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1. INTRODUCTION

A key factor for the outstanding success of database man-
agement systems is that they provide physical data indepen-
dence: queries, and application programs, are able to refer to
the data at the logical level, ignoring the details on how the
data is physically stored and accessed by the system. The
corner stone of implementing physical data independence is
an access path selection algorithm: whenever a disk-resident
data item can be accessed in several ways, the access path
selection algorithm, which is part of the query optimizer, will
identify the possible alternatives, and choose the one likely
to provide the best performance for a given query [23].

Surprisingly, physical data independence is not yet achieved
by XML database management systems (XDBMSs, in short).
Numerous methods have been proposed for XML storage [4,
7, 11, 14, 18, 24], labeling [5, 20] and indexing [6, 15, 19,
26] and implemented in various prototypes. However, the
data layout resulting from each of these schemes is hard-
coded within the query optimizer of the corresponding sys-
tem. Thus, adding a different type of storage structure (e.g.,
a new index) requires re-writing the query optimizer, to in-
form it that a new access path becomes available. This
situation prevents XDBMSs from attaining two important
features: flexibility and extensibility. By flezibility, we mean
that widely different storage schemes must be supported, for
the varying needs of different workloads and data sets. By
extensibility, we mean that the XDBMS must adapt grace-
fully to changes in the workload and/or data set, which
naturally require tuning the storage by adding e.g., an in-
dex or a materialized view. Such extensibility is a common
feature of today’s relational database management systems
(RDBMSs), which currently include automatic index and
materialized view selection algorithms [2].

We demonstrate ULoad, an XML storage tuning tool, which
is a step towards achieving physical data independence for
XML. ULoad is meant to help the database administrator
(DBA) in choosing the persistent XML storage and indexing
modules best suited for a given dataset, and workload, thus
achieving our flexibility and extensibility requirements.
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Given a document to store, and a query workload, ULoad:
(7) allows the DBA to choose, customize, and apply some
storage and indexing models, picked among a large set of
existing ones; (7¢) lets the DBA define her own specialized
persistent structures; (i7¢) presents to the DBA the query
execution plans (QEPs) for the workload queries, on the
storage model chosen, and their costs; and (7v) may propose
a storage adapted to the data and workload, based on a cost-
driven search.

At the core of ULoad lies a novel algebraic formalism (with
a simple graphical representation), called XML Access Mod-
ules (XAMs), describing the information contained in a per-
sistent XML storage structure. XAMs are generic enough
to capture many existing storage and indexing schemes, and
they have several other innovative features. First and fore-
most, a set of XAMs is a high-level description of how a
document is stored. Based on this description, with clear
algebraic foundations, ULoad provides an access path selec-
tion algorithm, identifying the storage structures that can
be used to answer a given query. When changing a docu-
ment’s storage, we only need to update the set of XAMs
describing it; no change to the optimizer’s code is needed.
Second, XAMs capture important properties of persistent
XML identifiers, with a crucial impact on the efficiency of
XML query and update processing. Finally, XAMs provide
an accurate model for XML indexes, since they allow speci-
fying the fields whose values have to be known (that is, the
index key), in order to access the index data.

This document is structured as follows. Section 2 de-
scribes the ULoad tool functionalities. Section 3 introduces
the XAM formalism. Section 4 outlines demonstration sce-
narios, while Section 5 discusses related works.

2. ULOAD TOOL OUTLINE

ULoad recommends, or assists the DBA in choosing or
defining, a persistent storage scheme adapted to a particular
application. ULoad does not store XML data; rather, it
works in conjunction with an XDBMS, which may be backed
by both a relational or a native XML store (see Section 4).
ULoad checks and guarantees that the storage chosen is both
sufficient, and efficient for the application needs. Once the
DBA is satisfied with a given storage, ULoad emits a set
of loading directives to the XBMS, effectively materializing
this storage. ULoad offers the choice among a wide variety
of existing storage and indexing strategies, as well as the
ability to define custom storage structures and indexes.

