
Integration of SYSTRAN MT systems in an open work�ow

Mats Attnäs
SYSTRAN S.A.
La Grande Arche

1, Parvis de la Défense
92044 Paris La Défense

France
mattnas@systran.fr

Pierre Senellart
SYSTRAN S.A.
& INRIA Futurs

Parc Club Orsay Université
4 rue Jacques Monod - Bât G
91893 Orsay Cedex France

psenellart@systran.fr

Jean Senellart
SYSTRAN S.A.
La Grande Arche

1, Parvis de la Défense
92044 Paris La Défense

France
jsenellart@systran.fr

Abstract

A general mature rule-based MT system is
bound to reach a saturation point because of
the intrinsic complexity of the natural language
description. For such systems, maintenance is
a complex task and customization is expensive
and time-consuming. Therefore, improving the
system's interaction with the linguistic rules has
proven to be more productive than endlessly
adding new rules and exceptions to reach the
theoretical accuracy level of 100%. In this pa-
per, we describe our strategy to �open up� such a
system and provide practical details on how this
was done on SYSTRAN's classical engines. This
approach is the foundation of the SYSTRAN
version 5 translation engines. We show the im-
mediate bene�ts of the evolution of our archi-
tecture and the new extension potentiality.

1 Introduction - background

Over the last 30 years, SYSTRAN has devel-
oped and brought to a commercial level about
40 language pairs plus more than 20 other lan-
guage pairs still in development or limited to a
speci�c usage. These systems covers 20 di�er-
ent languages for which corresponding analysis
or synthesis has been incrementally built, which
represents several hundred thousands of �linguis-
tic rules�. This huge linguistic asset has evolved
along with programming languages and is now
an aggregate of several generations of rules and
rule exceptions.
This code makes a complex set from which it

is impossible to extract a �clean� formalized set
of rules and which is di�cult to conceptualize.
Part of this complexity is bound to language
complexity requiring that each rule comes with
its own set of exceptions, another part comes
from the fact that assembling and ordering a
large number of linguistic rules is intricate what-
ever the formalism these rules are represented
in. Additionally any modi�cation to this com-

plex set of rules systematically introduce risks
of degradations.
Therefore, maintenance and evolution of these

60 classical translation engines has become a
challenge all the more critical as last years have
seen the emergence of a growing demand for
highly customized MT solutions, that is the
need for adapting and �ne-tuning a translation
engine linguistic rules for a speci�c domain or
application. The same problematic is reported
in (Keh-Yih Su, 1999).
At the same time, an important e�ort to build

new rule-based systems based on state-of-the-
art NLP development concepts has been carried
out (J. Senellart, 2001). First commercial sys-
tems (Arabic→English, and Swedish→English)
belonging to these �SYSTRAN New Genera-
tion� (NG) engines have been released in 2004
as part of SYSTRAN version 5.
In this article, we describe the strategy cho-

sen for tackling this challenge. This strategy is
based on the following idea: the solution is not
to maintain the existing systems as they are, or
to rebuild systems from scratch on a clean basis
(not thinkable considering manpower invested in
the existing systems), and not to consider them
as black boxes that would seriously limit possi-
bility of improvement � but to leverage existing
systems by:

• modernizing the general architecture

• de�ning a modular work�ow for the trans-
lation process (J. Senellart, 2003)

• introducing control mechanisms within the
work�ow, and within linguistic modules

• merging system maintenance with NG de-
velopment, especially allowing for system
extension in a declarative manner on high
level linguistic objects

In section 2, we describe the key concepts of
this architecture evolution. In section 3, we il-
lustrate how this architecture allows to improve



translation quality in a productive way. We con-
clude in section 4 by giving new perspectives and
additional evolution axis.
The architecture described in this paper is

the basis of all SYSTRAN version 5 systems re-
leased in June 2004.

2 New Architecture - Key concepts

We describe in this section the key concepts of
the new architecture built to facilitate main-
tenance of classical systems and to get the
maximum from their linguistic rules. This in-
clude code modernization, integration within an
�XML work�ow�, introduction of high level data
structures and a powerful lookup mechanism.
Figure 1 describes this global architecture.

