes are uniquely identified and therefore their
global ids depend only onG. Suppose thatp is the last node that is added, and
that its global id isidp. Then we add the nodenb child of p, with global id
idnb

= idp.ν(ma) and such thatλ∗(nb) = b andν∗(nb) = 0. Moreover, we
add the childmb of nb, with global ididmb

= idnb
.kb such thatλ∗(mb) = kb

andν∗(mb) = ν(ma).
Intuitively, this step corresponds to computing the well-known technique of the
Chaseover ret(I,D). Since the Chase may not stop and lead to an infinite data
tree, we proceeds as long as the algorithm adds nodes (that are required by the
schema) that have either the formidn = idp.a or the formidn = idp.a.γs where
a ∈ Στ , γs ∈ Vs is a Skolem constant and there is not any node with global id
idn = idp.a.γ′

s whereγ′
s ∈ Vs, γ′

s 6= γs.
3. We computeq(T) and return its certain prefix̄T = 〈t̄, λ̄, ν̄〉. Note in particular that

for everyn in q(T) such thatν∗(n) is a Skolem, we set̄ν(n) = 0.
Claim. Given a consistent data integration system, the above algorithm terminates.

Theorem 3. Given a consistent data integration systemI with sound mappings, a set
of sources and a ps-queryq, qI,D = T̄ , whereT̄ is computed as above.

Complexity Let us discuss the computational complexity of the above algorithm. In
particular, we focus on data complexity, which refers to thesize of the set of data sources
D. It is easy to see that the construction of the data treeT is polynomial in the size of
D. Moreover, the size ofT is polynomial. Then, since the construction ofq(T) is
polynomial in the size ofT, we have that our algorithm is PTIME.

5.2 Query answering under exact mappings

Suppose now that mappings are exact. As for the representation of legal data trees, we
can use incomplete trees of [1], known to be a strong representation system for ps-

queries. However, we have to deal with three major differencesw.r.t. [1]. The first is
that persistent node ids are not available in our setting. Asfor global ids obtained by first
identifying the sources and then computing possible unifications, there still may occur
two nodes with different global ids that represent the same node in every legal data tree.
Recall the example from the end of Section 2. Let us calln1, n2 the two nodes labeled
patient belonging toD1, n3 the node with the same label belonging toD2. Without
keys,n1, n2, n3 would be assigned different global ids. However, as alreadydiscussed,
under exact mappings, we can conclude thatn1 andn3 are the same in every legal tree.
Thus, in order to correctly identify source nodes, view definitions should also be taken
into account. Of course, this would notably increase the query answering complexity.

Therefore, we introduce theVisible Keys Restriction (VKR)for I:

– For every elementa, member of a collection ofSG , there existsa.k → a ∈ ΦK .
– For every viewMi such that(Si,Mi, exact) ∈ M, Mi is such that whenever it

selects an element with a key, it also selects its key.

This ensures that all nodes can be uniquely identified. Then,by identifying the sources,
we reduce our setting to the case of [1] where global ids play the role of persistent ids.

The second major differencew.r.t. [1] is the ps-query language. In this paper, we
extend ps-queries of [1] in order to make them express existential subtree patterns. It is
possible to prove that such an extension maintains all the good properties of ps-queries.
In particular, incomplete trees (whose construction is accordingly modified) are still a
strong representation system for our query language.

The third major differencew.r.t. [1] is the presence of foreign keys. Intuitively, we
introduce additional sources that contain the data required to satisfy foreign keys. More
precisely, given a foreign keya.ha ⊆ b.kb ∈ ΦFK , for each sequence of labels from the
root to nodes labeledha in Id(D), we introduce a sourceDm+j containing all nodes
ma in Id(D) labeledha characterized by that sequence of labels, together with their
ancestors. Moreover, the source will contain all the nodes from the root to nodesnb,mb

with respective labelsb, kb, such that for each nodema there is a nodenb with key
valueν(mb) = ν(ma). Note that, after identification, under the assumption of uniquely
localizable foreign keys, all the ancestors of nodes labeled b are uniquely identified.

Under VKR assumption, the algorithm with exact mappings proceeds as follows.

1. We computeId(D).
2. To guarantee the satisfaction of foreign key constraints, for everya.ha ⊆ b.kb ∈

ΦFK and for every different sequence of labels from the root to nodesn ∈ Id(D)
labeleda, we build a data source and the corresponding view definitionas described
above. We callDm+1, ...Dm+k the new data sources. Then we add the correspond-
ing exact mappings toM, for everyj = m + 1, ...m + k.

3. We compute the incomplete treeTi s.t. sem(Ti) = {T |Mi(T) ≃ Id(Di)}, for
i = 1, ..,m andTj s.t.sem(Tj) = {T |Mj(T) ≃ Id(Dj)}, for j = m+1, ..,m+k.

4. We compute the incomplete treeT′ such thatsem(T′) =
⋂

i∈{1,..,m+k} sem(Ti).
5. In order to take into account the tree typeSG , we compute the incomplete treeT

such thatsem(T) = sem(T′) ∩ sem(SG).
6. We query the incomplete treeT and obtain the representationq(T).

Theorem 4. Given a consistentI = 〈G,S,M〉, with M all exact, a set of sourcesD
for I and a ps-queryq, under the VKR assumption,qI,D =

⋂

{T |T ∈ sem(q(T))}.

Complexity In [1], it was shown that computingq(T) is PTIME in data complexity.
Moreover, checking whether̄T is a certain prefix ofq(T) is PTIME in the size ofq(T),
itself PTIME. We strongly conjecture that checking whetherT̄ is the maximal certain
prefix is also PTIME. On the other hand, it was also shown in [1]that the problem of
deciding whether̄T is a certain prefix ofq(T) is NP-complete in the sequence of ps-
queries. We therefore conjecture that checking whetherT̄ is a certain answer ofq over
I is NP-complete in the number of data sources.

