MULTIRESOLUTION FOR SAT CHECKING

PHILIPPE CHATALIC and LAURENT SIMON

Laboratoire de Recherche en Informatique
U M.R. CNRS 8623, Université Paris-Sud
91405 Orsay Cedex, France
email : {chatalic, simon}@lri.fr

Received (Oct. 4th 2001)
Revised (Nov. 12th 2001)

This paper presents a system based on new operators for handling sets of propositional
clauses compactly represented by means of ZBDDs. The high compression power of
such data structures allows efficient encodings of structured instances. A specialized
operator for the distribution of sets of clauses is introduced and used for performing
multiresolution on clause sets. Cut eliminations between sets of clauses of exponential
size may then be performed using polynomial size data structures. The ZREs system, a
new implementation of the Davis-Putnam procedure of 1960, solves two hard problems
for resolution, that are currently out of the scope of the best SAT provers.

Keywords: Resolution, Multiresolution, SAT, ZBDD, Compression, Complexity

1. Introduction

Recent years have seen a lot of work using propositional logic as a framework for
knowledge representation and problem solving. The poor expressive power of propo-
sitional logic is counterbalanced by its simplicity which allows simple, but efficient,

provers to be constructed. In particular, the SAT problem has been the focus of

much interest, ranging from refinement and optimization of complete procedures 2°

21

to the introduction of new incomplete methods Hard random instances have

been identified 17 and reference problems have been gathered in benchmarks, sub-

7’28). If its central place in complexity theory is

ject to program competitions (e.g.
probably part of the motivation for such work, the resolution of real world problems
is also an attractive challenge for SAT.

In the area of complete methods, most current SAT provers are based on the
Davis, Logeman and Loveland procedure (DLL) *. One reason of success of such
solvers is their ability to limit memory usage. This is due to the fact that they
essentially make choices, resulting in simplifications and unit propagations. The
difficulty comes from the number of possible choices which is exponential. The role
of heuristics is then central. However, heuristics which are efficient on random prob-
lems are seldom appropriate for structured instances, on which dynamic heuristics
based on learning techniques give better results 2°. Other problems, such as prime
implicants/implicates generation or knowledge base compilation, often handle large
sets of clauses. Then, the difficulty rather comes from the size of such sets that may
grow exponentially. Whatever the goal, one is rapidly faced with combinatorial
explosion. On structured instances, the only way to deal with such a growth seems
to be taking the structure of the available information into account. If heuristics
can prune the search space efficiently, savings in space may be achieved by means
of compression algorithms.

This paper focuses on data structures used for encoding sets of clauses and on
associated operators. We are particularly interested in instances with a special
structure. Our feeling is that such instances should show some regularities through
the encoding. An appropriate data structure should be able to take advantage of
such regularities to handle a more compact representation of the encoded formula.
For cnf formulas, such regularities may correspond to subsets of literals that appear
in many different clauses. We propose to use a data structure allowing the factor-

5

1zation of common subsets of literals. Tries structures ® enable the factorization of

clauses beginning with the same sequence of literals. They remain the state-of-the-

29 We further generalize this idea

art data structures for subsumption checking
to factorize simultaneously ends of clauses. In practice, we use a variant of Binary
Decision Diagrams (BDDs) !, called ZBDDs 16, to store sets of clauses by means
of their characteristic function. We show that large sets of clauses corresponding
to structured instances may be efficiently compressed in that way. Moreover, such
structures are also well suited to subsumption checking, and all set operations can
be realized as operations on ZBDDs. We introduce a new operator for performing
multiple resolutions on sets of clauses represented by ZBDDs, in a single step. We
use this operator in an implementation of the original Davis and Putnam algorithm
4 (DP as opposed to DLL).

The next section presents the principles of multiresolution, an inference rule on
sets of clauses, that is used in our implementation of DP. In the third section, basic
principles of BDDs and ZBDDs structures are first recalled. A technique to encode
sets of clauses by means of ZBDDs, as well as new operators are introduced. In
the fourth section we show that expressing cut-elimination using these operators

makes it possible to perform multiresolution on sets of clauses. We illustrate its
use in a new implementation of DP, called ZRES. The last sections are devoted to
empirical studies. Two classes of hard instances for resolution, namely the Pigeon
Hole problem and the Urquhart problem, are tested and compression capabilities
of ZBDDs are evaluated.

2. Multiresolution

The resolution inference rule plays a central role in many works based on clausal
representations of boolean formulas. It may be characterized as the rule (z V ¢1) A
(mxz Ves) Foeg Ve, Its power comes from the fact that the inferred formula ¢y V eq
is still a clause. The way this rule is defined however implicitely suggests that it has
to be used on pairs of clauses containing complementary literals. Many practical
results, as well are theoretical results, are based on this assumption.

