
A Test Platform for the INEX Heterogeneous Track

Serge Abiteboul
INRIA Futurs

France
serge.abiteboul@inria.fr

Ioana Manolescu
INRIA Futurs

France
ioana.manolescu@inria.fr

Benjamin Nguyen
PRiSM, Univ. Versailles

France
benjamin.nguyen@prism.uvsq.fr

Nicoleta Preda
INRIA Futurs

France
nicoleta.preda@inria.fr

ABSTRACT
This article presents our work within the INEX 2004 Hetero-
geneous Track. We focused on taming the structural diver-
sity within the INEX heterogeneous bibliographic corpus.

We demonstrate how semantic models and associated infer-
ence techniques can be used to solve the problems raised by
the structural diversity within a given XML corpus. The
first step automatically extracts a set of concepts from each
class of INEX heterogeneous documents. An unified set of
concepts is then computed, which synthesizes the interest-
ing concepts from the whole corpus. Individual corpora are
connected to the unified set of concepts via conceptual map-
pings. This approach is implemented as an application of the
KadoP platform for peer-to-peer warehousing of XML doc-
uments. While this work caters to the structural aspects of
XML information retrieval, the extensibility of the KadoP

system makes it an interesting test platform in which com-
ponents developed by several INEX participants could be
plugged, exploiting the opportunities of peer-to-peer data
and service distribution.

1. CONTEXT
Our work is situated in the context of the INEX Heteroge-
neous Track (which we will denote as het-track throughout
this paper). The het-track is very young: it has been held in
2004 for the first time. The het-track has built a collection
of heterogeneous data sets, all representing bibliographic en-
tries in various encodings. This collection includes:

• Berkeley: library catalog of UC Berkeley in the areas of
computer and information science. The particularity
of this data set is to include several classifications or
codes for each entry.

• CompuScience: Computer Science database of FIZ Karl-
sruhe.

• BibDB Duisburg: Bibliographic data from the Duis-

burg university.

• DBLP: The well-known database and logical program-
ming data source.

• HCIBIB: Bibliographic entries from the field of Human-
Computer Interaction.

• QMUL: Publications database of QMUL Department
of Computer Science.

A set of topics have also been proposed, which are largely
similar (in structure and scope) to those formulated within
the relevance feedback track. The topics include:

• Content-only (CO) topics, of the form “database query”;
XML fragments pertinent to the specified keywords
must be returned.

• Content-and-structure (CAS) topics, such as
//article[about(.//body, ”XML technology”)]

In this case, the search for pertinent data fragments is
confined by specific structural criteria.

Answering an IR query on a structurally heterogeneous cor-
pus raises two main challenges. First, computing the rel-
evance of a data fragment for a given keyword or set of
keywords; this task is no different from the main relevance
assessment track. Second, taking into account the structural
hints present in the topic, in the case of CAS topics.

In the presence of a heterogeneous corpus, the second task
becomes particularly difficult. This is due to the fact that
semantically similar information is encoded in very different
XML formats; furthermore, DTDs may or may not be avail-
able for the corpus. The work we present has specifically
focused on this second task.

Contributions
Our work within the het-track makes the following contri-
butions.

First, we present an approach for integrating the hetero-
geneous structures of the heterogeneous data sources un-
der an unified structure. This approach relies on simple
semantic-based techniques, and on our experience in build-
ing semantic-based warehouses of XML resources [2, 3]. The
result of this integration on the het-track corpus is a unified



file

entry

id

manual miscmastersthesis manuscript

book

phdthesisunpublished proceedingsbooklet incollection articleinbook inproceedingstechreport

altauthorbooktitlepublisher general-terms editionnumberorganizationmonth annoteauthor classification-codesentrydate free-termskey note subject-descriptorstitle year doi bumberabstracthowpublished pages urladdressschool isbnlanguageinstitution journal editorseries

translation

volume issnchapter crossref conference keywordstype

Figure 1: XSum drawing of the DBLP DTD (top), Duisburg DTD (middle), and zoom-in on Duisburg DTD
articles (bottom).

