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ABSTRACT
We consider here the exchange of Active XML (AXML)
data, i.e., XML documents where some of the data is given
explicitly while other parts are given only intensionally as
calls to Web services. Peers exchanging AXML data agree
on a data exchange schema that specifies in particular which
parts of the data are allowed to be intensional. Before send-
ing a document, a peer may need to rewrite it to match the
agreed data exchange schema, by calling some of the services
and materializing their data. Previous works showed that
the rewriting problem is undecidable in the general case and
of high complexity in some restricted cases. We argue here
that this difficulty is somewhat artificial. Indeed, we study
what we believe to be a more adequate, from a practical view
point, rewriting problem that is (1) in the spirit of standard
1-unambiguity constraints imposed on XML schema and (2)
can be solved by a single pass over the document with a
computational device not stronger than a finite state au-
tomaton. Following previous works, we focus on the core of
the problem, i.e., on the problem on words. The results may
be extended to (A)XML trees in a straightforward manner.

1. INTRODUCTION
Active XML documents (AXML for short) are documents

where some of the data is given explicitly while other parts
are given only intensionally by means of calls to Web services
[2, 14, 7, 8].

When exchanged between two applications, AXML docu-
ments have a crucial property: since Web services may be
called from anywhere on the Web, data can either be mate-
rialized before sending, or sent in its intensional form, thus
leaving the receiver the freedom to materialize it if and when
needed. More generally, a hybrid approach can be adopted,
where some data is materialized by the sender before the
document is sent, and some is materialized by the receiver.
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This choice may be influenced by various parameters such as
performance, capabilities, and security considerations [10].
For instance, if communication is expensive for the sender,
deferring the materialization to the receiver is preferable.
On the other hand, a particular receiver may not be capable
of invoking some service calls due, for example, to limited
access rights or security considerations. Therefore, this par-
ticular portion of the data needs to be materialized by the
sender. Just like for purely extensional XML data, a re-
ceiver can specify her preferences/constraints regarding the
structure of data and its allowed intensional portions us-
ing an (A)XML schema [10]. Before sending a document,
the sender must check if the data, in its current structure,
matches the schema expected by the receiver. If some of
data is intensional, while required by the receiver to be ex-
tensional, the sender needs to invoke the necessary service
calls to transform the data into the desired structure, if pos-
sible.

Consider a sender trying to cast a given document d to
the requested data exchange schema τ . Following [10], we
call the sequence of invoked calls a rewriting. The problem
of verifying whether there exists a sequence of calls that
transforms d into a document of type τ is called the rewriting
problem. The selection of the calls to be invoked in such a
rewriting is called a rewriting strategy.

The goal of this paper is to study the rewriting problem and
advocate the use of a particularly efficient class of rewriting
strategies, which we call one-pass regular rewriting.

Trees vs. words. It was shown in [10] that to solve the
rewriting problem for AXML trees, it suffices to solve it for
each individual node in the tree. For each node n with label
(type) l, one needs to check if n is “well typed”, i.e. if the
sequence of labels of n’s children forms a word in the regular
language associated with type l in the schema. If not, the
word needs to be rewritten to match the type. So, as in
[10, 13], we study here the rewriting problem for words.
The results extend to (AXML) trees in a straightforward
manner.

Before describing our contribution, let us first discuss the
difficulty of the rewriting problem and limitations of pre-
vious approaches. The rewriting problem was shown to be
undecidable in general, and of very high complexity even
in the restricted decidable cases that were studied in [13,
10]. This was rather discouraging since rewriting needs to
be performed each time an AXML document is sent. Fur-
thermore, in a Peer-to-Peer context (the typical context of
AXML data exchange), a peer is often a device with very



limited resources such as a PDA or a cell phone. Thus, it
is particularly important to have rewriting algorithms with
very low complexity. This lead us to consider restrictions on
the types that are used in data exchange schemas so that the
rewriting would be dramatically simplified. Intuitively these
restrictions are in the spirit of the standard ones imposed
on XML schemas to ensure efficient document parsing. The
following goals motivate the restrictions we will impose:

• We would like the rewriting to be performed in a single
pass over the word. We introduce for that the notion
of one-pass rewriting.

• We would like to be able to rewrite a word using no
more computation power than a finite state automaton
(FSA). We introduce the notion of regular rewriting.

• As in [10, 13], we would like, when possible, to per-
form the rewriting in a “safe” manner, i.e., be sure to
succeed in the rewriting whenever possible, and refrain
from invoking services as soon as failure is clear.

• As in [4], we would like, when possible, to use paral-
lelism to accelerate the rewriting.

The first goal, namely a one-pass rewriting, bears some re-
semblance to the left-to-right rewritings studied in [10, 13].
However, there is a subtle difference. In both, left-to-right
and one-pass rewritings, service calls are invoked in the or-
der they appear in the document, i.e., once a service has
been invoked, no services to its left may be invoked. A key
difference is that in left-to-right rewriting, the selection of
the services to call may depend on the entire word, whereas
in the one-pass it is based only on what has been read so far.
Intuitively, this corresponds to a sequential read of the word,
making invocation decisions based only on what have been
seen so far, in a one-pass filtering manner. We argue that
this is a desirable restriction, from a practical view point.
Indeed, we will advocate the use of finite state devices to
perform the filtering. This is what we call regular rewriting.

A first contribution of the paper is a comparison between
the two previously studied classes of rewritings, namely, the
safe and left-to-right rewritings[10, 13], and the new one-
pass. A second contribution is the study of the class of (one-
pass) regular rewritings. As we shall see, the complexity of
the rewriting demonstrated in [13] is somewhat artificially
due to ambiguities in the schemas. Unambiguity conditions
are often imposed on XML types [12, 9]. For instance, in
XML schemas [18], the grammar specifying the allowed la-
bels of the children of a node is typically restricted to be
1-unambiguous [5]. It thus seems reasonable to impose as
well unambiguity conditions on the intensional information
and on how it is rewritten. We will see that simple unambi-
guity conditions will lead to very efficient regular rewriting.

