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Abstract used in order to add a local criterion of frequency to the
notion of extent as follows: an instancénow belongs to
In many applications there is a need to represent a large the a-extent of a termT of the language, when it belongs
number of data by clustering them in a hierarchy of classes. to ext(T'), the extent ofl", (i.e. i has every T’s property),
Our basic representation is a Galois lattice, a structuratth  and when at least % of the instances of the basic class
exhaustively represents the whole set of concepts that aref ¢ also belong text(T"). Defininga-extents results in a
distinguishable given the instance set and the representafamily of flexible concept lattices that we c@llpha Galois
tion language. What we propose here is a method to re-lattices For instance, in an Alpha Galois lattice represent-
duce the size of the lattice, and thus simplify our view of ing the C/net electronic catalog, with= 92, the "support”
the data, while conserving its formal structure and exhaus- property will appear since in thH ard Drives basic class,
tivity. For that purpose we use a preliminary partition of 92 % instances were sold with support. Actually, this prop-
the instance set, representing the association of a "tyjpe” t erty is not frequent (13 products out of 2274, i.e. 0.5 %) and
each instance. By redefining the notion of extent of a term inso would not apppear in a frequent concept lattice.
order to cope, to a certain degree (denotedngswith this We show that the set of nodes of Aipha Galois Lattices
partition, we define a particular family of Galois lattices-d  is a subset of the set of nodes of the corresponding concept
noted as Alpha Galois lattices. We also discuss the relatedlattice and that the values ofdefine a total order oAlpha
implication rules defined as inclusion of suekextents. Galois lattices Finally, the inclusion ofx-extents corre-
sponds to particular implication rules, representing some
kind of approximation of usual implication rules (i.e. as-
1 Introduction sociation rules with confidence 1), that depends onahe
priori partition of the data. Such-implication rules can
One way to cluster instances in classes organized in a hi-be extracted in the same way that ordinary implication (and
erarchy is to build a concept lattice [4], a structure in vhic ~association) rules are extracted from concept lattices.
each node corresponds to a class represented astést The general framework of Galois lattices is given in sec-
(the set of the instances of the class) andiitsent (the tion 2. In section 3, we present Alpha Galois lattices. Sec-
common properties of these instances expressed as a terfion 4 presents experimental results on the C/net data set
of a given language). Concept lattices express all the sub-and discuss the ability of such a representation to deal with
sets of instances distinguishable when using the languageexceptional datao{ near 0 or near 100). Finally, discussion
Various techniques have been proposed to reduce the sizand conclusion are given in section 5.
of concept lattices by eliminating part of the nodes. In par-
ticular, frequent concept lattices [11, 10] represent te t
most part of a concept lattice, i.e. the nodes whictent
cardinality exceeds a given threshold. In our approach, we
reduce the number of nodes of the concept lattice by ac- Detailed definitions, results and proofs regarding Galois
counting in a flexible manner a prior partition of data. The connections and lattices may be found in [1], and, in the
partition is a set obasic classesvhich are clusters of in-  framework of Formal Concept Analysis in [4] . However
stances sharing the same basic type. Basic classes are theve need for our purpose a more general presentation than

2 Preliminaries and definitions



the one in [4] as ouextentsare different from those used in
concept lattices

Definition 1 (Galois connection and Galois lattice)Let
ml: P— Q and m2: Q— P be maps between two lattices
(P.<p) and (Q<g). (M1, m2) s called a Galois connection
if for all p, p1, p2 in P and for all q, 1, g2 in Q:

Cl-pls<p p2= ml(p2)<qg ml(pl)

C2-q1<q g2= m2(g2)<p m2(ql)

C3- p<p m2(m1(p)) and g=o M1(mM2(q))

Let G={ (p,q) with p an element of P and q an element of

Q such that p=m2(qg) and g = m1(p)Let < be defined by:
(p1,91)< (p2,q2) iff q1<g g2, then:

(G,X)is alattice called a Galois lattice. When necessary

it will be denoted a&7(P, m1, Q, m2)

Example 1 The two ordered sets ar&€(<) and (P(I), C).