ULoad needs several inputs. (1) A set of documents to
store; in this paper, for simplicity, we consider a single doc-



ument D. (2) A set of structural constraints C describ-
ing D’s structure. In general, such constraints may come
from a DTD or XML Schema. To handle XML documents
with or without a schema, ULoad considers structural con-
straints under the form of a path summary, equivalent to a
Dataguide [12] for XML data. A path summary is easy to
extract from an XML document, easy to update, compact,
and quite expressive [3]. We plan to extend ULoad to XML
type descriptions in our future work. (4) Optionally, access
to the XDBMS’s cost estimator. ULoad needs to estimate
the impact of a candidate storage structure, on the perfor-
mance of the processing of the queries in W. This impact is
reflected by the optimizer’s cost estimation for W, assum-
ing the candidate structure was available. Note that, when
actually processing the queries in W, the XDBMS will rely
on the same estimation.
As shown in Figure 1, ULoad allows the user to:

1. Choose a (set of) storage and indezing models from
a set of existing ones, such as [4, 6, 11, 14, 24, 26],
according to which D will be stored. Different parts of
D may be stored according to different models; indices
can be selectively built to support W. Or, the user may
define her own persistent data structures (in the style
of materialized views) using a graphical language. The
result of this stage is a set of XAMs for D): each of
them describes is a persistent data structure storing
some part of D (see Section 3).

2. Check if a set of XAMs is sufficient to answer W.
ULoad determines this by analyzing the set of XAMs,
the structural constraints C and the workload W. If
the XAMs are insufficient, ULoad points out the (parts
of) queries that cannot be answered.

3. Find out the cost of answering W on a set of XAMs.
ULoad finds all XAM subsets that may jointly be used
to answer each query from W, under the constraints C.
If the XML DBMS cost estimator is available, ULoad
calls it to assess the quality of the query plans the
DBMS would generate on such storage. Otherwise,
ULoad computes its own query plan, applies simple
heuristics such as selection pushing and join reorder-
ing, and uses its own cost estimations.

4. Obtain a recommended set of XAMs. The DBA may
want to get a baseline recommendation, which she can
then tune. To that purpose, ULoad applies some effi-
cient heuristics to pick a set of XAMs providing rea-
sonable performance for D, C and W.

5. Load D in the XDBMS’s store following the XAMs for
D, and run W queries using the XDBMS query engine.

Inside the ULoad box in Figure 1, buttons represent the
possible actions of the tool, centered around the set of XAMs
for D. An arrow connecting an action to the XAMs shows
whether the action produces or uses them.

3. XML ACCESS MODULES

An XML Access Module (XAM) corresponds to an XML
document fragment stored in a persistent data structure.
Formally, a XAM is described as an ordered tree (NS, ES, o),
where: NS is a node specification, ES is an edge specifica-
tion, and o is an order flag. If the XAM data is stored in
document order, o is set to true; otherwise, o is false.
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Figure 1: Outline of ULoad’s functions.

We now describe XAM specifications, using a grammar-
like notation. We use bold font for terminal symbols of the
grammar, i.e. constants.

NS:=T N* (1)

N ::= name IDSpec? T Spec? V Spec? CSpec? (2)
IDSpec == D' °1sIP (R7)  (3)

TSpec := (Tag (R?)) | [Tag=c] (4)

VSpec == (Val (R?)) | [Val=c] (5)

CSpec := Cont (6)

ES:= E=x (7)

E ::= name: (/| //)(0]|]|s) name: (8)

Any XAM specification contains a special node T, cor-
responding to the document root (that is, the ancestor of
all element and attributes in a document). The other nodes
represent XML elements or attributes. We associate a name
to each XAM node representing elements or attributes; by
convention, names starting with @ are used for XAM nodes
representing XML attributes.

A node can be annotated by zero or more among: an
identifier specification I DSpec, a tag specification T'Spec, a

value specification V' Spec, and a content specification CSpec.

By content, we mean the full (serialized) representation of
the XML element or attribute.? An ID (resp. tag, value,
content) specification, attached to a XAM node, denotes the
fact that the element/attribute ID (respectively, tag, value,
or full textual content) is stored in the XAM.

Node identity is a crucial notion in XQuery processing.
Any XML store provides some persistent identifiers; the par-
ticular type of IDs used determines the efficiency of match-
ing structural query conditions. The persistent identifiers
stored in a XAM are described by the ID specification (line
3); it consists of the symbol ID, and one of four symbols,
depending on the level of information reflected by the ele-
ment identifier. We use i for simple IDs, for which we only
know that they uniquely identify elements. The symbol o
stands for IDs reflecting document order; simple integer IDs
used e.g., in [7, 11, 24] are a typical example. We use s to

!Strictly speaking, attribute nodes can be uniquely iden-
tified by the ID of their parent element and the attribute
name.We use explicit attribute IDs for simplicity.

%Clearly, the content of an XML element can always be re-
trieved from a non-lossy storage, by combining accesses to
several storage modules structures. In contrast, we use Cont
only for the storage models able to retrieve it from a single
persistent data structure.