Practical corner. The present work was motivated by an
analysis of the AXML rewriting algorithm [10] provided in
an open-source system [3]. The code involves complex au-
tomata manipulations and is rather inefficient. Two direc-
tions were pursued. The first [4] lead to a re-engineering
of the system based on an intensive use of parallelism. Al-
though the performance are much better than in the original
implementation, rewriting is still costly. More importantly
it requires processing resources that may be beyond that
found on a small peer such as a PDA or a cell phone. This

motivated the present work where the focus is primarily on
rewriting performed by finite state devices. An important
advantage is that unlike that of [10, 4], some of the rewriting
techniques we mention here may be performed by a standard
XML validator, a piece of software that one expects to find
even on a small device.

The paper is organized as follows. Section 2 discusses
one-pass strategies. Section 3 is about regular strategies.
Section 4 considers parallel rewriting. The last section is a
conclusion.

2. ONE-PASS STRATEGIES
In this section, we introduce one-pass rewriting strategies

and consider their relationship with safe and left-to-right
strategies.

We assume a finite alphabet Σ and a subset Σf ⊆ Σ of
function names. The letters in Σf represent Web service
names and those in Σ−Σf represent XML elements. In the
following, f, g, h denote function names, a, b, c other letters
in Σ, and u, v, w are words over Σ.

In practice, the signatures of Web services, namely the
expected types of their arguments and results, are typically
given in their WSDL description [16]. This is modeled here
by a signature function τ that associates to each function
name f ∈ Σf a regular expression Rf over Σ called the
output type of f . (As standard in studying the rewriting
problem [10, 13], we ignore the arguments of service calls in
our model.) A rewriting system is thus specified by Σ, Σf

and τ , or simply τ when Σ, Σf are understood.
We use L(Rf ) to denote the regular language of Rf , and

assume in the following that for each f , Rf is ε-free (i.e.,
ε 6∈ L(Rf )). For a function f and its output type Rf , we
use further the notation f :-Rf to denote the fact that τ (f) =
Rf .

A target schema (that corresponds to the agreed data ex-
change type) is modeled by a regular expression R. In the
following, Σ, Σf and τ will often be understood, possibly
also the target language R. Given a word w and a target
schema R, the goal is to “rewrite” w into a word in L(R).

Example 2.1. For example, consider a newspaper docu-
ment where some of the data is given explicitly, e.g. the
title and date, and some intensionally, e.g. the tempera-
ture is obtained by calling a a weather forecast Web service
GetTemp, and the listing of current art exhibits is obtained
from the TimeOut local guide. The document can be mod-
eled by the word w = title.date.GetTemp.T imeOut, with
GetTemp:-temp, and T imeOut :- (exhibit+performance)∗.
Here GetTemp,T imeOut ∈ Σf while the other element na-
mes are in Σ. Assume we need to send the newspaper to a
customer, and the agreed data exchange schema for her is

R = (title.date.temp.T imeOut)+
(title.date.GetTemp.(exhibit + performance)∗).

We can rewrite w into L(R) by invoking GetTemp or Time-
Out (but not both).

Observe that since the actual answers of functions are not
known in advance (only their signature is given) the rewrit-
ing has to account for all their potential answers. So for the
target schema

R′ = (title.date.temp.T imeOut)+
(title.date.GetTemp.exhibit∗),

the only sure way to rewrite w into L(R′) would be by in-
voking GetTemp since we do not know in advance whether



T imeOut will return exhibits or performances. Finally, for
the target schema

R′′ = (title.date.GetTemp.exhibit∗),
there is no sure way of rewriting w. 2

Rewritings and rewriting strategies. The invocation of
service calls and their replacement by their answers is called
a rewriting, and is modeled as follows.

Definition 2.1. For a word w over Σ, we say that w →i

w′ if the i-th letter in w is some function f with output type
Rf , and w′ is obtained from w by replacing the i-th letter by
a word in L(Rf ). If w = w1 →i1 w2 . . . →in−1

wn, we say
that w rewrites to wn.

Observe that given w, the set of words w′ s.t. w rewrites
to w′ is context-free [1]. The intersection with L(R) (for R
the target schema) gives us a very rough test for potential
success: If the intersection is empty, we are certain to fail
rewriting w into a word in L(R).

Now, given a word w and a target schema R, a rewriting
of w into R can be viewed as a game between two players,
Juliet and Romeo, which play in rounds [13]. In each round,
Juliet selects a position i in the current word, where the
i-th letter is some function name fi. Romeo then chooses
some word in L(Rfi

) and replaces fi by this word. The
game stops and Juliet wins if after some finite number of
rounds, the resulting string is in L(R). The game stops and
Romeo wins if after some rounds, the resulting string does
not rewrite into any word in L(R) or if Juliet has not won
yet and decides to abandon. It is possible for the game to
continue forever.

A strategy σ (for a target language R) is a (deterministic1)
function that Juliet uses to pick at each round the position
i. If the function is undefined for some word w 6∈ L(R), this
means that Juliet declares failure. The strategy is winning
for w and R, if, no matter how Romeo plays, Juliet wins.

Given a target schema R and a strategy σ, we denote by
L(R, σ) the set of words w for which σ is winning. The

set bL(R, σ) on the other hand denotes the set of words w
for which Romeo has some way to win when Juliet plays
according to σ. The remaining words are those for which the
game continues forever and neither Juliet nor Romeo wins.
We say that two strategies σ, σ′ and equivalent if L(R,σ) =

L(R, σ′). Two strategies are semi-equivalent if bL(R,σ) =
bL(R, σ′). Observe the difference between equivalence and
semi-equivalence. For two equivalent strategies, Juliet wins
for exactly the same set of words. For two semi-equivalent
strategies, Juliet may win on some word w in one of the
strategies but may neither loose nor win (i.e., loop forever)
in the other.