DTD, and a set of mappings from individual sources to this
DTD. CAS topics against the het-track corpus can now be
expressed in terms of the unified DTD, and get automat-
ically translated into a union of topics over each data set.
Thus, solving a CAS topic on a heterogeneous corpus is re-
duced to solving several CAS topics against the individual
component data sets.

Second, we present XSum [18], a free XML and DTD visual-
ization tool, that we developed as part of our work in INEX.
XSum helped us get acquainted to the complex structure of
the heterogeneous collection, and devise semi-automatic in-
tegration strategies.

Finally, we outline the architecture of a peer-to-peer plat-
form for processing XML queries or IR searches, over a set
of distributed, potentially heterogeneous XML data sources.
This platform has the advantage of being open and inher-
ently distributed, allowing to take advantage of the data
sources and capabilities of each peer in the network in order
to solve a given query or search. In particular, we show this
platform may be used as a testbed for the XML IR method-
ologies developed within the het-track, by allowing to test
and combine the various implementations of the about func-

tions developed by INEX participants.

This document is structured as follows. Section 2 describes
our semantic-based approach for XML information retrieval
over a heterogeneous corpus. Section 3 details the result we
obtained by applying this approach on the INEX het-track
corpus. Section 4 outlines the peer-to-peer generic platform
we propose, and describes how it could be used as a testbed
for the het-track in the future. Section 5 compares our work
with related ones, while Section 6 draws our conclusion and
outlines future work.

2. APPROACH
Dealing with structural diversity in heterogeneous sources
has been a topic of research in the field of databases and in
particular of data integration. The purpose of a data inte-
gration system is to provide the user the illusion of a single,
integrated database, on which the user can pose queries (in
our case, IR queries, or topics). Behind the uniform inter-
face, the system will process these queries by translating
them into the formats specific to each data source, process-
ing them separately, and integrating the results into a single
one.



Traditionally, data integration operates at the level of schemas.
A source schema characterizes the structure of each data
source, and an integrated schema is provided to the user.
This approach has been thoroughly investigated in the case
of relational data sources and schemas [10, 6].

In the case of heterogeneous, complex, potentially schema-
less data sources, this approach is no longer applicable. In-
stead, we chose to draw from the experience obtained in
semantic-based data integration [6, 5], to integrate sources
pertinent to a specific domains, such as the het-track cor-
pus, under a single conceptual model. The building bricks of
our conceptual model are:

• Concepts, which are the notions of relevance for a given
application. For instance, in the het-track corpus, use-
ful concepts are: publication, author, etc.

• IsA relationships represent specialization relationships
between concepts. For instance, book IsA publication

represents the fact that books are a kind of publication.

• PartOf relationships represent composition (aggrega-
tion) relationships between concepts. For instance,
title PartOf book represents the fact that a title is a
component of a book.

It has been noted [5] that XML DTDs are a good basis for
a conceptual model of the XML documents conforming to
the DTDs. Thus, our approach starts by extracting a con-
ceptual model from each source. For the sources for which
DTDs are available, the process is straightforward: we ex-
tract a concept for each type in the DTD, including element
and attributes (among which we do not make a distinction).
For sources for which DTDs are not available, we start by
extracting a “rough” DTD, including all elements and at-
tributes. Whenever we encounter in the data an element
labeled l1 as a child of an element labeled l2, we mention in
the DTD that the type l1 can appear as a child of the type
l2. After having extracted this DTD, we compute from it a
set of concepts as in the previous case.

At the end of this stage, we have obtained a set of concep-
tual data source models. Our purpose then is to construct
a unified conceptual model characterizing all sources, and
mappings between each conceptual model to the unified one.

Extracting the unified conceptual model
To build the unified conceptual model, we identify groups
of concepts (each one in different conceptual source models)
that represent semantically similar data items. We do this
in a semi-automatic manner, as follows.

First, the names of concepts from different source models are
compared for similarity, to identify potential matches. This
can be done automatically, with the help of a tool such as
WordNet [7]. If simple matches such as the one between book

(DBLP) and book (HCI BIB) can be automatically detected,
more subtle ones such as the similarity between editor (HCI
BIB) and Edition (Berkeley) require the usage of tools such
as WordNet. Having identified clusters of concepts which
potentially represent the same thing, we create one concept

in the unified model, for each cluster of source model con-
cepts above a given similarity threshold; human intervention
is required at this point in setting the similarity threshold.