2.1 Code modernization

SYSTRAN translation engines were originally
written (in the 70s) in an assembly language; the
code was then migrated to the C programming
language. Following the evolution of program-
ming languages and software design, more and
more portions of the code are now written in
C++. More than a simple rewriting, the switch
to an object-oriented language implies:

• a real redesign of the corresponding layers
of the engines, simplifying modularization
tasks as described in section 2.2

• the introduction of high level linguistic data
structures as described in section 2.3

Another recent evolution of software comes
with the introduction of the Unicode standard
(The Unicode Consortium, 2003), which pro-
vides a way to represent in a single character
repertoire all characters needed for most of the
natural languages alphabets, along with char-
acter encodings (namely UTF-8, UTF-16 and
UTF-32) representing these characters as se-
quence of bytes. This is a real change from tradi-
tional character encodings (ISO-8859-1, SHIFT-
JIS, BIG5. . . ) which did not permit, for in-
stance, the representation in the same docu-
ment of French and Chinese texts. SYSTRAN
translation engines, while supporting a variety
of character sets in the source documents, inter-
nally used a combination of traditional encod-
ings and ASCII transliterations. This caused a
number of limitation and di�culties, partly be-
cause workarounds had to be designed to repre-
sent di�erent alphabets in the translation �ow
and partly because transliterations were intri-
cate to manage inside linguistic routines. To

solve these issues, SYSTRAN translation en-
gines have been made compliant to the Unicode
standard, using UTF-8 as their internal charac-
ter encoding.

2.2 Process Modularization and XML
work�ow

2.2.1 XML work�ow

The SYSTRAN translation process is organized
as a work�ow of modules working on an XML
document which is a representation of the input
text, along with all linguistic and structural in-
formation added by preceding modules. Each
module, from the source document �lter to the
target document �lter, through all other steps,
can read (get) this information and add (post)
new information to the XML document. This
information regroups, between other:

• the input text

• structural information about the docu-
ment format (HTML, Microsoft Word. . . ),
needed to rebuild the document

• typographical information (character prop-
erties) about the input text (e.g. which
words were in bold/italic font), needed to
put the same typographical properties on
the translated text

• the translated text, aligned with the input
text

• markup added to communicate with the
other modules and with external appli-
cations (such as SYSTRAN Translation
Project Manager): which words were spell-
checked, what dictionary translated words
come from, etc.

Section 2.3.1 details the way this information
is represented as XML.

2.2.2 Modules

The XML work�ow described in the previous
section makes it possible to have a better modu-
larization of the code: since the inputs and out-
puts of each XML work�ow module are com-
pletely de�ned by their XML representation,
each module is technically separable from the
rest of the code (as an external library for in-
stance, or even as a webservice). The XML
work�ow can thus be seen as a �ow of XML,
successively processed by a number of di�erent
independent agents, which get and post infor-
mation to the work�ow. Such a separation has
a vast number of advantages: easiness to add



Figure 1: This schema describes the translation process. Boxes are the di�erent modules. Modules
communicate together using a get/post mechanism and publish their output using the �XML work-
�ow�. The classical analysis area is synchronized with a �NG� syntagm representation on which �NG�
rules apply. Each module use a generic lookup mechanism (XmlFind, rightmost box) to recognize
patterns or trigger rules on the current sentence representation.

or remove modules, possibility to split modules
across machines for load balancing, more main-
tainable code. . .

Modules can be split into two di�erent kinds:
kernel modules, which are independent of the
source and target languages (�lters, preprocess-
ing, normalization. . . ), and linguistic modules
(analysis, transfer, synthesis and other language
dependent routines). It is to be noted that the
isolation of linguistic modules accelerates the
development of new language pairs, since the
portion of the code dependent of both the source
and target languages (that is, the transfer mod-

ule) is clearly identi�ed as the main point to
work on. Work is in progress on the develop-
ment of a generic transfer module, which would
directly give a �rst version of a translation en-
gine for new language pairs, using existing anal-
ysis and synthesis routines.