This work is based on an alternative inference rule called multiresolution which
aim is basically to perform resolution on sets of clauses, instead of just pairs of clau-
ses. Resolution may be seen as specialisation of the the more general cut inference
rule (2 V f) A (-2 V g) Feur fV g which holds for any boolean formulas f and g.
Multiresolution may be considered as a variant of another specialisation of the cut
rule, to the case where f and g correspond to sets of clauses (assimilated to con-
junctions of clauses). Note that in that case, the inferred formula f V g is no more
a conjunction of clauses, but a disjunction of conjunctions of clauses. It is however
not difficult to transform this formula into an equivalent conjunction of clauses, by
using the distributivity property of the V operator over the A operator.

Definition 1 (clause distribution ®) Let X; and Yo be two sets of clauses,
the clause distribution of ¥; by X, is the set of clauses obtained as the union of
the literals of some clause of ¥; with those of some clause of ¥4, and that are not
tautologies. It is denoted by X1 ® 3.

Property 1 Let ¥; and X5 be two sets of clauses. Then the formula ¥; V X5 and
¥ ® Xg are equivalent formulas.

This proposition follows from the distributitivity properties of the logical con-
nectives and the fact that removing tautologies does not affect the meaning of a set
of formulas. This may be viewed as a systematic way to transform a disjunction of
sets of clauses into an equivalent set of clauses.

Definition 2 (Multiresolution) Let X; and X5 be two sets of clauses. The mul-
tiresolution inference rule is defined by: (z VE1) A (-2 V X)) Famr T ® Xo.

Multiresolution is thus an inference rules that applies to sets of clauses containing
complementary literals and infers a set of clauses. It is of course closely related to
classical resolution since any deduction by multiresolution is equivalent to a set of
deductions by classical resolution and reciprocally, any classical resolution of a non

tautological clause may be performed by multiresolution on singleton sets of clauses.

From an implementation point of view, multiresolution can of course be achieved
by means of classical resolution. But if the clause distribution operator may be
implemeted in an efficient manner, then it is possible to implement multiresolution
directly at the set level, without having to consider clauses one by one.

3. Representing sets of clauses with BDDs

1,20 is a directed acyclic graph with labeled nodes,

A Binary Decision Diagrams
a unique source node, and such that each node is either a sink node or an internal
node (denoted by A(x,ni,n2)) having two children (ny, ns) and a label . The
two children are respectively connected to their parent node through a 1-arc and
a 0-arc. Intuitively, each label corresponds to some decision function and nj, ns

caracterize the cases to be considered depending on the value of this function.

3.1. Encoding boolean functions with BDDs

BDDs encoding boolean functions have only two sinks, labeled by 1 and 0, and
their internal nodes are labeled with boolean variables {z,y,...}. The classical
semantics interprets sinks 1 and 0 respectively as true and false, and any internal
node n = A(z,ni, ng) as the function f = if & then fi else fa, where f1 and f, are
the respective interpretations of ny and ns. As a consequence, each path from the
source node to the sink 1 of a BDD corresponds to a model of the encoded formula.
Many refinements of BDDs have been proposed in the literature. For instance, given
an ordering on variables, Ordered BDDs (OBDDs) require the label of any node to
be smaller than the labels of its children. OBDDs may thus be viewed as binary
trees encoding the Shannon decomposition 2° of the initial formula.

To obtain more compact representations, additional reduction rules may be used.
Reduced OBDDs (ROBDDs) require the graph not to contain any isomorphic sub-
graphs (node sharing rule, fig 1-a) or any useless node of the form A(z,n,n), that
do not care about its label value (node elimination rule, fig 1-b). Zero-supressed
BDDs (ZBDDs) '€ replace he node elimination rule by the Z-elimination rule (fig.
1-¢), for which useless nodes are those of the form A(z,0,n). This means that,
variables that do not appear explicitly on a path from the source node to a sink
node are by default interpreted as false on this path. In the following, without
further precisions, we simply use the term BDD in place of ROBDD.

The main advantage of using a BDD for encoding a propositional formula is
that it can describe very large sets of models in a very compact way. However this
requires computing the Shannon normal form of the formula, which may be very
expensive if the formula is in conjunctive normal form (cnf). From the SAT point
of view, since the BDD encodes the set of all models, this is as difficult as counting
them, which is #P-complete.

