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Abstract

In many applications there is a need to represent a large
number of data by clustering them in a hierarchy of classes.
Our basic representation is a Galois lattice, a structure that
exhaustively represents the whole set of concepts that are
distinguishable given the instance set and the representa-
tion language. What we propose here is a method to re-
duce the size of the lattice, and thus simplify our view of
the data, while conserving its formal structure and exhaus-
tivity. For that purpose we use a preliminary partition of
the instance set, representing the association of a ”type” to
each instance. By redefining the notion of extent of a term in
order to cope, to a certain degree (denoted asα), with this
partition, we define a particular family of Galois lattices de-
noted as Alpha Galois lattices. We also discuss the related
implication rules defined as inclusion of suchα-extents.

1 Introduction

One way to cluster instances in classes organized in a hi-
erarchy is to build a concept lattice [4], a structure in which
each node corresponds to a class represented as itsextent
(the set of the instances of the class) and itsintent (the
common properties of these instances expressed as a term
of a given language). Concept lattices express all the sub-
sets of instances distinguishable when using the language.
Various techniques have been proposed to reduce the size
of concept lattices by eliminating part of the nodes. In par-
ticular, frequent concept lattices [11, 10] represent the top-
most part of a concept lattice, i.e. the nodes whichextent

cardinality exceeds a given threshold. In our approach, we
reduce the number of nodes of the concept lattice by ac-
counting in a flexible manner a prior partition of data. The
partition is a set ofbasic classeswhich are clusters of in-
stances sharing the same basic type. Basic classes are then

used in order to add a local criterion of frequency to the
notion ofextent as follows: an instancei now belongs to
theα-extent of a termT of the language, when it belongs
to ext(T ), the extent ofT , (i.e. i has every T’s property),
and when at leastα % of the instances of the basic class
of i also belong toext(T ). Definingα-extents results in a
family of flexible concept lattices that we callAlpha Galois
lattices. For instance, in an Alpha Galois lattice represent-
ing the C/net electronic catalog, withα= 92, the ”support”
property will appear since in theHardDrives basic class,
92 % instances were sold with support. Actually, this prop-
erty is not frequent (13 products out of 2274, i.e. 0.5 %) and
so would not apppear in a frequent concept lattice.
We show that the set of nodes of anAlpha Galois Lattices
is a subset of the set of nodes of the corresponding concept
lattice and that the values ofα define a total order onAlpha
Galois lattices. Finally, the inclusion ofα-extents corre-
sponds to particular implication rules, representing some
kind of approximation of usual implication rules (i.e. as-
sociation rules with confidence 1), that depends on thea
priori partition of the data. Suchα-implication rules can
be extracted in the same way that ordinary implication (and
association) rules are extracted from concept lattices.

The general framework of Galois lattices is given in sec-
tion 2. In section 3, we present Alpha Galois lattices. Sec-
tion 4 presents experimental results on the C/net data set
and discuss the ability of such a representation to deal with
exceptional data (α near 0 or near 100). Finally, discussion
and conclusion are given in section 5.

2 Preliminaries and definitions

Detailed definitions, results and proofs regarding Galois
connections and lattices may be found in [1], and, in the
framework of Formal Concept Analysis in [4] . However
we need for our purpose a more general presentation than



the one in [4] as ourextentsare different from those used in
concept lattices.

Definition 1 (Galois connection and Galois lattice)Let
m1: P→ Q and m2: Q→ P be maps between two lattices
(P,≤P ) and (Q,≤Q). (m1, m2) s called a Galois connection
if for all p, p1, p2 in P and for all q, q1, q2 in Q:

C1- p1≤P p2⇒ m1(p2)≤Q m1(p1)
C2- q1≤Q q2⇒ m2(q2)≤P m2(q1)
C3- p≤P m2(m1(p)) and q≤Q m1(m2(q))

Let G={ (p,q) with p an element of P and q an element of
Q such that p=m2(q) and q = m1(p)}. Let≤ be defined by:
(p1,q1)≤ (p2,q2) iff q1≤Q q2, then:

(G,≤) is a lattice called a Galois lattice. When necessary
it will be denoted asG(P, m1, Q, m2)

Example 1 The two ordered sets are (L,�) and (P(I), ⊆).
L is a language a term of which is a subset of a set of
attributesA = {t1, t2, t3,a3,a4,a5,a6,a7,a8}. Here c1�
c2 means that c1 is less specific than c2 (e.g.{a3,a4}
� {a3,a4,a6}), I is a set of individuals ={i1,i2,i3,i4,i5,
i6,i7,i8}. Let int and ext be two mapsint: P(I) → L
andext: L → P(I) such thatint(e1) is the subset of at-
tributes common to all the individuals ine1 andext(c1) is
the subset of instances ofI that belongs to the termc1, i.e.
the set of individuals which have all the attributes of c1.
The example is represented in Figure 1 where each line is an
individual and each column is an attribute. Together withL
andP(I), int andext define a Galois connection. We also
have G={(c,e) wherec belongs toL, ande belongs toP(I)
and are such that e=ext(c) and c=int(e)}. Then (G,≤) is a
Galois lattice denoted as a concept lattice.

Figure 1. Example 1.Tab(i, j) = 1 if the jth attribute be-
longs to theith individual.

In concept lattices, a node(c, e) is a concept,c is the
intent ande is theextentof the concept. A characteristic
property of Galois lattices is that each node(c, e) is a pair
of closed terms, so we have in particularint(ext(c)) = c,

andc is the greatest term whose extent ise = ext(c). So the
intentc is a representative of the equivalence class of terms
whose extent ise. We refer to the corresponding equiva-
lence relation as≡L.

Example: In example 1,ext({a4}) = {i1, i3, i4},
int({i1, i3, i4}) = {a4, a6}. The term{a4, a6} is there-
fore a closed term asint(ext({a4}) = {a4, a6}

3 Alpha Galois lattices

In this section we start with the concept lattice
G(L, ext,P(I), int) as previously examplified. Then we
modify ext to obtain an equivalence relation≡‘

L coarser
than the original one. This results in larger equivalence
classes onL and therefore in less nodes in the correspond-
ing Galois lattice.

The newext function relies on the association of a pre-
defined type to each individual ofI. The corresponding
clusters of instances are denoted asbasic classes.The first
idea is then to gather such clusters rather than individuals
(see [9]). For instance, let us assume that the attributes
t1, t2, t3 express the types of the individuals of example 1.
These types corresponds to three basic classesBC1, BC2,
BC3 whose descriptions are the following: BC1={i1,i2},
int(BC1)= {t1,a3,a6}; BC2={i3,i4,i5}, int(BC2)={t2,a6};
BC3={i6,i7,i8}, int(BC3)={t3,a3,a6,a8}.
Let us consider the concept lattice built on a new set of in-
dividuals: {bc1,bc2,bc3} (let us call them theprototypes
of their respective basic classes) such that, for any indexi,
int(BCi) = int({bci}). This concept lattice is represented
in Figure 2 as a particular case of Alpha Galois lattice, and
is much smaller than the original concept lattice (6vs19
nodes).
Now, by relaxing the constraint that enforces to consider
only whole basic classes we defineAlpha Galois lattices.

Definition 2 (Alpha satisfaction) Letα belong to [0,100].
Let e={i1, . . . , in} be a set of individuals and T be a term
ofL. Then,

e α− satisfies T (e satα T ) iff | ext(T )∩ e | ≥ |e|.α
100

We check now whether at leastα % of a basic class sat-
isfies a term ofL and add this constraint toisa, the mem-
bership relation between individuals and terms:

Definition 3 (Alpha membership and Alpha extent) Let
BC be a partition of the set of individualsI as a set of basic
classes. Let us denote asBCl(i) the basic class to which
belongsi, and letT be a term ofL, then:

i isaα T iff i isa T andBCl(i) satα T

Theα-extent ofT in I w.r.t. BC is then:
extα(T ) = {i ∈ I | i isaα T }

Example. Let T={a6,a8}, ext(T) ={i1,i3,i5,i6,i7,i8}. BC2
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sat60 T since| ext(T ) ∩ BC2 |≥ |BC2|.60
100 . So we havei3

and i5 isa60 T . We also haveBC3 sat100 T , as 100 %
of BC3 belong to the extent ofT , and soBC3 sat60 T .
So we havei6, i7, and i8 isa60 T and isa100 T . As a
result, ext0(T)= ext(T) = {i1, i3,i5, i6,i7,i8}, ext60(T)=
{i3,i5,i6,i7,i8} andext100(T)= {i6,i7,i8}

We now define the correspondingAlpha Galois lattices:

Proposition 1 (Alpha Galois lattices) Let Eα = {e ∈

P(I) | ∀i ∈ e, | e ∩ BCl(i) | ≥ |BCl(i)|.α
100 }.

Then, int and extα define a Galois connection onL
and Eα and the corresponding Galois latticeGα=
G(L, extα, Eα, int) is called an Alpha Galois lattice.

Whenα is equal to 0,Eα = P(I) andextα = ext. There-
fore,G0 simply is is the corresponding concept lattice. The
extents of the nodes ofG100 are whole basic classes gath-
ered and here the Alpha Galois lattice is the concept lattice
obtained by considering as instances theprototypesof the
basic classes (Figure 2).

Figure 3 presents the topmost part ofG60. Note that
intents of the nodes ofG100 are also intents of nodes of
G60 that in turn are all intents of nodes of the original con-
cept latticeG0

Figure 2. TheG100 Alpha Galois lattice of example 1

{a6,a8}{i3,i5,i6,i7,i8}

{a6}{i1,i2, ... ,i8}

{t2,a6}{i3,i4,i5}

{t3,a3,a6,a8}{i6,i7,i8} {t2,a4,a6}{i3,i4}

{a3,a6}{i1,i2,i6,i7,i8}

Figure 3.α = 60 : The topmost part ofG60 of example 1.
New nodes, w.r.t.G100 are the lighter ones.

In [3] the authors extend formal concept analysis to more
sophisticated languages of terms and use the notion ofpro-
jection as a way to obtain smaller lattices by reducing the

language. [9] also introducesextensionalprojections that
reduces the concept lattice by modifying the notion ofex-
tent. It is easy to show that there exists an extensional pro-
jection projα such thatEα = projα(P(I)) and that then
extα=projα ◦ ext. Applying a theorem presented in [9]
allows then to prove Proposition 1. By changingext, an
extensional projection changes a Galois lattice to a smaller
one corresponding to larger equivalence classes onL.

An interesting case is the one of the partition{I} in
which we consider only one basic class, i.e. the case in
which all individuals share the same type. The correspond-
ing Alpha Galois lattice is the topmost part of the concept
lattice defined by the same languageL and the same setI
of individuals. The lattice then only contains nodes whose
extents have a size greater thanα

100 |I| (plus the bottom node
whose extent is empty). This structure has been previously
investigated and is denoted as anIceberg(or frequent) Con-
cept lattice[10, 11] where α

100 corresponds to the value of
the support thresholdminsupp.

4 Experiments

The program ALPHA that computes Alpha Galois lat-
tices relies on a straightforward top-down procedure in
which nodes are generated as follows: a current node intent
c is specialized by adding a new attributea, thenint◦extα is
applied toc∪{a} in order to obtain a closed term; the corre-
sponding node has then to be compared to previous nodes in
order to avoid duplicates. We have experimented ALPHA
on a real dataset composed of 2274 computer products ex-
tracted from the C/Net catalog. Each product is described
using a subset of 234 attributes. There are 59 types of prod-
ucts and each product is labelled by one and only one type.