At the end of this process, it may happen that some source
model concepts have not been clustered with any others.
This may be the case, for instance, of concepts called Fld012,
Fld245, etc. from the Berkeley data source. These concepts
are difficult to cluster, since their names (standing for Field

number 012, Field number 245, etc.) do not encapsulate the
meaning of the concept, instead, this meaning is included
in plain-text comments prior to the DTD description of the
respective type. To deal with such concepts, we need to cap-
ture the DTD comments preceding the type, and feed those
descriptions to the word similarity-based clustering. This
way, we may learn that Fld245 stands for “Title Statement”,
and cluster Fld245 with similarly named concepts from other
DTDs.

Once the clusters of similar (and supposedly semantically
close) concepts have been extracted, we create a concept for
each such cluster, in the unified conceptual model.

Extracting mappings between the source and unified
conceptual models
We add an IsA relationship going from each source model
concept, to the unified model concept that was derived from
its clusters. If a source model participates to several clusters,
this may yield several IsA relationships.

3. CONTRIBUTIONS
In this section, we report on the results that we obtained in
our work in the framework of the het-track.

3.1 Unified model for the het-track corpus
In this section, we discuss the techniques uses to construct a
unified DTD in order to query the documents of the hetero-
geneous track. An important factor is that the documents
are all about the same topic : a bibliography. Five of them
are quite verbose, and the labels are self descriptive, while
one (Berkeley data set) has labels that convey no seman-
tic signification whatsoever. Some examples of such labels
would be: Fld001, Fld002, etc.

In this article, we do not take into account this DTD, there-
fore the unified DTD we propose does not include elements
from the Berkeley data set for the moment. We report on
our experience with the Berkeley data set, based on using
our XSum tool, in Section 6.

The method used in order to determine a unified DTD is
the following :

• We first of all create mappings between elements that
have the same syntax, but that originate from different
DTDs. For instance, we might find two article elements,
one from DBLP, the other from BibDB Duisburg. If
there are several elements with the same (or very close)
syntax in multiple DTDs, we group them all together.
These are one to one mappings, and the output of
this phase is a group of clusters of syntactically close
elements.



Figure 2: Fragment of a path summary computed
from an article in the INEX main corpus (IEEE CS).

• For each cluster, we then check the parent nodes, and
group them together in a new parent cluster.

• For all these automatically constructed clusters, we
manually check the correctness of these groupings, and
chose a name for the cluster, generally of the form
nameOfElementC.

We provide the unified DTD on our website [16].

Using the unified DTD : The Unified DTD is to be used
when asking queries over the heterogeneous data set. The
querying mecanism is as follows.

• The INEX queries must be written taking into account
the unified DTD. The Unified DTD elements represent
the predicates to be used in the path expressions. We
call this query a generic query.

• The generic query is then converted into specific queries,
with a specific structure for each database, and the
queries are then run seperately on all the databases.

• Given the unified DTD, the answers returned are clus-
tered together in a common structure, in order to use
only a single DTD for browsing means.

3.2 XSum: a simple XML visualization tool
We have developed a simple XML visualization tool, called
XSum (for XML Summary Drawer). XSum can be used in
two ways.

Drawing path summaries
Given an XML document, XSum extracts a tree-shaped
structural summary of the document, and draws it. This
structural summary contains a node for each distinct path
in the input document [12], and is the equivalent of a strong
DataGuide [8] for XML data (DataGuides were initially pro-
posed for graph-structured OEM data). XSum enhances
this structural representation with:

• Node counts: XSum records the number of nodes on
a given path in the XML document, and correspond-
ingly may show this number in the summary node cor-
responding to that path.

• Leaf types: XSum attempts to “guess” the type (String,
integer or real number), of each leaf node, whether
#PCDATA or attribute value, and depicts the corre-
sponding node in a color reflecting its type.