5.3 Query answering under mixed mappings

We now present an algorithm to answer queries under sound and/or exact mappings.
Suppose that a different colorCi is associated to each sourceDi characterized by a
sound mapping. The idea is to reduce the query answering algorithm under mixed map-
pings to query answering with exact mappings. Suppose that we have a collection of
nodes labeledai in SG and a sourceDi provides some sound information about this
collection. We can abstractly considerDi as the source providing exactly the nodes
with labelai and colorCi. This requires to add the information about the color to each
node of the collection. Then, under the VKR assumption, we are able to answer queries.

1. We compute the extended tree typeŜG = 〈Σ̂τ , r, µ̂〉 by modifyingSG so thatΣ̂T =
ΣT ∪ C, andµ̂ is defined as follows:

∀a ∈ Σ̂, µ̂(a) =

{

µ(a)C∗ if a is a member of some collection ofSG

µ(a) otherwise

2. For every sound mapping, we build̂Mi = 〈t̂i, λ̂i, ˆcondi, ˆseli〉 by modifyingMi =

〈ti, λi, condi, seli〉 so that for every noden ∈ ti such thatλ̂i(n) = a, where
a is a member of some collection inSG , n has a childm labeledC, such that

ˆcondi(m) = ” = Ci”, whereCi is the color ofDi.
3. For every data sourceDi with colorCi, characterized by a sound mapping, we build

the data sourcêDi = 〈t̂i, λ̂i, ν̂i〉 by adding to every noden ∈ Di, labeled with a
member of a collection, a child data nodem labeled withC such thatν̂i(m) = Ci.

4. We apply the algorithm described in the previous section and obtain the incomplete
treeT̂. Then we query it and obtain the representationq(T̂).

Theorem 5. Given a consistentI = 〈G,S,M〉, withM mixed, a set of sourcesD for
I and a ps-queryq, under the VKR assumption,qI,D =

⋂

{T |T ∈ sem(q(T̂))}.

Complexity Obviously, the complexity is the same as in the previous case.

6 Discussion and future works

We have presented a formal framework for XML data integration, based on an ex-
pressive global schema specified by means of a simplified DTD and XML keys and
foreign keys. We have shown how to address the issue of identifying nodes coming
from different sources. Then, we have proposed query answering algorithms assuming
that mappings are sound and/or exact. It turns out that undersound mappings assump-
tion, we are able to answer queries in polynomial time in datacomplexity. In the exact
case, in order to limit the complexity, we have introduced anextra condition, namely

theVisible Key Restriction (VKR). We strongly conjecture that, under this assumption,
the query answering problem is NP in the number of views. Thisapparent loss allows
to gain very much in terms of expressivity of the representation system that we use to
answer queries. In particular, we may ask forpossible answers. We may also extract a
precise description about missing information as shown in [1]. This information may
be used to guide our system in finding additional data sourcesto answer queries. More-
over, we showed how to incorporate information about the data origin. This may be
very useful to optimize query answering. In fact, our algorithms are all naive, in that
they proceed by first constructing a representation of all legal data trees and then by
querying it. The next step is to propose more efficient algorithms that do not need to
build such representation but only the portion of interest with respect to the query.

In the future, we plan to follow several other research directions. In particular, we
will study more carefully the complexity of query answeringin the exact case. Then, we
plan to consider more expressive query languages for the specification of the mappings
as well as for querying the system. An orthogonal issue wouldconcern data sources
inconsistencies. To this aim, repair techniques for XML data would be required.
AcknowledgementsWe are very grateful to Maurizio Lenzerini and Diego Calvanese
for the helpful discussions that lead to the revision of the first draft, to Ioana Manolescu
and Bogdan Cautis for having helped us by carefully reading the paper and giving pre-
cious feedbacks, and to Luc Segoufin for many interesting discussions about the topic.
Finally we would also like to thank the referees for several very useful comments.

References

1. S. Abiteboul, L. Segoufin, and V. Vianu. Representing and queryingxml with incomplete
information. InProc. of ACM PODS, 2001.

2. M. Arenas and L. Libkin. Xml data exchange: Consistency and query answering. InProc.
of ACM PODS, 2005. To Appear.

3. M. Benedikt, C. Chan, W. Fan, J. Freire, and R. Rastogi. Capturing both Types and Con-
straints in Data Integration. InProc. of ACM SIGMOD, 2003.

4. P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Keys forXML. In Proc. of the Int.
WWW Conf., pages 201–210, 2001.

5. W. Fan and L. Libkin. On XML Integrity Constraints in the Presence of DTDs. J. ACM,
49(3):368–406, 2002.

6. A.Y. Halevy. Answering queries using views: A survey.Very Large Database J., 10(4):270–
294, 2001.

7. J. Imielinski and W. Lipski. Incomplete information in relational databases. JACM, 31(4),
1984.

8. T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava. The informationmanifold. In C. Knoblock
and A. Levy, editors,Information Gathering from Heterogeneous, Distributed Environments,
Stanford University, Stanford, California, 1995.

9. M. Lenzerini. Data integration: A theoretical perspective. InProc. of ACM PODS, 2002.
10. C. Li, R. Yerneni, V. Vassalos, H. Garcia-Molina, Y. Papakonstantinou, J. D. Ullman, and

M. Valiveti. Capability based mediation in TSIMMIS. InProc. of ACM SIGMOD, 1998.
11. Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object fusion in mediator sys-

tems. InProc. of VLDB, 1996.
12. Jeffrey D. Ullman. Information integration using logical views. InProc. of Intl. Conf. on

Database Theory, 1997.