3.2. Encoding sets of clauses with ZBDDs

a.Node sharing b.Node elimination c.Z-elimination

Figure 1: Reductions rules in BDDs

To benefit from the high compression capabilities of BDDs while avoiding the com-
putation of Shannon normal forms, we propose an alternative encoding and use
ZBDDs to encode sets of clauses corresponding to cnf formulas. We still use two
sink nodes 1 and 0, but internal nodes are labeled with literals (instead of variables).
Intuitively, each path, from the source node to the 1 sink, represents a clause con-
taining all the literals labeling the parent nodes of 1-arcs on this path. One may
notice that in 329 ZBDDs are also used as data structures for encoding sequences
of literals corresponding to sets of prime implicants. However all these approaches
first compute the ROBDD of the initial formula, and use a property of the Shannon
decomposition (the decomposition theorem) to derive the set of prime implicants.
Our approach is different since the ZBDD is directly constructed from the original
cnf.

Given an initial ordering z; < ... < z, on the set of variables, we consider the
extended literal ordering corresponding to z; < -1 < ... < z, < —z,. In the
following, without further notice, we assume that we only consider ZBDDs labelled
by literals ordered in this way.

Definition 3 (Support) Given a ZBDD A, the support of A (denoted by sup(A)
is the set of its labels. If the support of A is not empty we denote by label(A) the
smallest element of sup(A).

Definition 4 (Size) Given a ZBDD A, the size of A is the number nn(A) of its
internal nodes.

The semantics we use interprets such ZBDDs as sets of clauses and may be formal-
ized by:

Definition 5 (Semantics)
e [0] = 0 (the empty set of clauses)
e [1] = {O} (the set reduced to the empty clause)

o [A(L A, B)]={lV[A]} U [B],

Figure 2: A ZBDD encoding of 51

where {{V [A]} denotes the set of clauses obtained by adding the literal { to
each clause of [A].

Encoding a set of clauses via a ZBDD essentially gives the possibility to factorize
common beginnings and ends of clauses. For instance, with the initial variable
ordering r < y < z, the set S} = {xVyV-z, ~zV-y, =yV -z, z} may be represented?
by the ZBDD of figure 2.
Let us notice that the meaning of a ZBDD [A({, A, B)] corresponds to the union of
two disjoint sets of clauses, since {l V [A]} corresponds to clauses that all contain
the literal [, while on the contrary, none of the clauses of [B] contains the literal {.
An internal node thus corresponds to the decision function partitioning the whole
set of clauses encoded by the ZBDD corresponding to this node into the subset of
clauses containing the label of this node and the subset of clauses not containing
this label.

This property may be used practically during the encoding of a set of clauses
Y. as a ZBDD. The first step is to determine the lowest literal symbol ! appearing
in ¥ (for the considered literal order). The set ¥ is then partitionned into ¥; and
¥, where X; denotes the subset of clauses containing the literal { and Y =X \ Y.
Now let us denote by E; the set obained by suppressing le literal | from any clause
of ;. Then we have ¥ = {lV E;} U ¥;. We may construct recursively the two
ZBDD A; and As encoding respectively E; and X;. The final ZBDD encoding ¥ is
then obtained by creating a new node labelled by [, the sons of which correspond
to Ay and A,, after application of the possible reduction rules, in particular the
node sharing rule. The encoding of a set of clauses as a ZBDD is thus a recursive
process. There are two terminal cases. If ¥ is empty it is encoded by the 0 sink. If
Y contains the (single literal) clause {, then Y is encoded by the 1 sink.

Property 2 Let A be the ZBDD constructed from a label [and two ZBDD A and
B, then nn(A) <14 nn(A) + nn(B).

1Sink nodes 1 and 0 have been duplicated for a better readability.

By construction, if no reduction rule applies, A contains all nodes of A, all nodes
of B and one additional node for the source node. Then we have nn(A) = 1 +
nn(A) + nn(B). However, if any reduction rule applies some of the nodes may be
eliminated and then nn(A) may be smaller.

Let us now consider the two functions :

Definition 6 The function nc is defined by:
e nc(0)=0
e ne(l)=1
o ne(A(l, A, B)) = ne(A) + ne(B)

Given the above semantics, it can be easily shown that ne(A) corresponds to the
number of clauses of [A]. This naturally follows from the fact that {{ v [A]} and
[B] are disjoint sets.

Property 3 If A = A(l, A, B) then nc(A) > 0. If A # 0 then ne(A) > 0.

Proof. Thisis a direct consequence of the Z-elimination rule, since it is impossible
to have an internal node of the form A((, 0, B). O

Definition 7 The function nl is defined by:

e nl(0)=0
0

e nl(1)
e nl(A(l, A, B)) = nc(A) + nl(A) + nl(B)

It can be easily shown that nl{(A) corresponds to number of literals of [A]. Again,
this follows from the fact that {{V [A]} and [B] are disjoint sets and that the literal
[appears exactly in nc(A) clauses.