Particular rewriting strategies. As mentioned in the in-
troduction, we are interested in this paper in particular
classes of rewriting strategies. We next recall the definition
of the left-to-right strategies of [10, 13].

Definition 2.2. A left-to-right (L2R-)strategy is one that
selects the functions to call from left to right only, i.e., if in

1One could also define non-deterministic strategies (and we
will mention some) but the focus here is on deterministic
ones.

a word ufv, this occurrence of f is selected, then no occur-
rence of functions in u may be later selected by the strategy2.

We next illustrate these notions with some examples. For
brevity, rather than using in the examples “real life” element
and function names, we will represent them by letters (f, g, h
for function names, a, b, c, d, e for element names.)

Example 2.2. [not winning] Consider w = abfh with
f :-c and h:-(d+e)∗. No winning strategy exists for the target
language abfd∗. One can try to call h, but since it may
return e’s the rewriting may fail. 2

Example 2.3. [winning but not L2R] Consider a word
w = fg with f :-a, g:-(b+b′), and a target schema (fb+ab′).
A winning strategy for w is one that first invokes g and then,
depending on its answer (i.e. Romeo’s choice) decides to in-
voke f or not. (If g returns b′, f is invoked; otherwise,
the rewriting succeeded already.) In contrast, no left-to-right
winning strategy exists for w. If we choose to invoke f , the
adversary answers a. We thus have to invoke g and the
adversary answers b, and the rewriting fails. If we choose
to invoke g first (so we will never be able to invoke f), the
adversary answers b′ and the rewriting also fails.

Observe that in this example a right-to-left strategy exists.
It is not difficult, following similar lines, to construct an
example where neither left-to-right nor right-to-left winning
strategies exist. 2

L2R-strategies were originally considered to reduce the
space of possible rewritings and thereby simplify the task
of rewriting a document to a given type. Indeed, the first
rewriting module of the AXML system used a L2R strategy.
We now focus on particular L2R strategies inspired by a
streaming mode, where the rewriting strategy only sees the
word “up to” the function f that it must decide to call or
not, and not any further. A one-pass strategy (1P-strategy)
is defined as follows. The store consists of a stack. The input
is originally on the stack with its first symbol on top. We
only see this top symbol. A move is either to read the top
symbol or to call it. If we call, the top symbol f is replaced
by some word in τ (f). We win if after emptying the stack,
the list of letters we read is a word in the target language.

We will also consider a variant where we have access to
the size of the stack. In other words, we also assume, for
instance, that we know the size of the input and that each
result of a service call is prefixed by its size. Note that this
is very reasonable in practice and that without such restric-
tion, the game may be somewhat biased. The adversary may
just keep producing a longer and longer answer to a service
call and there is simply no chance of being able to actually
cast the document. We will speak of one-pass strategy with
size (1PS-strategy).

It is easy to see that 1P-strategies (and 1PS-strategies)
are particular L2R-strategy. Their practical interest should
be clear. We read the word and decide (based only on what
has been read so far) whether a function that is encountered
should be called or not. Note that this is not directly re-
lated to the “1-pass pre-order typing” of [9]. However, the
underlying motivation is similar.

The following examples illustrate the notion of one-pass
strategy.

2A right-to-left variant may be defined in a similar manner.



Example 2.4. [1P] Consider the target language (Σ −
f)∗, where f :-(a + b). An obvious one-pass strategy consists
in calling the f functions that are encountered and leaving
all other functions unchanged. 2

Example 2.5. [1PS but not 1P] Consider the system
f :-a with the target language a + ff . When we read an f
we should call it if the input size is 1, and not if the size is
2. Without the size of the stack, we cannot. 2

When rewriting words to fit a target type, one would
clearly like to use the best possible rewriting strategy. A
strategy σ is optimal (for a target language R), if there does
not exist another strategy σ′ that is strictly better, i.e., such
that L(R, σ) ⊂ L(R, σ′). Similarly, a L2R-strategy (resp. a
1P-strategy) is optimal if there does not exist a L2R-strategy
(resp. a 1P-strategy) that is strictly better. If there exists
an optimal strategy σ that is better than any other strat-
egy, i.e., such that L(R, σ′) ⊆ L(R, σ) for all σ′, we say that
σ is an optimum strategy (similarly for optimum L2R- and
optimum 1P-strategy).

Example 2.6. [L2R but no optimum 1P] Consider
the system with f :-a and target (fb + ab′). It has an obvi-
ous optimum L2R-strategy. Consider an input of length 2,
fx where x is not yet known. We cannot choose between
calling f (in case x = b′) or not (in case x = b. There
is no optimum 1P-strategy. The one strategy that decides,
for instance, not to call f is optimal. Observe that because
f :-a, the expression (fb + ab′) is quite related to (ab + ab′)
which is 1-ambiguous [5]. We will show in the next section
that an unambiguity for AXML schemas will guarantee the
existence of optimum 1P-strategy and efficient rewriting. 2

The proof of the next result highlights properties of the
various rewritings that will guide us in the next section in
our quest for an efficient 1P-rewriting. The result is stated
for one-pass but a similar result also holds for one-pass with
size. In general, unless stated otherwise, in what follows,
results stated for one-pass also holds for one-pass with size.

We therefore sketch it.

Theorem 2.3. 1. For every target language R, there
exist an optimum strategy and an optimum L2R-strategy.

2. There exists a target language R that has infinitely
many incomparable optimal 1P-strategies and does not
have an optimum 1P-strategy.

3. There exists some target languages R that has infinitely
many distinct optimum strategies, and similarly for op-
timum L2R- and 1P-strategies.