• Edge cardinalities: XSum records the minimum and
maximum number of children of a given tag, that a
node on a given path may have. XSum may depict
these numbers on the edge connecting the two corre-
sponding summary nodes.

A sample summary representation produced by XSum from
a XML-ized article from the INEX IEEE CS corpus is de-
picted in Figure 2. The fragment shown here reflects the
references at the end of an article, including authors, titles,
and publication information for the relevant references.

Drawing DTDs
When given a DTD, XSum draws a simple graph, repre-
senting each attribute or element type from the DTD as a
node, and adding an edge from a node to another whenever a
type may appear inside another in the DTD. Figure 1 shows
the drawing extracted by XSum from: the DBLP DTD, the
DTD of the Duisburg data source, and a zoomed-in frag-
ment around the node corresponding to the “article” type
in the Duisburg data source.

Structural Clusterering of DTDs
Graphs corresponding to DTDs tend to have relatively few
nodes, but large number of edges, crossing each other in the
drawing (as shown in Figure 1), which may make the image
difficult to read. To cope with this problem, we have de-
vised a structural DTD clustering technique which reduces
the number of nodes (and edges) in a DTD graph. The clus-
tering is performed as follows. All DTD nodes sharing the
same set of parents are clustered together; an edge is drawn
between two clusters, if some nodes in the parent cluster are
parents of all the nodes in the child cluster. Notice that the
structural clustering performed by XSum takes place within
a single DTD; it has nothing in common with the seman-
tic clustering performed across DTDs and described in the
previou section.

Clustered DTDs are much more readable. As an example,
Figure 3 shows the clustered graph produced for the Duis-
burg DTD. This readability comes at the price of some loss
of precision (since they do no longer show the exact set of
parents of each node).

From our experience using XSum with the INEX standard
and heterogeneous corpus, we draw some remarks. Both
DTD and summary drawings tend to be large for documents
of the complexity we are dealing with, typically larger than
the screen or a normal printer format. Understanding the
image requires “sliding” over it to see one part at a time. To
simplify path summaries, we have introduced in XSum op-
tions allowing to omit leaf nodes and/or cardinality annota-
tions, which simplifies the graphs. To simplify DTD graphs,



bibdbpub

howpublished 

language type 

url free-terms month author 

journal 

publisher 

annote 

bumber 
issn 

keywords 
altauthor 

translation 

file 

entry 

phdthesis id 
mastersthesis inbook 
manual unpublished 

inproceedings proceedings 
incollection 
techreport 

article 
book 

booklet 
manuscript

misc organization 

key 
note 

school 

title 
year 

entrydate 

address number chapter institution 

classification-codes 
subject-descriptors 

editor 
volume 

crossref series 

general-terms 

doi 
isbn 

conference 

booktitle abstract 

edition 

pages 

Figure 3: Clustered DTD graph for the Duisburg data set.

we introduced structural clustering. We welcome the feed-
back of INEX participants on how to enhance XSum’s XML
and DTD drawing logic, to produce more helpful images.

XSum is implemented in Java, and is based on GraphViz, a
well-known free graph drawing library developed at AT&T.
XSum is freely available for download from [18]. The graphs
produced by XSum, for all DTDs in the het-track corpus,
are available at [16].

4. THE KADOP PLATFORM
In this section, we briefly describe the KadoP peer-to-peer
XML resources management platform, which serves as the
framework for our work. A more detailed presentation can
be found in [3].

The KadoP platform allows constructing and maintaining,
in a decentralized, P2P style, a warehouse of resources. By
resource, we mean: data items, such as XML or text docu-
ments, document fragments, Web services, or collections; se-
mantic items, such as simple hierarchies of concepts; and re-
lationships between the data and semantic items. KadoP’s
functionality of interest to as are:

• publishing XML resources, making them available to
all peers in the P2P network;

• searching for resources meeting certain criteria (based
on content, structure as well as semantics of the data).

KadoP leverages several existing technologies and models.
First, it relies on a state-of-the art Distributed Hash Table
(DHT) implementation [17] to keep the peer network con-
nected. Second, it is based on the ActiveXML (AXML) [15]
platform for managing XML documents and Web services.