L is a language a term of which is a subset of a set of

attributes 4 = {t1, t2, t3,a3,a4,a5,a6,a7,48 Here c1=
c2 means that cl is less specific than c2 (e{@3,a4
< {a3,a4,a§), | is a set of individuals ={i1,i2,i3,i4,i5,
i6,i7,i8}. Letint and ext be two mapsnt: P(I) — L
andext: £ — P(I) such thatint(el) is the subset of at-
tributes common to all the individuals #1 andext(cl) is
the subset of instances bthat belongs to the term, i.e.
the set of individuals which have all the attributes of c1.

The example is represented in Figure 1 where each line is an

individual and each column is an attribute. Together with
andP(I), int andext define a Galois connection. We also
have G (c,e) where: belongs taZ, ande belongs toP(7)
and are such that e=ext(c) and c=int(e)Then (G <) is a
Galois lattice denoted as a concept lattice.

tl | t2 |t3 (a3 |ad4 | a5 | a6 | a7 | a8

il| 1 1] 1 1 1

20 1 1|1

Figure 1. Example 1Tab(i, j) = 1 if the 5** attribute be-
longs to the'” individual.

In concept lattices, a node, e) is a conceptc is the
intentande is the extentof the concept. A characteristic
property of Galois lattices is that each nadee) is a pair
of closed terms, so we have in particulat(ext(c)) = c,

andc is the greatest term whose extent is: ext(c). So the
intentc is a representative of the equivalence class of terms
whose extent iz. We refer to the corresponding equiva-
lence relation as,.

Example: In example 1,ext({ad4}) = {il,:3,i4},
int({il,i3,i4}) = {a4,a6}. The term{ad, a6} is there-
fore a closed term asut(ext({ad}) = {a4, a6}

3 Alpha Galois lattices

In this section we start with the concept lattice
G(L,ext,P(I),int) as previously examplified. Then we
modify ezt to obtain an equivalence relatioa, coarser
than the original one. This results in larger equivalence
classes oif and therefore in less nodes in the correspond-
ing Galois lattice.

The newext function relies on the association of a pre-
defined type to each individual df. The corresponding
clusters of instances are denotedbasic classe3he first
idea is then to gather such clusters rather than individuals
(see [9]). For instance, let us assume that the attributes
t1,t2,t3 express the types of the individuals of example 1.
These types corresponds to three basic claBses BC2,
B(C3 whose descriptions are the following: BC{it,i2},
int(BC1)={t1,a3,a6; BC2={i3,i4,i5}, int(BC2)={t2,a6};
BC3={i6,i7,i8}, int(BC3)={t3,a3,a6,a8.

Let us consider the concept lattice built on a new set of in-
dividuals: {bcl,bc2,bc3 (let us call them theprototypes

of their respective basic classes) such that, for any index
int(BC1i) = int({bci}). This concept lattice is represented
in Figure 2 as a particular case of Alpha Galois lattice, and
is much smaller than the original concept latticevi@ 9
nodes).

Now, by relaxing the constraint that enforces to consider
only whole basic classes we defiAlpha Galois lattices

Definition 2 (Alpha satisfaction) Let« belong to [0,100].
Let e={iy,...,i,} be a set of individuals and T be a term
of L. Then,

e a—satisfies T (e saty, T) iff | ext(T)Ne| >

le|.av
100

We check now whether at least% of a basic class sat-
isfies a term ofL and add this constraint i&a, the mem-
bership relation between individuals and terms:

Definition 3 (Alpha membership and Alpha extent) Let
BC be a partition of the set of individualsas a set of basic
classes. Let us denote #&8”1(7) the basic class to which
belongsi, and letT" be a term ofZ, then:
iisaq T iff i isa T and BCI(i) saty T
Thea-extent ofl" in I w.r.t. 5C is then:
exto(T)={iel|iisan T}
Example. Let T={a6,a8}, ext(T) ={i1,i3,i5,i6,i7,i8}. BC2



satgo T since| ext(T) N BC2 |> BS99 50 we haves

and 5 isago 1. We also haveBC3 satigg T, as 100 %
of BC3 belong to the extent ¢f, and soBC3 satgy T