Proof. (sketch) We start with (1). Let the depth of a
word w for R be the smallest k such that there exists a
strategy that wins on input w after at most k rounds. We
define the optimum strategy σ by induction on the depth of
words. For words of depth 0 (i.e. words in L(R)), σ invokes
no functions and wins immediately. Now, suppose that we
have defined σ for all words of depth k or less. Let w be
a word of depth k + 1. Observe that σ is not defined for
w and there exists a winning strategy σw for w that wins
after at most k + 1 rounds. Let the choice of σ on input w
be exactly that of σw. Similarly for all such words w. The
strategy σ is now winning for all words of depth k+1 or less.

By induction, we obtain a strategy σ that wins for all words
w such that some winning strategy exists for w. Similarly
for L2R.

To prove (3), consider Example 2.4 above. For each i, let
σi be the 1P-strategy defined as follows: σi calls all the f
functions in the word and, additionally, if the ith function
that it encounters is not an f it calls it too. Note that
the invocation of this additional function is not necessary
but that it allows to distinguish between infinitely many
optimum strategies.

Finally, for (2) we present an example of a target schema
for which no optimum 1P-strategy exists. The goal of the
example is also to illustrate the link between an absence of
such strategy and the presence of some ambiguities in the
target language, an issue that will be further investigated
in the next section. Consider the target type (fb + ab′)∗,
where f :-a. It is easy to see that there exists an optimum
L2R-strategy for the target language (fb + ab′)∗. On input
w, test if w has the form ( (f + a)(b + b′) )∗. If not, declare
failure. If yes, look at the letters of w in even positions and
call or not their preceding f ’s accordingly.

The situation is different for 1P-strategies. Consider some
particular occurrence of f . One 1P-strategy may decide not
to call f and succeed if the next symbol is a b. Another one
may choose to call f and succeed if the next symbol is a
b′. Indeed an infinite set of optimal 1P-strategies σi may be
defined as follows. For each i, σi invokes the i-th f and no
other function. One can verify that each σi is optimal.

We denote by safe(R) and L2R(R) the set of words for
which the optimum strategy and the optimum left-to-right
strategies win, resp. The term “safe” comes from [10]: the
words in safe(R) are those that can be safely rewritten to
a word in the target language, independently of the choices
of the adversary.

When a target language R has an optimum 1P-strategy,
say σ, we will denote 1P (R) the set L(R, σ).

We proved above the existence of optimum general and
L2R strategies. Observe that this was not a constructive
proof. Indeed, it is in general undecidable whether a win-
ning strategy exists for a given word w and a target language
R [13]. In contrast, for left-to-right rewritings, one can con-
struct the optimum strategy. More precisely, it was shown
in [13] that (1) for every R the set of words for which a
winning left-to-right strategy exists is regular, (2) the regu-
lar language for it can be effectively defined, and (3) a op-
timum corresponding rewriting strategy can be computed.
Note however that this construction is rather expensive. It
was proved to be double-exponential even for some very re-
stricted cases. This motivates our quest for more efficient
optimal 1P-strategies.

For some rewriting system and a target language, there
is no optimum 1P-strategy. One can question whether can
construct an optimal 1P-strategy. The issue is still open.
However, we next show that one can construct an optimal
one-pass strategy with size. Note that this is precisely what
matters in practice since size is typically available. The
proof is quite involved and will thus be only sketched.

Theorem 2.4. For each rewriting system and each target
language R, there exists a decidable, optimal 1PS-strategy.

Proof. (sketch) Given a system (Σ, Σf , )τ and a target
language R, we transform the problem of 1PS-strategy for



this system into a series of problems of L2R strategy for

another system (bΣ, cΣ′), bτ and a new target language bR, as
follows.

The L2R-system will use two new function symbols h (for

hidden symbol) and h̃ (for last hidden). Each one will pro-
vide a letter. The intuition is the following. Consider a call
to f in the 1PS-strategy with f :-R. It returns a string that
starts by some g and says the result is of length n, say 5. It
will be simulated in the L2R system by considering that f
returned g[:: R/g]hhhh̃ where [:: R/g] is an annotation that
will be explained shortly. For now, we note that R/g is the
quotient of R by g, i.e., the regular language consisting of all
the words w such that gw is in R. In general, one function
symbol will possibly be carrying left and right annotations:
what it was left to do and what it leaves to its successors.

Now, nothing would prevent the first h above from choos-
ing to generate a word that is different from R/g. This will
be taken care of by the target language.

The idea is that at some point in time we can represent all
the knowledge of the 1PS-strategy in the L2R-system. The
1PS-strategy has a choice between calling some f or not. It
will consider the set of words for the stack for which there
is a L2R-winning strategy depending of that choice. If one
is larger, follow its advice. Otherwise, if they are equal or
incomparable: it does not matter which one I call, so for
instance, read f .

The exact complexity of computing this optimal 1PS-
strategy is still open. It is also opened whether like for
L2R-strategies, the set of words for which this particular
strategy is winning, is regular. We strongly conjecture that
it is indeed regular.

The situation is simpler when there is a unique optimum
strategy.

Proposition 2.7. When a target language R has a unique
optimum 1P-strategy, the set of words 1P (R) for which this
strategy wins is regular.

The proof follows from Theorem 3.1 and Proposition 3.1
in next section, showing how to construct a regular language
for 1P (R).

We conclude this section comparing the respective power
of one-pass, L2R- and arbitrary rewriting strategies.

Theorem 2.5. 1. For each R and each 1P-strategy σ,
L(R, σ) ⊆ L2R(R) ⊆ safe(R).