2.3 Data structures

2.3.1 The XML structure of the XML
work�ow

The XML work�ow structure contains the cur-
rent state of the analysis for a given sentence,
as well as �history� information on the sen-



tence evolution (allowing to potentially �undo�
an action performed by a previous module), and
generic �markup� used for communication be-
tween the di�erent modules. Main features of
this structure are described in (J. Senellart,
2001).

2.3.2 From a relation graph to a
syntagm DAG

SYSTRAN's classical engines (i.e. non-New
Generation engines) use a representation of the
syntax of a sentence based on a set of binary
relations between words (especially modi�er re-
lations). For instance, an article is linked to its
determining noun, the head word of a preposi-
tional phrase is linked to the preposition, etc.
This can be represented as a directed graph, as
shown in Figure 2 (left). This representation
is not always convenient to handle in transfer
and synthesis; for instance, it can be cumber-
some to move an entire noun phrase to another
position when synthesizing the target sentence.
Moreover, a classical tree-like view of the syn-
tax analysis is easier to read by developers, lin-
guists and could even be useful for the �nal user.
Therefore, SYSTRAN translation engines now
integrate a routine which convert the represen-
tation into a tree of syntagms � more precisely,
it is a directed acyclic graph (DAG) in case of
a complex set of syntactic relations. Figure 3
shows the corresponding algorithm.
Another advantage of the tree-based represen-

tation is that it is closer to the representation of
the analysis of other tools (including SYSTRAN
New Generation systems). The algorithm de-
tailed in Figure 3 can be reversed to derive a
set of relations between words from a syntax
tree. The corresponding relations can then be
used as usually by transfer and synthesis mod-
ules. This is another step into modularization
since the analysis module can be replaced by
the output of another tool which produce syn-
tax trees. Another application is the possibility
for the user to act on the result of the analysis,
and to re-inject the modi�ed syntax tree into
the translation engine (see section 3.3).

2.3.3 Declarative linguistic rules

The linguistic rules in SYSTRAN's classical ap-
proach are written directly in C, at a very low
level. This makes them very powerful since they
have full control over the linguistic procedures.
However, the visibility is low and the learning
curve is very steep.
Ideally, everything should be described in a

higher level formalism, easily accessible to lin-
guists. The linguists should not have to deal
with implementation details that are not related
to linguistics. This is the main concept of NG.
Given the amount of rules available in the sys-

tem, and also the way they work, it is very hard
to create this formalism. Covering them with a
declarative approach would mean re-inventing a
kind of programming language that would not
necessarily be easier to work with. Also, the
time needed for such a conversion is a consid-
erable investment. Therefore, as a compromise,
new rules may be written declaratively, while
keeping the available rules as they are.
The formalism for these rules is easy to use

and will eventually replace the classical ap-
proach. In the meantime, it does however give
a possibility for additional development.
This is possible using the common data struc-

ture for the syntagm structure described in the
previous section.
Example of a simple declarative rule:

<Rule id="NP11" confidence="0.9">
<Match>
[NP] [CONJ:+coordinate] [NP]

</Match>
<CreateSyntagm pos="NP">
<Feature name="plural"/>
</CreateSyntagm>
</Rule>

This rule would group the sequence

CONJ:+coordinateNP NP

into the syntagm

CONJ:+coordinateNP NP

NP:+plural

The declarative rules are loaded at runtime.
This means that they are easy to modify and
test, and therefore provide a very quick linguis-
tic development cycle.
The available types of parts of speech and

their attributes are de�ned in another module,
which handles the data structure for linguistic
attributes and classes. This de�nition is also
loaded at runtime.
The attribute de�nition module allows for a

means of checking the consistency of the rules,



the

the

director

on

comments

making

the

film

of

DET
the

NOUN
director

VERB
comments

PREP
on

DET
the

VERB
making

PREP
of

DET
the

NOUN
film .