Property 4 If A = A(l, A, B) then nl(A4) < nl(A) and nl(B) < nl(A)

Proof. This is a direct consequence of the property 3. a

A more interesting property is the following, which states that using ZBDD may be
an adequate way to obtain a compressed representation of a set of clauses:

Property 5 The size of a ZBDD A is never bigger than the size of the set of clauses
that it encodes, i.e. nn(A) < nl(A).

Proof. This may be proved by induction on the size of the support n = |sup(A)].
It clearly holds for n = 0. Let us suppose that the property holds for any ZBDD such
that |sup(A)| < n and let A(l, A, B) be a ZBDD such that |sup(A(l, A, B))| = n.
By definition nl(A(l, A, B)) = nc(A) + nl(A) + nl(B). By property 3 nc(A) > 0.

Figure 3: X encoding before (a) and after (b) node elimination

Since the size of the support of A and B is smaller than n, by induction hypothesis,
nn(A) < nl(A) and that nn(B) < nl(B). Thus 1+nn(A)+nn(B) < nl(A(l, A, B)).
Hence, by property 2, nn(A(l, A, B)) < nl(A(l, A, B)). a

Interpreting ZBDDs as sets of clauses has a significant impact on the encoding, one
of which is the easy detection of some kinds of subsumed clauses. Let us consider
the set Xy = {-~&V -y, VyVz,aVz -2V -yVz}. The corresponding ZBDD is
represented on figure 3-a. Note that the clause =z V =y V z, which is subsumed by
the clause =z V =y, cannot be explicitely represented. More generally, any clause
c1 of length n + k, such that the n first literals correspond to another clause cs
cannot be explicitly represented. But, since ¢; is subsumed by ¢3, it can be simply
removed. Another simplification may also be performed on the node labelled by
y. The path going through its 1-arc corresponds to the clause z V y V z while the
path going through its 0-arc corresponds to the clause zV z, which clearly subsumes
the previous one. The ZBDD obtained after elimination of the y node (fig. 3-b)
thus corresponds to an equivalent set of clauses. More generally, any node of the
form A(x, A, A) corresponds to the set of clauses {# V [A]} U [A]. So, each clause
of the first set is subsumed by a clause of the second set. With our semantics, it
is thus possible to take advantage of both the Z-elimination rule and the ROBDD
node-elimination rule.

Another easy simplification is the elimination of tautologies. A ZBDD of the
form A(z, A(—z, A, B), C) corresponds to the union of three sets of clauses : {z V
{—2 V [A]}} U {z vV [B]} U[C]. However, clauses containing both # and -z are
tautologies. A simple way to eliminate them is to apply the tautology elimina-
tion rule, which systematically replaces nodes of the form A(z, A(—z, A, B),C) by
A(z, B,C). In the following, we assume that all considered ZBDDs are constructed
by systematically applying the appropriate reduction rules.

3.3. Operations on clause sets

Minato has shown in !¢ that basic set operations (union, intersection,...) may be
realized as operations on ZBDDs. We here introduce new recursive operators that

take advantage of our special semantics, but that could not be used with usual
semantics of ZBDDs. In the following, literals are denoted by {l,m,...}. We also
make use of the following lemma :

Lemma 1 Let A = A(l, A1, A2) and B = A(m, By, By) be two ZBDDs such that
! < m. No clause of {{ V [A1]} subsumes a clause of [B].

Proof. This naturally results from the fact that all clauses of {{ V [A;]} contain
the literal [while clauses of [B] may only contain literals which are greater or equal
to m. Since I < m, none of them contains the literal ! and can be subsumed by a
clause containing [. ad

As a direct consequence of this lemma we have :

Corollary 1 Let A = A(l, A1, A2) be a ZBDD. No clause of {{ V [A1]} subsumes
a clause of [A2].

We now introduce a first binary operator on ZBDD, that is used in the definition
of the next operators:

Definition 8 (\\ operator) Let A and B be two ZBDD, the ZBDD A \\ B is
defined by:

T,: 0\ A=0

The: 1\ 1 =0

T TN A=1,ifA%£1

Tsa: A(l, A1, A2) |\ 0 = A(l, Ap, Ay)

Typ: AL A5LA) Y 1 =0

Ri: (I>m)A(l A1, As) \ A(m, By, By) = A(l, A1, A5) \\ Be

R2 : (l < m) A(Z,Al,Az) x A(m,Bl,Bz) =
A(l, A1 x A(m, Bl, Bg), A2 x A(m, Bl,Bg))

Rs: A(l, A, Ay) \ A(L, By, Bo) = A(L, (A, \ B1) \ Ba, (A2 \\ B2))

Definition 9 (Subsumed difference) Given two sets of clauses ¥; and ¥, the
subsumed difference X \\ X5 is the set of clauses obtained by removing from X4
all clauses of X5 as well as all clauses subsumed by some clause of Y.