2. There exist R s.t. L2R(R) ⊂ safe(R). There exists R
s.t. for each 1P-strategy σ. L(R,σ) ⊂ L2R(R).

3. One cannot decide given R, whether safe(R) = L2R(R),
and whether safe(R) = L(R, σ) for some 1P-strategy
σ.

4. When R has a unique optimum 1P-strategy, it is de-
cidable whether 1P (R) = L2R(R).

Proof. (sketch) The proof for (1) follows from the defi-
nition of the 1P, L2R, and arbitrary (optimum) strategies.
The proof for (2) is by Examples 2.3 and 2.6.

For (4) The decidability for 1P (R) = L2R(R) follows from
the fact that, in this case, both 1P (R) and L2R are regular.
(See Proposition 2.7 above, and its preceding discussion).
Hence equivalence can be tested by comparing the corre-
sponding regular languages.

The undecidability proof for (3) is by reduction to the
acceptance problem for Turing machines. Given a Tur-
ing machine M , we constructs a target schema RM s.t.
safe(RM ) = L2R(RM ) = 1P (RM ) iff the Turning machine
accepts no words. The construction follows a line similar
to the one used in [13] for showing that testing whether
w ∈ safe(R) for some word w and a target language R is
undecidable. We sketch the main idea below.

The undecidability proof in [13] constructs, given a Turing
machine TM with initial state q0, a target schema STM .
The schema is constructed such that a word w of the form
w = q0(0 + 1)∗ �∗ � has a safe rewriting iff (1) the sequence
of zeros and ones between the symbols q0 and � describe
a word that is accepted by the Turing machine TM , and
(2) the number of � symbols in the word correspond to the
amount of space consumed by the machine when running on
this word. (Each � represents a “blanc” cell in the machine
tape, to be used by the computation, and � denotes the end
of the tape.)

In [13] the � was a constant symbol. In our proof we use
it instead as a function �:- � � that can generate as many
cells as needed (so there is no need to know in advance the
required space). We also defined two additional functions
g:-b + b′; f → a.

Let Σ denote the set of all letters. Our target schema
R = R1 + R2 is the following.

R1 = STM (fb + ab′)
R2 = (Σ∗ − (q0(0 + 1)∗ �∗ �))fg
R = R1 + R2

Observe that safe(R) = safe(R1)∪safe(R2). Thus, a word
w = w′fg has a safe rewriting to R iff it is in R1, so w′ is of
the form q0a1 . . . an �

∗ � where a1 . . . an is accepted by the
Turing machine TM , or it is in R2, so w′ is not an encoding
of an input for the machine.

One can show that L2R(R1) = 1P (R1) is empty and
safe(R2) = L2R(R2) = 1P (R2). So, safe(R) = L2R(R) =
1P (R) iff safe(R1) is empty, i.e., if there is no word accepted
by the Turing machine.

The above result shows that, in general, one may loose
some potential rewritings when resorting to restricted strate-
gies. Interestingly, it turns out that this problem does not
occur for a large class of schemas, introduced in the next sec-
tion, that holds certain unambiguity properties. Indeed, we
will see that for these schemas safe(R) = L2R(R) = 1P (R),
hence a 1P-rewriting suffices for achieving the best possible
results.

3. REGULAR REWRITING
In this section, we consider a particular class of 1P-rewri-

tings called regular rewritings. In regular rewritings, the
rewriting strategy is defined by a simple computational de-
vice, namely a finite state automaton. We particularly focus
on a class of regular rewritings that obey certain unambigu-
ity conditions. These are similar to restrictions imposed, in
standard XML, to ensure efficient document validation on
XML schemas [18]. As for XML, we will see that, for AXML,
unambiguity facilitates efficient document rewriting.

1-unambiguity. First, we briefly recall the notion of unam-
biguity. Intuitively, the types assigned to XML elements are
required to be unambiguous in the sense that when arriving



to a given element, (after processing its preceding siblings),
the type of the element can be inferred in a deterministic
way by looking only at the element name. This entails that
for each element, the regular expressions R associated with
the element type is required to be 1-unambiguous [5]. A typ-
ical example of a 1-ambiguous regular expression is (ab+ac).
When reading the a, we cannot decide whether we are pars-
ing ab or ac. In this simple case, the equivalent regular
expression a(b+ c) is 1-unambiguous. The formal definition
of 1-ambiguity is rather complex and for space reasons we
omit it here. A property of such regular expression that is
of interest here, is that when R is 1-unambiguous, the deter-
ministic automaton A(R) corresponding to R can be con-
structed in ptime [5]. This automaton is such that (i) each
state is reachable and (ii) for each non-error state, there
exists a word that brings from this state to an accepting
state.

In the following, when we do not assume that R is 1-
unambiguous, we still associate, w.l.o.g, to R a deterministic
automaton A(R) with the properties (i) and (ii) above; the
only difference is that the size of this automaton may now
be exponential in that of R.

For brevity, we overload below the notation and, whenever
clear from the context, use R sometimes to denote both
the regular expression and its corresponding deterministic
automaton A(R).

Regular strategies. A regular strategy is a 1P-strategy whe-
re the decision of which functions to call is performed by
an FSA. More precisely, a regular strategy is specified by
a deterministic automaton B. The automaton computes
exactly like a standard finite state automaton except that
when reading a function f in state q, if B has no transition
for symbol f , rather than detecting an error and halting,
the function f is invoked and replaced by some word in Rf

(the value is selected by the adversary). Then the run con-
tinues with the modified word. We say that the regular
strategy wins on input w if independently of the adversary,
the machine reaches the end of the word in an accepting
state (∀ acceptance). We denote by L(B) the sets of words
for which the regular strategy wins. Observe that this is not
taking into account any target language R. We can assume
w.l.o.g that the regular strategy B also does the test for R.
Namely, when machine B reaches the end of a word in an
accepting state, the word on the tape is in L(R). In this
case, Juliet, aka Regular Strategy B, won the game for R;
otherwise Romeo won. Given a regular strategy B and a
target language R, the set of words for which the regular
strategy wins is L(R,B) (or L(B) when it is understood
that B also checks for R).