So we have6, i7, andi8 isagg T andisaigo T. AS a
result, exto(T)= ext(T) = {il, i3,i5, i6,i7,i8}, extso(T)=

{i3,i5,i6,i7,i8} andext100(T)= {i6,i7,i8}

We now define the correspondiAdpha Galois lattices

Proposition 1 (Alpha Galois lattices) Let E, = {e €
P(I) | Vice,|enBCl(i)| > 1B9@lay

Then, int and ext, define a Galois connection o
and E, and the corresponding Galois lattic&,=
G(L,ext,, E,, int) is called an Alpha Galois lattice.

Whena is equal to 0F,, = P(I) andext,, = ext. There-
fore, Gy simply is is the corresponding concept lattice. The
extents of the nodes d¥,(, are whole basic classes gath-
ered and here the Alpha Galois lattice is the concept lattice
obtained by considering as instances phetotypesof the
basic classes (Figure 2).

Figure 3 presents the topmost part@§,. Note that
intents of the nodes of7og are also intents of nodes of
Gep that in turn are all intents of nodes of the original con-
cept latticeGG

{a6}, {il1.i2,i3.i4.i5.i6,i7 i8}

{tl.a3.a6}, {il 2}

(13,03 46,28} {i6.i7.i8)]

{t1.2.t3 a3 a4 ,a5,a6 a7 a8}, {

{126}, {i3.i4i5}

Figure 2. TheG100 Alpha Galois lattice of example 1

{a6}il,i2, ... ,i8}

[ta3.ag1ivi2,6,7,8}] | {a6.28K [w2.a6)iziais) |

[ {2.24,26}4i3,4} |

| {t3,a3,a6,aB{i6,i7,i8} |

Figure 3.a = 60 : The topmost part affso of example 1.
New nodes, w.r.tG1oo are the lighter ones.

In [3] the authors extend formal concept analysis to more
sophisticated languages of terms and use the notipnosf
jectionas a way to obtain smaller lattices by reducing the

language. [9] also introducestensionaprojections that
reduces the concept lattice by modifying the notiorerf
tent It is easy to show that there exists an extensional pro-
jection proj, such thatE, = proj,(P(Z)) and that then
ext,=proj, o ext. Applying a theorem presented in [9]
allows then to prove Proposition 1. By changiext an
extensional projection changes a Galois lattice to a smalle
one corresponding to larger equivalence classes.on

An interesting case is the one of the partitidh} in
which we consider only one basic class, i.e. the case in
which all individuals share the same type. The correspond-
ing Alpha Galois lattice is the topmost part of the concept
lattice defined by the same languafj@nd the same sdt
of individuals. The lattice then only contains nodes whose
extents have a size greater th@g|I| (plus the bottom node
whose extent is empty). This structure has been previously
investigated and is denoted aslaaberg(or frequeny Con-
cept lattice[10, 11] where;3; corresponds to the value of
the support thresholehinsupp

4 Experiments

The program ALPHA that computes Alpha Galois lat-
tices relies on a straightforward top-down procedure in
which nodes are generated as follows: a current node intent
cis specialized by adding a new attributghenint®ext,, is
applied tocU{a} in order to obtain a closed term; the corre-
sponding node has then to be compared to previous nodes in
order to avoid duplicates. We have experimented ALPHA
on a real dataset composed of 2274 computer products ex-
tracted from the C/Net catalog. Each product is described
using a subset of 234 attributes. There are 59 types of prod-
ucts and each product is labelled by one and only one type.