Theorem 1 Let A and B be two ZBDDs, [A \\ B] = [4] ﬁ [B]-

Proof. We first show that the property holds for all pairs of ZBDD corresponding
to one of the terminal cases T1, T2, Top, T34, T3p. If A =0, [4] = 0 and we must
have [A]\ [B] = 0. This is in accordance with the rule 73. If A # 0 but B = 0,

[B] = 0 and thus no clause of [A] may be subsumed by some clause of [B]. Thus
we have [A] \\ [B] = [A]. This is in accordance with the rule 75, and T3,. If B =1,
then [B] = {O}. Since O subsumes any clause, we must have [A]\\ [B] = #. This
1s in accordance with the rule 75, and T3p.

The rest of the proof proceeds by induction on n = |sup(A)| + |sup(B)| (i.e. the
sum of the size of the support of A and B). The property holds if n = 0, which
corresponds to one of the above considered terminal cases. Let n > 0, let us suppose
that the property holds for any ZBDD A and B such that |sup(A)|+ |sup(B)| < n
and let us consider two ZBDD A and B such that [sup(A)| + |sup(B)| = n. The
case where |sup(A)| = 0 corresponds to the terminal case 77 or Th,. The case where
|sup(B)| = 0 corresponds to the terminal case Ts, or Tsp. If both |sup(A4)| > 0 and
|sup(B)| > 0, A and B are respectively of the form A(l, A1, A3) and A(m, By, Ba).
Three cases may then be considered.

e If I > m, the rule R; applies and [A \\ B] = [A\| Bz]. Now let us con-
sider [A]J\[B]- Since { > m, by lemma 1, no clause of {m V [B1]} may
subsume a clause of [A] and thus [A]\ [B] = [A] \ [B:]. Since |sup(B2)| <
|sup(B)|, we have |sup(A)| + |sup(Bz)| < n. Hence, by induction hypothesis,

[AIN[B2] = [AN B:].
o If | < m, the rule Ry applies and [A\\ B] = [A(/, 4, \ B, A2 \\ B)]. But

since [< m, no clause of [B] does contain the literal {. Thus if some clause
of [B] subsumes some clause of [A] containing the literal {, it necessarily
subsumes the same clause without the literal in [A;]. Hence, ({{ V [A1]} U
L4:D) V18] = ((0v([A] R [B)HU(LA2] T [BY)- Since |sup(A,)|+|sup(B)| <
n and [sup(Az)|+[sup(B)| < n, by induction hypothesis, [41]\ [B] = [A1 |}
B] and [A:] [B] = [A> | BI. Hence, ({1v [A]} U[4a]) § [B] = {1V [41
B]} U[A2 \\ B]. By definition, this corresponds to [A({, A; \ B, 43\ B)].

e If !/ = m, the rule R3 applies, and [A \ B] = [A({, (41 \ B1)\ B2, A2\ B2)].
Now we have [A]\ [B] = ({{V[A1]}U[A=D)\ ({{V[Bi]} U[B2]). By lemma
1 no clause of{{ V [B1]} may subsume a clause of [A;]. Thus [A] Q [B] =
{0V AT LV [BaD) U LD\ [Ba].

Moreover, if a clause of {l V [B1]} subsume some clause of {{ V [A;]} the
subsumption also occurs on the same pair of clquses without the literal /.

Thus, {1V [NV Y (B} = {0V ([ADVIBD). Since [sup(Ay)] +
|sup(B1)| < [sup(A)| + |sup(B)|, by induction hypothesis [A1]\[B:] =
[A4 N Bi]. Thus [AJN[B] = ({{ Vv [A1 N\ B} [B2]) U ([A2] N [B2])-
But as for previous case, since no clause of [Bs] contains the literal I, if
one of them subsumes some clause of {{ V [A; \ Bi]} it must also sub-
sume the same clause without the literal [in [A; \ Bi]. Hence {IV [A; |
BB = {1V (L4 \ BL[B:D}. But since [4, | Bi] C [4] we
have |sup(A4; \ B1)| < |sup(Ai1)| and thus, |sup(A; \ B1)| + |sup(B2)| < n.
By induction hypothesis [A; \ Bi]\ [B2] = [(A1 \ B1) \ Bz]. Similarly,

|sup(A2)| + [sup(B2)| < n and thus, by induction hypothesis, [A-] \[B:] =
[A2 \ B:2]. Hence, [AJN[B] = {IV[(41 \ B1) \ B2]} U[As \\ Bz2]. This
corresponds to [A(l, (A1 \ B1) \ Ba, 43 \\ B2)].