NOUN
syntagm

VERB
syntagm

NOUN
syntagm

PREP
syntagm

VERB
syntagm

PREP
syntagm

VERB
syntagm

MCL
clause

Figure 2: On the left, graph of the relations between words in the sample sentence �The director
comments on the making of the �lm.� (the relation types are not shown). On the right, syntagm
tree for the same sentence, derived from the graph; head words of each syntagm are linked to the
syntagm with a bold edge.

SyntaxGraphToSyntagmDAG
Input: a graph G of labelled syntactic relations (acyclic)
Output: a DAG T of syntagms

For each connected component H in G:
1. Build a mapping M which maps each word node to an elementary

syntagm containing this word.

2. Select a node n from H with no incoming link.

3. For each n' in relation with n (order by relation kind priority)

(a) Recursively call step 2 with n' as new n, which gives a syntagm
DAG T'

(b) Create a new syntagm s, with M(n) as head word and T' as other
constituent. Put the result in M(n) and return it.

(Connected components are �nally regrouped into clauses, and relations
between clauses are computed. Enumerations are also handled, this is not
detailed here.)

Figure 3: Algorithm for converting a syntactic relation graph to a syntagm DAG

as well as making sure that the state of the at-
tributes is valid. For example, if the attribute
plural is set, it should not keep the attribute
singular if that was set by default.

Another application for this module is seman-

tic taxonomy, where attributes can be de�ned to
imply other attributes. For example, if there is
a semantic attribute woman, the attributes hu-
man and animate could be de�ned as semantic
parents.



2.4 Generic Lookup Operator

In Figure 1, the rightmost box represents a
generic component performing �lookup� for the
different modules.
This component called XmlFind is used for

dictionary lookup, rule triggering, and complex
morphology description. This mechanism is
very generic and extremely powerful � based
on �nite state automaton technologies, it per-
forms extended linguistic regular expressions.
Those expressions applies on the XML structure
used for the work�ow and has subsequently ac-
cess to most linguistic information and meta-
information on the current sentence. Figure
4 describes for instance how �normalization�
rules are internally represented using �nite state
transducers.

Figure 4: Finite state transducer describing nor-
malization rules: I'd is normalized into I had

when followed by a past participle. This last
constraint is represented using a special transi-
tion.

Simplest transitions are letters but the follow-
ing special �operators� can also be used:

• character properties operators (for instance
translation memory takes into account
characters properties for selecting best
match)

• Unicode operators - generic Unicode regu-
lar expression (level 1)

• XPath operators on the complete sentence
XML

• prede�ned �lookup operators� (chemical
compounds, numbers, date. . . )

• sub-matching: possibility of calling recur-
sively a sub-graph as a part of the current
entry. This features allows for represen-
tation of local grammars as described in
(Gross, 1997)

• any request on the current XML node (con-
taining information accumulated during the
process)

Any lookup performed by any module can have
access to this whole set of lookup tools � this
means that even �simple dictionary entries� have
access to those complex operators for restrict-
ing/extending matching conditions.
In addition, the automaton can be combined

on the �y with �lookup rules�. These lookup
rules are also described using a �nite state trans-
ducer and describe the possible variants allowed
during the lookup. These variants can be asso-
ciated to a matching cost. Figure 5 represents
such a transducer for some basic spell-checking
rules.

Figure 5: Simple spellcheck rules: a/ right quote
and straight quotes are equivalent. b/ yze can
be matched by yze with a cost 1.

3 Sample Applications

In this section, we illustrate on three simple ex-
amples, how the new architecture integrating
classical translation engines allow to e�ciently
improve translation quality and interact with
existing rule set.