A main contribution of this paper is a study of regular
strategies for some target language R, and their relationship
to other rewriting strategies.

Properties of regular strategies. We have seen above that
the set of words L2R(R) for which the optimum L2R-strategy
wins, is regular, and similarly for the optimum 1P-strategy
when it is unique. (Proposition 2.7). Interestingly, for reg-
ular strategies, the set of word won by any regular strategy
is regular (even for the non optimum ones).

Proposition 3.1. For each regular strategy B, L(B) is
regular. (For each regular strategy B and target language R,

L(R, B) is regular.)

Proof. (sketch) To prove the proposition we show how
to construct a particular universal FSA for L(B) in time
polynomial in the size of B, and τ (the definition of function
signatures). This universal automaton, denoted Accept(B),
accepts a word if it is accepted in all possible runs3. The
moves of the universal automaton are defined using a datalog
program. For each function name f and each subexpression
R′ of Rf (including Rf itself) with the exception of R′ = e
for some letter e, let a(R′) be a fresh alphabet symbol not
in Σ. We assume that for each letter e, a(e) is e itself. The
datalog program P (B, σ) defines a relation Move(q, e, q′)
denoting the fact that the device moves from state q to q′

with the letter e. We have the following rules.

1. Move(q, e, q′)← .
for each q, q′, e such that B moves from q to q′ when
reading e (e is possibly a function symbol).

2. Move(q, f, q′)←Move(q, a(Rf ), q′)
if there is no transition from q with letter f , i.e., f has
to be called by B.

3. We have rules for defining the transitions with each
R′:

• Move(q, a(R1R2), q
′)←Move(q, a(R1), q

′′),

Move(q′′, a(R2), q
′)

• Similarly for a(R+

1 ), a(R∗

1), a(R1?), a(R1+R2).

The transition function δ of Accept(B) is given by: For each
q, q′ and each a ∈ Σ, q′ ∈ δ(q, a) iff Move(q, a, q′) holds.
The accepting states are those of B.

A deterministic version of the universal automaton de-
scribed in Accept(B) can be constructed as for standard
non-deterministic automaton. (The only difference from the
standard powerset automaton construction is that now the
accepting states are the sets where all states are accepting.)
The size of the deterministic automaton may be exponen-
tial in the size of Accept(B). The next proposition shows
that there are cases where this exponential blowup is indeed
necessary. Note that the construction for L2R-strategies re-
quires two exponentials [13].

Proposition 3.2. There exists B such that any deter-
ministic automaton for L(B) must have a number of states
exponential in the size of B.

Proof. (sketch) We will use in the proof the following
language. For some fixed n: Rn = (0 + 1)∗0(0 + 1)n.
There exists a non-deterministic automaton for Rn with
O(n) states, but every deterministic one must have a num-
ber of states exponential in n [6].

Let Σf = {0, n0, l0} and Σ = {1} ∪ Σf with the signa-
tures: 0:-(n0 + l0); n0:-1; l0:-1. Consider a regular strategy
B defined as follows. The automaton loops in a state q0

when reading 1’s. When it reads a 0, it calls the function
and stays in q0. When it reads n0, it calls it and transforms
it into 1 while going back to state q0. In state q0, it accepts.
When B reads l0 (think of it as “last 0”), it starts counting
characters. After counting exactly n letters, it goes into a

3This differs from the standard nondeterministic automaton
that accept a word if it is accepted by some possible run.



non-accepting state. All others states are accepting. De-
tails omitted. The regular strategy B wins on all sequences
of zero and one, except for those in Rn. So, there cannot
be a deterministic automaton for L(B) with a number of
states that is polynomial in n, since this would easily pro-
vide a deterministic automaton for Rn with a number of
states polynomial in n.

1P- vs. regular-strategies. We next examine the relation-
ship between arbitrary 1P strategies and regular ones. An
ideal situation would be if (*) each optimum 1P-strategy
had an equivalent regular one. This would mean that for
such strategies, we do not loose any rewriting power when
resorting to the simpler FSA computation. Unfortunately,
(*) is still open. We can show the following, weaker but
nevertheless encouraging results.

Theorem 3.1. 1. If a target language R has a unique
optimum 1P-strategy, then this strategy is regular.

2. Every optimum 1P-strategy of a target language R has
a semi-equivalent regular strategy4.

3. Furthermore, if R is 1-unambiguous, the regular strat-
egy can be obtained from A(R) by simply removing
some of its states and transitions.

Proof. (sketch) We first prove (1) and its counterpart in
(3). Consider the deterministic automaton without redun-
dant states for the target language R. For a state qi in R,
we use Ri to denote the suffix language corresponding to the
paths that start at qi and lead to an accepting state of R.

Let σ be the unique optimum 1P-strategy, i.e. for all
distinct 1P-strategies σ′, L(R,σ′) ⊂ L(R,σ). Let W denote
the set of all words to which words in Σ∗ may be rewritten
into, using the 1P-strategy σ. Let R′ be the automaton
obtained from R by deleting all the states that are never
reachable from the start state of R, when running words in
W . Let q be some state in R′ with an outgoing edge labeled
by a function f having the output type Rf . Let qf denote
the state to which the edge of f leads. Let Wf denote the
set of words to which words in Rf may be rewritten into,
using the σ, and let q1...qk be the states to which we get,
starting from q, when running on R′ words in Wf .
(*) It must be the case that either
∩i=1...kL(Rqi

, σ) ⊂ L(Rqf
, σ), or

L(Rqf
, σ) ⊂ ∩i=1...kL(Rqi

, σ).
For suppose not. This contradicts the fact that σ is a unique
optimum strategy. There are two cases that need to be
examined:

1. ∩iL(Rqi
, σ) = L(Rqf

, σ). Consider some word wf where
σ, when applied on w generates a word that, when run
on R′, brings to q. If σ decides to call (or resp. not
to call), consider an alternative strategy σ′ that works
always exactly like σ except that on wf chooses the
other option. Then σ′ is different than σ and it is also
an optimum, which contradicts the hypothesis.