As a consequence, in all cases we have [A \\ B] = [A] ﬁ [B]- O

Corollary 2 If A and B encode two sets of clauses free of subsumptions, then
AN\ B also encodes a set of clauses free of subsumptions.

Proof. This is an immediate consequence from the fact that [A\ B] C [4]. O

The purpose of our second operator is to remove subsumed clauses from a given set
of clauses.

Definition 10 (Subsumption elimination) Given a set of clauses X, X7 is the
set of clauses of ¥ which are not subsumed by other clauses of X.

Property 6 Let ¥; and ¥; be two disjoint sets of clauses, (Z,UE)Y = (ET\ =N
(X3NET)

Proof. By definition, any clause of (¥; UX3)" is either in ¥; or in X5, and is not
subsumed by another clause of X1 or of X5. If it is a clause of X1, it necessarily also
a clause of ©.Y. Moreover, it cannot be subsumed by a clause of ¥5. By transitivity
of subsumption, this is equivalent to say that it cannot be subsumed by a clause of
Y. Thus it must be a clause of X7 \ XJ. If it is a clause of Y5, we may similarly
conclude that is is a clause of ¥ \ X7 . Thus any clause of (¥; UX,)" is a clause of
(BT AT u(BS W XT). Reciprocally a clause of X |\ X7 is a clause of X (by defi-
nition of \}) and thus of ¥;. Moreover, it is not subsumed by any clause of either ¥;
nor of X». Therefore it is a clause of (Z1UXs)". By a similar reasonig, we may con-
clude that XY |\ £¥ C (X;UX2)" and thus that (X7 | ZY)U(ZT | ZT) C (B1UX,)T.
O

Let us notice that this property only holds if 3; and ¥, are disjoints. Otherwise
a clause of one set could subsume the same clause in the other set and would no
more belong to (X7 \ XY)U (XY |\ X7). In the following we always use this property
under this assuption.

Another interesting property is the following:

Property 7 Let ¥; and X5 be two sets of clauses, (X1 UX3)Y = (X7 U XY

Proof. This results from the transitivity of the subsumption. a

Definition 11 (NoSub operator) Let A be a ZBDD, NoSub(A) is defined by:
Ti: NoSub(l) =1

Ta: NoSub(0) = 0
Ry: NoSub(A(l, A, A)) = Nosub(A) (node-elimination)

RQZ if A1 ;é AQ,
NoSub(A(l, A1, A2)) = A(l, NoSub(A1) \ NoSub(Az), NoSub(As))

Theorem 2 Let A be a ZBDD, [NoSub(A)] = [A]".

Proof. The proof proceeds by induction on n = [sup(A)|. The case n = 0
corresponds to the two terminal rules 77 and T5. In both cases [A] does not
contain any subsumed clauses.

Let us suppose that the property holds for any ZBDD which support size is strictly
lower than n and let A be a ZBDD such that |sup(A)| = n.

If Ais of the form A(l, A, A) the rule Ry applies and then [NoSub(A)] = [Nosub(A4)].
But by definition [A] = {{ V [A]} U[A]. Any clause of the first set is thus sub-
sumed by a clause of the second (this corresponds in fact to the node elimination
rule for our ZBDD). Thus [A]Y = [A]". Since |sup(A)| < |sup(A)|, by induction
hypothesis we have [A]Y = [NoSub(A)]. Hence we have [NoSub(A)] = [A]"

If A is of the form A(l, A1, A2), with A; # Ay, the rule Ry applies and then
[NoSub(A)] = [A(l, NoSub(A1) \ NoSub(Az), NoSub(A42))]. But ([A]Y = ({lV
[41]} U [[A2l)'. Since both sets are disjoints, by property 6, it corresponds to
(VIAD} | [A2])U(LAs]" § VAT We also have {IVLA T} = {(IV[A]").
Since clauses of [42]" do not contain the literal /, we have {{ Vv [A;]"}\ [42]" =
{4V ([AL]" N\ [A2]")} as well as [Aa]" \{l vV [41]}T = [A2]". Since the size
of the support of A; and of Ay is strictly smaller than n, by induction hypo-
thesis, we know that [NoSub(A;)] = [A:1]" and that [NoSub(As)] = [A-]".
Hence [A]Y = {l V ([NoSub(A1)]\ [NoSub(As)])} U [NoSub(As)]. By theo-
rem 1, [NoSub(A1)]\ [NoSub(A42)] = [NoSub(A1) \ NoSub(As)]. Thus, [A]Y =
[A(l, NoSub(A1) \ NoSub(Az), NoSub(A2))]. O

Corollary 3 Let A and B be two ZBDDs,
AN\ B = A\ NoSub(B) and
NoSub(A\\ B) = NoSub(A) \ B = NoSub(A) \\ NoSub(B)