In our first experiment we have builtG100 using the
whole data set (so practically restricted to 59 prototypical
instances), Then we smoothly lowered the value ofα and
recomputed the correspondingGα lattice. As we can see
hereunder the number of nodes (and so the CPU time)
exponentially grows from 211 concepts to 107734 asα

varies from 100% to 92%. This means that it is here
impossible to have a complete view of the data at the level
of instances (α=0):

Alpha 100 98 96 94 92
Nodes 211 664 8198 44021 107734

We are first interested in what happens with high val-
ues of α. Starting fromG100, new nodes appear asα
slowly decreases. For instance atα = 99%, a new node
appears under theG100 node standing for the basic class
Laptop. The intent of the new node now contains the
attribute ”network-card”. This is due to the fact that most
instances of the classLaptopdo possess a network card. So
by relaxing the basic class constraint we get rid of the few,
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exceptional, instances ofLaptop found in the catalog and
that were hiding this ”default” property ofLaptopin G100.
So, by slowly decreasingα from 100 % we have a more
accurate view of our data by revealing properties that are
relevant to at least some basic class.

A second experiment with 24 basic classes and 1187
objects (some large basic classes are removed thus resulting
in a more homogenous class size distribution) shows that
the size of Alpha Galois lattices can be really different from
the one of frequent lattices:

Alpha Values 100 80 50 30 0
Alpha Nodes 158 842 1493 1900 2202
Frequent Nodes 2 18 18 50 2202

Here asα slowly grows from 0 to small values (say
10%), some instances, which behavior isexceptional
within their basic class w.r.t. some termt of L, will dis-
appear from the correspondingα-extent. These instances
are exceptional as they belong to the extent of the term
t whereas very few instances of the same basic class do
belong to this extent. As a result some properties that are
very unfrequent within some basic class will no more be
allowed to discriminate concepts. For example, only few
Laptopshave the property ”Digital-Signal-Protocol”, and
so whenα = 6% , nodes which intent contains the ”Digital
Signal Protocol” property no more include instances of
Laptopin their extent. As a result terms including” Digital-
Signal-Protocol” become equivalent whenever their extent
only differed because of Laptop instances, thus resulting on
a smaller (and so simpler) lattice.

5 Related work and conclusion

Recent work in Knowledge Representation and Machine
Learning investigates Galois connections and lattices based
on languages of terms more complex than those used in con-
cept lattices, so modifying the notion of intent of a con-
cept [4, 2, 6, 3]. We have shown here that by restricting
the notion of extent of a term with respect to aa priori
partition of the instance setI, we also modifies the lattice
of extents which is no longerP(I) and we obtain a new
family of Galois lattices. As mentioned above Iceberg (or
frequent) concept lattices [11, 10] formally are Alpha Ga-
lois lattices in which all individuals belong to the same ba-
sic class. Besides, the implication rules related to Alpha-
Galois lattices simply correspond to inclusion ofα-extents
and a canonical basis of suchα − implication rules can
be extracted from the Alpha-Galois lattices in the same way
as from frequent concept lattices (theintents of the nodes
are usually denoted asclosed frequent itemsets. Association
rules are then built using closed frequent itemsets [7, 12]).
Note thatα− implication rules inherit from the Galois lat-
tice structure interesting properties (as transitivity) unusual

when dealing with ”approximate” rules.
About construction of Alpha Galois lattices, it should be

interesting to adapt efficient algorithms aimed at the con-
struction of concept lattices (e.g. [5]). Now there is another
particular set theory view ofa priori partitioned data re-
ferred to asrough setstheory ([8]). As the partitioning on
rough sets expresses some indiscernibility between individ-
uals of the same basic class, the rough sets view results in
some degree of membership ofi to an extente, even if the
individual i does not belong toe. At the contrary in the Al-
pha Galois lattice view, membership ofi to an extente is a
prerequisite forα-membership. A fortunate consequence of
the latter view is the opportunity to construct Galois lattices.

As a conclusion there is still much work to experiment
and to investigate theoretical issues and practical use of Al-
pha Galois lattices and correspondingα-implication rules.
However we do believe that they represent a flexible tool to
investigate data and handle exceptions that are relative toa
preliminary view of the data.
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