-



[1,14,1] <people>
[2,13,2][3,1,3] <person id="1"> Xa T
[4,2,3] <email>Kay@ny.org</email> | [Tag="email"]
[5,5,3] <watches> 1ID° (n1) val
[6,3,4] <watch>al</watch> T
[7.4.4] <watch>a2</watch> m _
</watches> i I
</person> ID'R @
[8,8,2][9,6,3]  <person id="2"> ;e
[10,7,3] <email>Tom@md.com</email> ID' (n2)Tag
</person>
[11,12,2][12,9,3] <person id="3"> w T
[13,11,3] <watches> j
[14,10,4] <watch>a3</watch>
</watches>
</person>
</people>

Figure 2: Sample XML document, and XAMs.

designate structural identifiers, which allow to infer, by com-
paring two element IDs, whether one is a parent/ancestor
the other. They are produced e.g., by the popular (preorder,
postorder, depth) labeling schemes based on Dietz’s model [9].
We use p to designate structural identifiers which allow to
directly derive the identifier of the parent from that of the
child, such as the Dewey scheme in [25], or ORDPATHS [20].

An R symbol in an ID specification denotes an access re-
striction: the ID of this XAM node is required (must be
known) in order to access the data stored in the XAM. This
feature is important to model persistent tree storage struc-
tures, which enable navigation from a parent node to its
children, as in [13, 10]. More generally, R symbols allow to
model XML indexes: index keys have to be known, in order
to perform an index lookup.

A tag specification of the form Tag denotes the fact that
the element tag (or attribute name) can be retrieved from
the XAM. Alternatively, a tag specification predicate of the
form [Tag=c] signals that only data from the subtrees satis-
fying the predicate is stored by the XAM. The tag value can
also be required; this is also marked by the symbol R. Value
and content specifications are very similar. The value(s)
stored in a node corresponding to elements are the textual
children of the elements. The value(s) described by a node
corresponding to attributes are the attribute value(s).

Concerning XAM edges, we distinguish parent-child edges,
marked as /, from ancestor-descendent edges, marked as
/ /- Furthermore, we distinguish join, left outerjoin, and left
semijoin semantics for the XAM edges, considering the par-
ent node on the left hand; these are marked by the symbols
j, 0, respectively s.

The data from D stored by a XAM is a set (or list) of
nested tuples, whose schema follows the XAM specification,
and whose content is derived from D. XAMs are defined
based on a nested relational model [1], suited to the nature
of XML; however, they also support explicit unnesting, to
model e.g., relational storage. We illustrate this here by
examples; for a formal definition, see [3].

Examples. Consider the XML snippet and XAMs in Fig-
ure 2. The XAMs are depicted under a tree graphical form,
actually used in the ULoad GUI, following the XAM tree
structure. On the left side of begin tags, we show (preorder,
postorder, depth) identifiers for the element and its attributes.
The preorder number reflects the element position in the doc-
ument; we will use it as a simple order-preserving ID, when

needed. For simplicity, we assume all XAMs ordered.

The XAM x, stores order-preserving IDs, and text values,
of all email elements. On the document in Figure 2, assuming
integer IDs, xo thus stores the tuples:

(ID1=4 Val;="Kay@ny.org")
(ID1=10 Val;="Tom®@md.com")

The XAM x, stores parent-child IDs, enabling navigation
from a parent element to its element children. On the doc-
ument in Figure 2, some of the tuples stored by x; are:

(ID1=1 [ (ID2=2 Tagz="person”), (ID2=8 Tago="person"),

(ID2=11 Taga="person”) | )

(ID1=2 (ID;=3 Tag:="@id")]) (ID1=3[]) (ID1=4[])

Notice the nesting of information representing x, node ns,
inside tuples representing information of the parent node
n;. Since the edge ni-n» has outerjoin semantics, childless
nodes (such as the email element numbered 4) appear with
an empty list of child tuples. The value of the ID; attribute
must be known, in order to access xp tuples.