In our first experiment we have buitt,oo using the
whole data set (so practically restricted to 59 prototyipica
instances), Then we smoothly lowered the valuevatnd
recomputed the correspondidg, lattice. As we can see
hereunder the number of nodes (and so the CPU time)
exponentially grows from 211 concepts to 107734qas
varies from 100% to 92%. This means that it is here
impossible to have a complete view of the data at the level
of instances¢=0):

100 98 96 94 92
211 664 8198 44021 107734

Alpha
Nodes

We are first interested in what happens with high val-
ues ofa. Starting fromGio0, New nodes appear as
slowly decreases. For instanceaat= 99%, a new node
appears under th€';oo node standing for the basic class
Laptop The intent of the new node now contains the
attribute "network-card”. This is due to the fact that most
instances of the clagsaptopdo possess a network card. So
by relaxing the basic class constraint we get rid of the few,



exceptional, instances dfaptopfound in the catalog and
that were hiding this "default” property dfaptopin G1oo.

So, by slowly decreasing from 100 % we have a more
accurate view of our data by revealing properties that are
relevant to at least some basic class.

when dealing with "approximate” rules.

About construction of Alpha Galois lattices, it should be
interesting to adapt efficient algorithms aimed at the con-
struction of concept lattices (e.g. [5]). Now there is aeoth
particular set theory view od priori partitioned data re-

A second experiment with 24 basic classes and 1187ferred to agough setgheory ([8]). As the partitioning on
objects (some large basic classes are removed thus rgsultinrough sets expresses some indiscernibility between ididivi
in a more homogenous class size distribution) shows thatuals of the same basic class, the rough sets view results in

the size of Alpha Galois lattices can be really differentriro
the one of frequent lattices:

Alpha Values 100 80 50 30 0
Alpha Nodes 158 842 1493 1900 2202
Frequent Nodeg 2 18 18 50 2202

Here asa slowly grows from O to small values (say
10%), some instances, which behavior égceptional
within their basic class w.r.t. some tertvof £, will dis-
appear from the correspondinmgextent. These instances
are exceptional as they belong to the extent of the term

some degree of membershipiab an extent, even if the
individual: does not belong te. At the contrary in the Al-
pha Galois lattice view, membershipofo an extent is a
prerequisite for-membership. A fortunate consequence of
the latter view is the opportunity to construct Galois tzt.

As a conclusion there is still much work to experiment
and to investigate theoretical issues and practical usd-of A
pha Galois lattices and correspondimgmplication rules.
However we do believe that they represent a flexible tool to
investigate data and handle exceptions that are relatige to
preliminary view of the data.

t whereas very few instances of the same basic class do Acknowledgment#fany thanks to Nathalie Pernelle for its

belong to this extent. As a result some properties that are

very unfrequent within some basic class will no more be
allowed to discriminate concepts. For example, only few
Laptopshave the property "Digital-Signal-Protocol”, and
so wheno = 6% , nodes which intent contains the "Digital
Signal Protocol” property no more include instances of
Laptopin their extent. As a result terms including” Digital-
Signal-Protocol” become equivalent whenever their extent
only differed because of Laptop instances, thus resulting o
a smaller (and so simpler) lattice.

5 Related work and conclusion

Recent work in Knowledge Representation and Machine
Learning investigates Galois connections and latticesdas

on languages of terms more complex than those used in con-

cept lattices, so modifying the notion of intent of a con-
cept [4, 2, 6, 3]. We have shown here that by restricting
the notion of extent of a term with respect toaapriori
partition of the instance sét we also modifies the lattice
of extents which is no longeP(7) and we obtain a new
family of Galois lattices. As mentioned above Iceberg (or
frequent) concept lattices [11, 10] formally are Alpha Ga-
lois lattices in which all individuals belong to the same ba-
sic class. Besides, the implication rules related to Alpha-
Galois lattices simply correspond to inclusionceextents
and a canonical basis of sueh— implication rules can

be extracted from the Alpha-Galois lattices in the same way
as from frequent concept lattices (theétents of the nodes
are usually denoted atosed frequent itemsetdssociation
rules are then built using closed frequent itemsets [7,.12])
Note thatoe — implication rules inherit from the Galois lat-
tice structure interesting properties (as transitivitgysual

valuable contribution to the work presented here, and ttfplei
Dague for its patient reading of an earlier draft of this pape
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