Proof. This results from the transitivity of the subsumption. a

Definition 12 (Ul operator) Let A and B be two ZBDD, the ZBDD A U B is
defined by:
T, : 0U A= NoSub(A)

Th:1UA=1

T3a2 A(Z,Al,AQ) uo= NOSub(A(Z,Al,AQ))

Tgbi A(Z,Al,AQ) UHl=1

Ry if l<m,
A(Z,Al,AQ) U A(m, Bl, BQ) = A(l, NoSub(Al) x (Az L A(m, Bl, Bg)),
A2 UA(m,Bl,Bg))

Ry : ifl > m, A(Z,Al,AQ) L A(m,Bl,Bg) =
A(m, NoSub(Bl) x (BQ U A(Z,Al,Az)), BQ L A(Z,Al,AQ))

R3 . A(Z,Al,AQ) L A(Z,Bth) =
A(l, (AL U B\ (A2 U By), (A2 U Bg))

Definition 13 (Subsumption-free union) Let ¥; and X4 be two sets of clau-
ses, the subsumption free union of ¥1 and ¥y is £ Xy = (2 UXa)".

Theorem 3 Let A and B be ZBDDs, [AU B] = [A] 0[B]

Proof. We first show that the property holds for all pairs of ZBDD corresponding
to one of the terminal cases 71, T, T3, and Tsy. If A =0, [A] = 6, then [A]O[B] =
(@ U[B])Y which corresponds to [B]Y, i.e. to [NoSub(B)] by theorem 2. This
corresponds to the rule 7y, If A = 1 | [A] is reduced to the empty clause, which
subsumes all other clauses. In that case [A] 0[B] = {0}, which is in accordance
with the rule 75. If A # 0 and A # 1, but B = 0 or B = 1, the reasoning is
symmetrical. This corresponds to the rules 73, and T3;.

The rest of the proof proceeds by induction on n = [sup(A)| + |sup(B)|. The
property holds if n = 0, which corresponds to one of the above considered terminal
cases. Let n > 0, let us suppose that the property holds for any ZBDD A and B
such that [sup(A)|+|sup(B)| < n and let us consider two ZBDD A and B such that
|sup(A)| + |sup(B)| = n. The case where |sup(A)| = 0 corresponds to the terminal
case Ty or Ty. The case where |sup(B)| = 0 corresponds to the terminal case T3, or
Tsp. If both |sup(A)| > 0 and |sup(B)| > 0, A and B are respectively of the form
A(l, A1, A2) and A(m, By, By). Three cases may then be considered.

o Ifl < m, the rule R; applies and [AU B] = [A(/, NoSub(A;)\(4A2UB), ALl
B)], which corresponds to {{ V [NoSub(A;) \\ (A2 U B)]} U[A42 U B].
Now [A]0[B] = ([A1U [B)" = ({1V [A:]}U [4:] U [BI)" or ({1 [41]} U
([A2JU[BI]))". Since {IV[A;]} and [A>]U[B] are disjoints, by property 6, this
corresponds to ({1 A1} | ([A2] U [BD)") U (L] U [BD" § 41V [A1}Y).
But since no clause of [A2] U [B] contains the litteral /, this corresponds to
({v ([A:1" R ([A:1 U [BD)")}) U ([4] U [B])" . Since |sup(4s)] < |sup(A)],
we have |sup(Asz)| + |sup(B)| < n and thus, by induction hypothesis, ([42]U
[B])Y = [42U B]. By theorem 2, [A1]" = [NoSub(A;)]. Hence, by theorem
1, we have Thus [A]O[B] = {l V [NoSub(A;) \\ (42 U B)]} U[42 U B].

e If [> m, the rule R, applies and the reasoning is similar to the case of the

rule R;.

e If/ = m, the rule Rz applies, and [A U B] = [A(!, (A1UB1)\ (A2UDBs), (42U
B5))], which corresponds to {{ V [(A1 U B1) \ (A2 U B2)]} U [A42 U Ba].

Now, [A]0[B] = ([AJU[B])" = (({1v [A]} O[A:]) U ({1 B} U [BaD))-
By associativity and commutativity of U, this may be written as ({{V ([A1]U
[B1)} U ([4:] U [B2])"- Since, ({1 V ([41] U [B1])} and([4s] U [B])) are
disjoints, By property 6, this corresponds to ({{ V ([A1J U [B:i])}" \ ([42] U
[B2D) Y)U(([A=]UIB2D)Y N ALV ([AJU[B1])}Y). But since no clause of [A2]U
[B2] contains the litteral I, this corresponds to ({IV (([41]U[B1])" \ ([A42]U
[Ba1)" 1) U ([42] U [B2])"- Since [sup(Ay)| + lsup(B1)]| < n and |sup(:z)| +
|sup(B2)| < n, by induction hypothesis, we have ([A1] U [B1])Y = [41U Bi]
as well as ([A2] U [Bz])" = [42U Bs]. Hence, by theorem 1 it follows that
[A]JO[B] = {I V(A1 U B\ (A2 U B2)]} U[A2 U Bo].