2. suppose that there are two words, w′, w′′, s.t. w′ ∈
∩iL(Rqi

, σ) but 6∈ L(Rqf
), and w′′ ∈ L(Rqf

, σ) but
6∈ ∩iL(Rqi

, σ). Consider again the input word wf

4Recall from Section 2 that a semi-equivalent strategy is one
where Romeo wins on exactly the same words.

from above. If σ decides to call f , then consider an
alternative strategy σ′ that behaves exactly like σ ex-
cept that on wf it does not call f. One can see that
wfw′′ ∈ L(R, σ′), but 6∈ L(R, σ), which contradicts
the fact that σ is an optimum. Similarly, if σ does nor
call f .

This concludes the proof of (*).
This yields an optimum regular strategy. For every state

q, do not call f if ∩iL(Rqi
, σ) ⊂ L(Rqf

, σ), and call f if
L(Rqf

, σ) ⊂ ∩iL(Rqi
, σ). This strategy can be described

by the FSA obtained from R′ by deleting the f edges from
all states q where L(Rqf

, σ) ⊂ ∩L(Rqi
, σ). To compute it,

it suffices to consider all automata B obtained from R by
removing some nodes and edges labeled by function names.
By Proposition 3.1, one can then compute the automata
corresponding to the languages for L(R,B) and compare
the automata to find the one with a maximum language.

The proof for (2) (and its counterpart in (3)) follows sim-
ilar lines. The only difference is that when there are sev-
eral optimum strategies it is possible that ∩iL(Rqi

, σ) =
L(Rqf

, σ) for some q. Strategy σ may decide, when in state
q, sometimes to call f and sometimes not. We are not al-
lowed to do in a regular strategy. So, we have to choose
one of the two options. However, observe that the suffixes
accepted by the two choices are the same. So Romeo will
not win with B on more words than he did with σ.

To conclude observe that just like for general 1P-strategies,
the optimal regular strategy for a given target language may
not be unique. And furthermore there may be infinitely
many incomparable optimal regular strategies. To see this,
consider the proof of Theorem 2.3(2).

Unambiguous rewriting. Given a target language R, we
are interested in regular strategies for R. We have seen
that depending on R: (1) the strategy may be very com-
plex (testing membership in L(B,R) may require an FSA
with an exponential number of states), (2) there may be in-
finitely many optimal strategies and (3) resorting to regular
strategies may cause us to miss some possible rewriting.

We would like to impose syntactic restrictions that are
easy to test, reasonable in practice and prevent (1), (2) and
(3) to happen. As we will see, such restrictions exist. They
are similar in spirit to the ones typically imposed on XML
schemas and are essentially based on preventing some forms
of ambiguity. We next introduce a very simple and natural
one. It is based on the following classical notions:

• We denote by sem(f) the set of words to which f may
rewrite to.

• For each language L, start(L) = {a | a ∈ Σ and ∃u(au ∈
L)}.

It is easy to see that sem(f) is context-free and not al-
ways regular. Clearly, for each context-free language L, it is
straightforward to compute start(L).

Definition 3.2. A 1-unambiguous regular grammar R is
said to be rewriting-1-unambiguous, denoted r1-unambiguous,
if in its corresponding automaton A(R), there does not ex-
ists a state q with transitions for both a function name f
and some letter a ∈ start(sem(f)).



Proposition 3.3. If the target schema R is r1-unambi-
guous, then safe(R) = L2R(R) = 1P (R) = L(R, R), i.e.,
the regular strategy, defined by the automaton R itself, pro-
vides an optimum rewriting strategy for the target language
R.

Proof. (sketch) Consider how R operates when playing
the role of a regular strategy. When a function call f is
met in state q, either q has an outgoing edge labeled f ,
in which case f is not invoked, or otherwise the function
must be invoked. The crux is that when q has an outgoing
edge labeled f , there is no point in considering the option of
invoking f since, due to the r1-unambiguity, we know that
its output cannot match any of the edges outgoing from
q.

Clearly, r1-unambiguity is easy to test. Furthermore, this
test may be reduced to a standard test for 1-unambiguity.
This is of practical importance for it means that (transposed
to AXML documents) the test can be performed using a
standard XML schema validator. To see that, let check(R)
be the grammar obtained from R by replacing each function
name f by (a1+...+an), where start(sem(f)) = {a1, ..., an}.
One can see that check(R) can be computed in ptime and
that

R is r1-unambiguous iff check(R) is 1-unambiguous.

Clearly r1-unambiguity is a sufficient but not necessary
condition for Proposition 3.3, as illustrated by the following
example.

Example 3.4. Consider a target schema R = a(fc+deg)
with f :-dh; g:-c′. It is not r1-unambiguous for the same ar-
guments as above.

However, consider a word w = af... When reading f , one
may be tempted to call it since start(sem(f)) contains d and
d is meaningful after reading a. However, dh, the return
value of f , does not match deg, the suffix allowed by the
schema, so there is no point in calling f . Indeed, one can
find an optimum rewriting strategy for R which is regular,
although it is not r1-unambiguous. 2

One can define more general (and more complex) unambi-
guity conditions. (Omitted here for space reasons). In some
sense, Theorem 3.1 also provides some condition of unambi-
guity. The advantage of r1-unambiguity is that it is easy to
test and seems reasonable in practice. One example where
this is too restrictive is, for instance, when a document may
contain a phone number or a function returning a phone
number. In such case, calling or not calling just does not
make a difference. This is quite different from situations
where the success of rewriting depends on making the right
decision.