A full description of ActiveXML is out of the scope of this
work, see [1]. For our purposes here, AXML is an XML
storage layer, present on each peer.

The KadoP data model comprises the types of resources
that can be published and searched for in our system. We
distinguish two kinds of resources: data items, and semantic
items. Data items correspond to various resource types:

• A page is an XML document. Pages may have associ-
ated DTDs or XML schemas describing their type; we
treat DTDs as sources of semantic items (see further).
Other formats such as PDF can be used; we ignore
them here.

• We consider data with various granularities. Most sig-
nificantly, we model: page fragments, that is, results
of an XML query on a page, and collections, as user-
defined sets of data items. Inside pages, we also con-
sider element labels, attribute names, and words.

• Finally, a web service is a function taking as input
types XML fragments, and returning a typed XML
fragment.

Any data item is uniquely identified by an PID (peer ID)
and a name. The PID provides the unique name (logical
identifier) of the peer that has published the data item, and
where the item resides; names allow distinguishing between
data items within the peer. Data items are connected by
PartOf relationships, in the natural sense: thus, a word is
part of a fragment, a fragment part of a page etc. Further-
more, any type of data items can be part of collections. A
data item residing on one peer may be part of a collection
defined on another peer.



Semantic items consist of concepts, connected by two types
of relationships: IsA, and PartOf. A graph of concepts,
connected via IsA or PartOf links, is called a concept model.
We derive a source concept model from each particular data
source, as described in Section 2.

InstanceOf statements connect data items with concepts. In
particular, all elements from an XML document, of given
type τ (obtained as the result of the XPath query //τ ),
are implicitly connected by InstanceOf statements to the
concept derived from the type τ .

The KadoP query language allows retrieving data items,
based on constraints on the data items, and on their re-
lationship with various concepts. Queries are simple tree

* body

article
Q1 Q2

about("XML technology")

*

* instanceOf("body")

instanceOf("article")

about("XML technology")

Figure 4: Sample KadoP queries.

patterns, and return the matches found for a single query
node (in the style of XPath and the CAS INEX topics). For
instance, the query in Figure 4 at left allows retrieving all
“article” elements such that they have a “body” element,
and the body is about XML technology. This corresponds
to the sample CAS topic in Section 1. The dashed box des-
ignates the node for which matches will be returned.

Such a query, however, needs specific names (that is, ele-
ment tags) for its nodes. In the case of the heterogeneous
corpus, such queries are no longer helpful, due to the varied
structures encountered in different documents.

The approach we take for solving INEX heterogeneous CAS
topics is based on the unified conceptual model. The idea is
to drop name conditions from the queries, and instead use
conditions of the form “instanceOf c”, where c is a concept
from the unified model. On our example query, this leads
to the KadoP query at right in Figure 4, where we assume
that “article” and “body” are part of the unified conceptual
model. This query is processed as follows:

1. The elements directly declared as instance of the con-
cepts “article” and “body” are found.

2. We search for concepts ca such that ca IsA “article”,
and concepts cb such that cb IsA “body”. This will
lead to retrieving all the concepts from the source con-
cept models, which have been mapped to the unified
concepts “article” and “body”.

3. We search for elements declared as instances of the
concepts ca and cb obtained as above.

These steps lead to matching the structural conditions posed
by the CAS query against the heterogeneous corpus. They
do not, however, apply the “about” condition, since imple-
menting this condition is out of the scope of our work. We
next explain how others’ implementations of the “about”
function could be plugged in our work.

Integrating “about” functions
In the KadoP framework, “about” can be integrated as a
Web service, offered by one or several peers. The imple-
mentation of this function is typically complex. From the
KadoP perspective, all that is needed is that one or several
participants make available a Web service named “about”,
obeying to a well-defined interface. Then, the KadoP query
processor can invoke one of these services to evaluate the
pertinence of an XML fragment for a given set of keywords.
The user may specify which service to use; this is helpful
when we want to compare the results of different implemen-
tations. Or, she may let the system choose an implementa-
tion.