3.1 Linguistic improvement by input
simpli�cation

One simple example of the immediate outcome
of the architecture as described above is the lin-
guistic improvement coming from the simpli�-
cation of the input. For instance, it is possible
to introduce a module in the work�ow special-
ized in date description or other �local gram-
mar�. For dates, for instance, we have intro-
duced modules specialized in parsing, analysis
and generation of dates. Those modules interact
with the complete analysis by posting a simpli-
�ed representation of the recognized expression
in the work�ow together with syntactic and se-
mantic information used by the native �date lex-
ical routine�.
In contrast to an external �entity recognition�

approach that could substitute date by a key-
word, this approach communicates information
to the internal routines about the properties of
the entities. Reciprocally, the linguistic code in
charge of the sentence generation can communi-
cate, in the same way, information to the date



generation module � for instance case or agree-
ment constraints.
Finally, those modules can perform a partial

recognition by letting ambiguous sequences be
normally processed by the existing mechanisms.
This simple example shows the simplicity

with which an external mechanism can interact
with existing code and customize the translation
process.

3.2 Introduction of control mechanisms

A second example is the new possibility of inter-
acting with the translation engine. For instance,
in version 5, the user has the possibility of see-
ing homographies resolved by the analysis and
interact with choice of the system. This interac-
tion mechanism is started by the posting of ho-
mography information by the routine resolving
the ambiguity. The XML markup carries this
information which is presented to the user for
validation. In the case the user wants to mod-
ify system choice, the user choice is posted in
the XML work�ow, and this information will be
used by the homography resolution routine as a
priority rule. Figure 6 shows user review and se-
lection of homography resolution. On the same
model, any system choice can be published and
manually modi�ed through user interaction.

3.3 Integrating external rules -
customizing the system

Using the permanent synchronization between
the classical analysis area and the high level
tree representation, and by de�ning appropriate
hooks in the linguistic work�ow, it is possible
to add modules that independently modify the
analysis of the sentence � or add new trans-
fer patterns � before giving the control back
to the existing work�ow. Hence, adding special
linguistic descriptions speci�c to a customized
domain or modifying dynamically normal sys-
tem choices is fully possible.
For instance, one possible use of this extension

possibility that we are currently working on, is
to use statistical methods to validate and also
extract new rules using corpus.

4 Conclusions and Outlook

We have described in this paper the mechanism
we use to open a complex MT system and to
integrate it in an open work�ow. The integra-
tion process bene�ts from the linguistic rule set,
provides �control mechanisms� (used for module
communication, or interaction with the user),
allows for an easy plug-in of external modules

in charge of speci�c linguistic tasks (leading to
more e�cient system customization, or to com-
bining a rule-based approach with a statistical-
based approach), and reveals all intermediate re-
sults of the translation process in a structured
format to the user.
To complete this architecture, the current de-

velopment focal points are:

• Improving the value of existing rules by
associating ponderation to each of them.
Today it is possible to know the system's
choices and to modify them. The next step
is for us to know the system's hesitations.
In a post-editing work�ow, the reviewer
would be able to focus on certain areas of
the translation output, which would yield
to higher productivity. The same ponder-
ation can be used to calculate the global
con�dence level for the complete sentence
translation, or can be used to decide that
some decision should not be taken, and
that the di�erent possibilities be analyzed
in parallel.

• Continue the modularization e�ort on the
linguistic code in order to obtain smaller
�agents�. This will reduce the time required
to generate new language pairs, and will en-
able a deeper interaction with the existing
set of rules.

References

M. Gross, 1997. Finite-State Language Process-

ing, chapter The Construction of Local Gram-
mars, pages 329�354. MIT Press.

T. Váradi J. Senellart, P. Dienes. 2001. New
Generation SYSTRAN translation system. In
MT Summit VIII Proceedings.

L. Romary J. Senellart, C. Boitet. 2003. SYS-
TRAN new Generation: the XML translation
work�ow. In MT Summit IX Proceedings.

Jing-Shin Chang Keh-Yih Su. 1999. A cus-
tomizable, self-learnable parameterized mt
system: the next generation. In MT Summit

VII Proceedings.
The Unicode Consortium. 2003. The Unicode

Standard. Version 4.0. Addison Wesley Pub-
lishing Company.



Figure 6: User review of system choices and selection of homography resolution within SYSTRAN
Translation Project Manager (version 5)