4.NON-BLOCKING REGULAR REWRITING
Web services typically take time to answer. Rather than

blocking and waiting for the service answer, we would like to
continue meanwhile and rewrite the remaining of the word,
going back to processing the service result only when it ar-
rives. A difficulty is that the decision whether to call or not
future functions may depend on f ’s answer5. Non-blocking
5In principle, one could also call some services in advance
“just in case” their result is needed (in the spirit of pre-
fetching). This may be undesirable if the services have side
effects or induce some fees. We do not consider this here.

rewriting is the main problem studied in [4]. We consider
here the issue in the context of regular strategies.

The following example illustrates the issue of non-blocking
rewriting.

Example 4.1. Consider a target language R = (ag+a′b)
with f :-(a + a′); g:-b. Suppose we try to rewrite the word
w = fg. When we read f , we know that we have to call it.
But we need to wait for its return value to decide if to call g
or not. On the other hand, for a target schema R′ = (a+a′)b
we can call f and, without waiting for its answer, proceed
and call g immediately. However, f may take us to two
distinct states of the automaton for R, which we may view
as some kind of ambiguity. 2

Homogeneous unambiguity. One can impose in practice
some radical restrictions both on the schema and on the
function signatures to guarantee a non-blocking rewriting.
For instance, suppose that we only allow functions that re-
turn nonempty homogeneous collections, e.g., one or more
b elements (for some b). We will say that such functions
are homogeneous. Note that now, the only freedom that
the adversary (Romeo) has is in the number of elements
that are returned in the answer. The following notion of
homog-unambiguity guarantees that the number of returned
elements makes no difference for the rewriting.

Definition: A 1-unambiguous regular language R
is homog-unambiguous if it is r1-unambiguous and in
each state q in R and each b, any nonempty sequence
of b’s brings to the same state qb.

In some sense, all is now deterministic: the choice to
call or not to call a function (because of r1-unambiguous)
and the effect of the adversary choice (because of homog-
unambiguous). Under such restrictions the rewriting needs
not wait for the result of the function and can continue im-
mediately the rewriting for the remaining of the word, from
state qb.

Analysis of potential runs. A non-blocking service invo-
cation is possible also for non homog-unambiguous target
schemas, but requires a more delicate analysis. We next
sketch the main principles.

Recall from the previous section the Move predicate de-
fined by the datalog program in the proof of Proposition 3.1.
Given a regular strategy B, a state q in B and a function f
with signature Rf , the set of states

{q′ |Move(q, a(Rf ), q′) holds},

are the states of B that may be reached from q after rewrit-
ing some possible output of f . Observe that, for homog-
unambiguous schemas, this set consists of the single state
qb, but that this set typically may have more that one el-
ements. Since we cannot know in advance which of these
states will indeed be reached, we need to consider all possi-
ble runs for the remaining of the word. More precisely, the
set of states which may be reached from q, when reading a
sequence of letters a1 . . . an (of element or function names),
can be computed by enriching the datalog program with the
following rules, for j = 2 . . . n:

Move(q, a(a1...aj), q
′) ← Move(q, a(a1...aj−1), q

′′),
Move(q′′, aj , q

′)



Now, suppose that aj is the function f ′. Consider all the
states q′′ such that Move(q0, a(a1...aj−1), q

′′) holds. The
function f ′ (aj) is invoked for sure if none of these states q′′

has an outgoing edge labeled by f ′. Alternatively, if all such
states contain an outgoing edge labeled by f , we know for
sure that the function must not be invoked. If some of the
states have an outgoing edge labeled by f ′ and some not, no
sure decision can be made for f ′, in other words, it depends
on the actual output of the previous functions. So one can
decide in ptime which function occurrences will surely be
called and which surely not.

Observe that deciding whether a function occurrence is
called or not is very closely related to deciding whether the
strategy is winning for a word a1 . . . aj . Indeed, the strat-
egy is winning if for each q such that Move(q0, a(a1...aj), q)
holds, q is an accepting state.

We omit the formal definition of the notion of sure de-
cisions and the correctness proof for the above results for
space reasons.

5. CONCLUSION
Motivated by the exchange of Active XML documents,

we studied several document rewriting strategies, including
regular, one-pass with and without size, L2R and general
rewritings. More generally, our results can be interpreted as
results on context-free games in the sense of [13] with the
bias that we are primarily interested in one-pass strategies.
Perhaps the most important open question in this setting
is whether for each problem, there is an optimal one-pass
strategy that is regular.

Typing issues in XML Schema have recently motivated
a number of interesting works such as [15, 11, 9] that are
based on tree automaton. In the present paper, the focus
was on strings and automata. However when (AXML) trees
are considered, tree automaton clearly becomes the essential
tool.

We are currently implementing a new rewriting module
for AXML. The simplicity of the implementation and its
efficiency are essential issues in particular for devices with
limited computational power. In particular, one of our goals
is to implement the rewriting module using a standard XML
validator to benefit from the genericity and efficiency of such
tools, and also limit the quantity of the AXML specific code
needed in a peer, a critical aspect for small devices. Intu-
itively, the implementation would run the XML validator
and, when an error is detected, analyze whether this is a
a “real” XML error or simply a function that needs to be
invoked. So, we basically have to catch exceptions and pro-
ceed from there. For technical reasons that will be omitted
here, it is not immediate to do so with validators such as
Xerces [17].

Finally, the focus here was on deterministic and winning
rewriting strategies. We already mentioned the interest of
non-deterministic rewriting. As discussed in [10], there are
cases when the rewriting is not guaranteed to succeed, there-
fore one would like to consider “possible rewriting”. We
believe that the study presented here on 1P and regular
rewriting could be similarly extended to possible rewriting
but this still remains to be explored.
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