It is worth stressing that the KadoP framework is based on
a concept of openness and extensibility: new data sets, new
concepts, or new semantic statements can be added by any
participant, and refer to any data item on any peer. Finally,
the KadoP framework is by nature distributed: any Web
service (thus, any “about” function) can be invoked on XML
fragments originating from any peer.

5. RELATED WORK
We have proposed in this paper a method of integrating het-
erogeneous DTDs related to the same domain, into a uni-
fied DTD. Our work is related to projects on semi-automatic
schema matching. In the domain of semi-automatic schema
matching, we may distinguish three main research directions
related to our work:

• given two schemas S1 and S2, compute the matching
that associates label elements in schema S1 with other
label elements in schema S2.

• given two schema S1 and S2, create mappings between
the elements of S1 and the elements of S2 in the form
of views.

• given a set of schemas, generate one or more integrated
schemas.

Our approach is related to the first direction as mappings
between two DTD sources are derived based on the seman-
tic and syntactic resemblance between nodes. The KadoP

query engine exploits not only mappings between the unified
DTD and each DTD source, but also mappings between two
DTD source schemas.

We have proposed a semi-automatic method of computing
a unified DTD. This work, related to the third research di-
rection, is based on clustering similar elements. As related
integrating schemas system based on clustering techniques,
we mention ARTEMIS [4].

The particularity of our integration problem consists in the
type of our input schemas: DTD schemas. These schemas do
not have rich semantics associated with the edges between
concept nodes. In the XSum project, we are now investigat-
ing, heuristics in order to add more semantic information to
the DTD structure. Conceived first as a method of pretty
drawing a DTD, we have defined a clustering method that
has good properties of grouping related concepts together.



This is interesting, because it implies that semantic rela-
tionships between nodes may be verified on a smaller graph
instance. Other heuristics that transform the DTD-s into
ER database schemas have been investigating in [6], [13],
[11].

For the het-track collection, we have defined a single (uni-
fied) abstract schema, and mappings between concepts in
the in the unified DTD and concepts in the various DTD
sources, as each DTD was referring to the same topic.

In the case of a collection that contains schemas and re-
sources of different domains (which may be the case of a
peer to peer application), we may build a tool that semi-
automatically defines unified DTDs by clustering DTDs of
the same domain. We may benefit of works done in the
ONION [14] project, that is heavily based on the existence of
rich semantic relationships between the nodes of the schemas.

The second research direction hasn’t been investigated in
this paper, although the KadoP query language may handle
mappings in the form of a concept node in the DTD asso-
ciated to a view (KadoP query). An automatic method
of deriving such mappings may benefit of works done in
Xyleme [6] (path to path mappings), or CLIO [9].

6. CONCLUSION AND PERSPECTIVES
We have presented our work focused on building an uni-
fied DTD for the data sets of the het-track. We have pro-
duced an unified DTD including all but the Berkeley data
set, and we have developed a simple XML visualization tool
which helped us get acquainted with the various data sets.
We have furthermore presented an approach for formulat-
ing CAS INEX topics against a heterogeneous data corpus,
based on our KadoP platform.

Our next step is merging the DTD of the Berkeley data set
into the unified DTD.Aas explained in Section 3.1, the tags
of this data set are not meaningful; however, tag meaning
can be found in comments appearing in the DTD, just before
the DTD type. We attempted to cluster the DTD, but we
were not able to parse it; thus, we extracted our own DTD,
and clustered this one. We made several remarks.

First, the original DTD features much more element types
(around 700) than the data set actually uses (around 200).
Thus, the extracted DTD is easier to grasp.

Second, in some cases on the Berkeley data set, our struc-
tural clustering criteria has (quite surprisingly) clustered
nodes representing semantically similar things. For instance,
we obtained a cluster of 8 nodes representing variants of a
publication’s title, and a cluster of 33 nodes representing var-
ious numerical publication codes. However, in other cases,
our parent-based clustering has grouped together nodes that
do not represent similar things, but are part of the same data
subset: namely, there is a “Main” cluster, grouping nodes
such as Fld100 (“Main entry, personal name”) and Fld111

(“Main entry, meeting name”), although personal and meet-
ing names do not stand for the same thing. In this case, se-
mantic clustering (using the text comments, since the tags
themselves are meaningless) will disagree with structural
clustering. Semantic clustering may correctly group “Main

entry, personal name” with Fld700 (“Added entry, personal
name”), since they represent similar things. However, this
is only our intuition; a librarian’s viewpoint may be quite
different.