Finally, the XAM x. stores email children and watch de-
scendents of persons having at least a watch descendent. On
the document in Figure 2, x. stores a single nested tuple:

(ID1=[2,13,2] [(ID2=[6,34] Valo="al"),
(ID2=[7,4,4] Vala="2a2") ]
[ (ID3=[4,2,3] Val3="Kay@ny.org") ] )

Answering queries over XAMs. For a given query and a
set of XAMs, ULoad identifies all XAM combinations that
may be used to answer the query. For example, consider the
query g on the document in Figure 2:

for $p in //person return <em>{$p//email}</em>

ULoad will find that ¢ may be answered by: using xs
(with the root ID;=1) to get the IDs of the root’s children;
testing the children tag to retain person children; using xs
again to find person email IDs; finally, using x, to obtain
the email value. This corresponds to a top-down navigation
plan3: OTags=email (UTagg=person (Xb > Xb) ><C Xb) X Xa-

X could also be used to answer ¢, but not alone, because it
does not store the emails of users without watch descendents.
Thus, ULoad will construct a union plan over x., and a
navigation plan similar to the one above, but restricted to
person elements without watch descendents.

Now, let ¢’ be: for $p in //person return {$p/@id}.

ULoad notices that @id attributes are not stored, and sig-
nals that $p/@id (and thus, ¢') cannot be matched on the
XAMs in Figure 2. ULoad will suggest a new XAM, storing
the @id attribute together with person identifiers; this will

enable answering ¢’
| T
Xal | li
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Figure 3: Sample XAMs x4 and yxe.

Now, consider the new XAM x4 shown in Figure 3. For
any tag, xq returns the structural IDs and values of all el-
ements of that tag, in the style of the tag indexes of Tim-
ber [13] and Natix [10]. If x4 is available, ULoad will answer
g using structural join plans on xg4, as in [21].

3ULoad uses the structural constraints C, to stop navigation
when all email descendents have been found.



As a last example, consider the XAM yx. in Figure 3. It
represents an index, which allows to retrieve the email de-
scendents of any element having an @id attribute; the value
of the @id attribute is the index key. This illustrates the ca-
pacity of XAMs to express generic XML indexes, including
structural and content conditions.

4. DEMONSTRATION SCENARIO

The concepts behind ULoad, in particular the XAM for-
malism, apply both to relational storage models, and to na-
tive ones. To demonstrate this, and to explore the trade-offs
between robust relational stores, and more flexible, but less
mature, native ones, we will show ULoad in two settings.

First, we assign the XDBMS role (Figure 1) to Postgres.
Each XAM is stored in a table; a clustered index is added, if
the XAM has R fields. ULoad takes advantage of Postgres’s
data loader, query engine and cost estimates.

Second, we pair ULoad with an experimental native XML
data store, built on the persistent storage library Berke-
leyDB [27]. In this setting, ULoad uses its own simple
cost model, mainly accounting for the number of accesses
to BerkeleyDB disk-resident structures.

In both these settings, we plan to demonstrate:

e How to specify XAMs in our graphical language. To
demonstrate XAM expressive power, we will show how
existing storage and indexing schemes, e.g. [4, 11, 24,
15], can be automatically compiled into XAM sets.

e The data required by an XQuery query over a docu-
ment D; ULoad extracts this under a tree form, simi-
lar to a XAM. We show how ULoad uses this form to
highlight the parts of the query for which the storage
is insufficient (if any).

e The alternative access paths identified by ULoad for
each query in the workload, and the resulting QEPs
with their cost estimates.

e ULoad’s algorithm for chosing the views and indexes to
materialize over a storage model. This algorithm aims
at a trade-off between the performance of queries in
W, and the storage space taken by views and indexes.

e The performance of data loading and query processing.

5. COMPARISON WITH RELATED WORKS
ULoad’s genericity allows it to express many existing stor-
age and indexing schemes; ULoad complements their ben-
efits with those of a flexible and extensible storage. The
ULoad approach compares most directly to the Agora [17]
and Mars [8] projects. Different from these, ULoad: (i) is
based on a nested (as opposed to relational) model, better
suited to XML querying; (i7) models important properties
of element IDs, with a strong impact on query performance;
(#¢) extends the access patterns paradigm [16, 22] to nested
data models, thus encompassing complex XML indexes.
XAMs are reminiscent of query pattern formalisms; the
closest one is the Abstract Tree Pattern [21]. However,
XAMs are focused on storage modelling, as reflected by their
ID specifications, and required fields. One may wonder why
we do not describe storage structures by XQuery queries,
and apply view-based query rewriting. One reason is that
crucial features of an XML storage, such as persistent IDs
and their properties, are not explicitly present in XQuery
(nor in XML itself !). Second, the notion of XQuery mate-
rialized view is not yet formally defined, since the result of

an XQuery is in principle a different (thus, disjoint) docu-
ment from its input. For more information on XAMs, and
a detailed comparison with existing storage models, see [3].
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