Third, we noticed also a (single, small) cluster where neither
the tags, nor the accompanying comments convey any useful
information. This is the case of a set of fields whose com-
ments read “XXX Local Holdings Information for 9XXX”;
we do not expect automatic processing of such data to yield
meaningful results.

In a more general perspective, we intend to develop our ap-
proach into an easy-to-use integration platform, in order
to include any other bibliographical semi-structured data-
bases.

7. REFERENCES
[1] Serge Abiteboul, Omar Benjelloun, and Tova Milo. The

ActiveXML project: an overview. Gemo research report no.
344, 2004.

[2] Serge Abiteboul, Gregory Cobéna, Benjamin Nguyen, and
Antonella Poggi. Construction and maintenance of a set of
pages of interest (SPIN). In Bases de Donnees Avancees,
Evry, 2002.

[3] Serge Abiteboul, Ioana Manolescu, and Nicoleta Preda.
Constructing and querying a peer-to-peer warehouse of
XML resources. In Proceedings of the Semantic Web and
Databases Workshop (in collaboration with VLDB),
Toronto, CA, 2004.

[4] Silvana Castano, Valeria De Antonellis, and Sabrina
De Capitani di Vimercati. Global viewing of heterogeneous
data sources. IEEE Transactions on Knowledge and Data
Engineering, 13(2):277–297, 2001.

[5] Sophie Cluet, Pierangelo Veltri, and Dan Vodislav. Views
in a large scale XML repository. In VLDB, 2001.

[6] Claude Delobel, Chantal Reynaud, Marie-Christine
Rousset, Jean-Pierre Sirot, and Dan Vodislav. Semantic
integration in Xyleme: a uniform tree-based approach.
IEEE Data and Knowledge Engineering, 44(3):267–298,
2003.

[7] Christine Fellbaum. WordNet: An Electronic Lexical
Database. MIT Press, 1998.

[8] R. Goldman and J. Widom. Dataguides: Enabling query
formulation and optimization in semistructured databases.

In VLDB, pages 436–445, Athens, Greece, 1997.

[9] Laura M. Haas, Renée J. Miller, B. Niswonger, Mary Tork
Roth, Peter M. Schwarz, and Edward L. Wimmers.
Transforming Heterogeneous Data with Database
Middleware: Beyond Integration. IEEE Data Engineering
Bulletin, 22(1):31–36, 1999.

[10] Alon Y. Levy. Logic-based techniques in data integration.
Logic Based Artificial Intelligenc, 2000.

[11] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm.
Generic schema matching with Cupid. In The VLDB
Journal, pages 49–58, 2001.

[12] I. Manolescu, A. Arion, A. Bonifati, and A. Pugliese. Path
Sequence-Based XML Query Processing. In Bases de
Données Avancées (French database conference),
Montpellier, France, 2004. Informal proceedings only.



[13] P. Mitra, G. Wiederhold, and J. Jannink. Semi-automatic
integration of knowledge sources. In Proc. of the 2nd Int.
Conf. On Information FUSION’99, 1999.

[14] Prasenjit Mitra, Gio Wiederhold, and Martin Kersten. A
graph-oriented model for articulation of ontology
interdependencies. Lecture Notes in Computer Science,
1777:86, 2000.

[15] The ActiveXML home page. Available at
www.activexml.net, 2004.

[16] Gemo and PRiSM at the INEX heterogeneous track.
Available at www-rocq.inria.fr/gemo/Gemo/Projects/
INEX-HET, 2004.

[17] The FreePastry system. Available at
www.cs.rice.edu/CS/Systems/Pastry/FreePastry/, 2001.

[18] XSum: The XML Summary Drawer. Available at
www-rocq.inria.fr/gemo/Gemo/Projects/SUMMARY, 2004.