As a conclusion, we have [A]U[B] = [4 U B].

O

Let us note that in the definition 12, the occurence of the NoSub operator in the rule
11,734, RiandRs is used to cover the case were the initial arguments correspond
to set of clauses that are not free of subsumed clauses. But if we know that the
arguments encode sets of clauses which are free of subsumptions, the definition of
the operation may be optimized by suppressing the calls to NoSub.

We now introduce our major operator. It is designed to construct the ZBDD
corresponding to the distribution of two sets of clauses. For a better lisibility, and
since we have to pay a particular attention to the distribution of clauses contain-
ing complementary literals, we introduce the new notation V(z, A1, A2, A3) as a
shortcut of a ZBDD of the form A(z, Ay, A(—z, By, By)), where corresponds to
a propositional variable. Note that, because of the tautology elimination rule, A;
cannot be labeled by —#. Thus A;, As and A3z do only contain nodes labeled by
literals of higher order than —z.

Definition 14 (x operator) Let A and B be two ZBDD, the ZBDD A x B is
defined by:
T1 :0x A=0

To: 1 x A = NoSub(A)
T3a2 A(Z,Al,AQ) x 0=0
T3b2 A(Z,Al,AQ) x 1= NOSub(A(l,Al,AQ))

R1 : V(I,Al,Ag,Ag,) X V(;E,Bl,BQ,Bg) =
V(l‘, ((A1 X Bl) (] (Al X B3) U (Ag X Bl)) x (Ag X Bg),
((A2 X Bz) L (A2 X Bg) L (Ag X BQ)) x (A3 X Bg),
(4s x Bs))

Rgai 1flabel(A3) ;é_ul‘, A(i,Al,Ag) X V(QZ,Bl,BQ,Bg,):
V(.Z‘, ((A1 X Bl) (] (A1 X Bg) U (Ag X Bl)) x (Ag X B3),
(A3 X BQ) x (Ag X Bg), (A3 X B3))

Rgal A(_'I,Az,Agg) X V(I,Bl,BQ,Bg,)I
V(z, (As x B1) \ (43 x Bs),
((A2 X BQ) [l (A2 X B3) (] (Ag X Bz)) x (Ag X Bg),
(Ag X Bg))

R4a2 if label(Ag) ;é -x, A(I,Al,Ag) X A(":L‘,Bz,Bg)I
V(l‘, (A1 X B3) x (Ag X B3),
(A3 X Bl) “ (Ag X Bg), (Ag X B3))

Rs,: if label(As) # —a, label(Bs) # -z,
A(.Z‘,Al,Ag) X A(‘I,Bl,Bg,):
A(l‘, ((A1 X Bl) L (A3 X Bl) L (Al X Bg)) x (Ag X Bg),
A3 X Bg)

R5bi A(_';I,AQ,AE;) X A(ﬁw,BQ,Bg):
A(_';l‘, ((Az X BQ) L (Ag X B3) L (A3 X Bg)) x (Ag X Bg),
A3 X Bg)

Req: if 1 € {x,—x} and -z < m, A(l, A1, A2) x A(m, By, Ba)=
A(l, (A1 X A(m,Bl,Bg)) \ (Az X A(m,Bl,Bz)),
A2 X A(m,Bl,Bz))

and Rap, R3p, Rap, Rep are symmetrical rules of Roy, Raq, Raq, Rea

Theorem 4 Let A and B be two ZBDDs, [A x B] is the ZBDD encoding the
subsumption-free distribution of [A] by [B]: [4 x B] = ([A] @ [B])"

Proof. Let A and B be two ZBDD and let us consider the subsumption free
distribution of [A] over [B] . We first show that the property holds for all pairs
of ZBDD corrresponding to one of the terminal cases 71,75, T3qandTs,. If A =0,
[A] = 0. Then [A] ® [B] = 0 and thus [A] ® [B]Y = §. This corresponds to the
case T7.

IfA=1,[A] ={0}. Then {O0}®[B] = [B] and [A]®[B]" = [B]". By theorem
2, [B]Y = [NoSub(B)]. This corresponds to the rule T5. If A # 0 and A # 1, but
A =0or A =1, the reasoning is symmetrical and corresponds to the rules 75, and
T3p.

The rest of the proof proceeds by induction on n = |sup(A)| + |sup(B)|. The case
n = 0 is covered by the rules 77 and T%. Let us suppose that the property holds
for any ZBDD A et B such that |[sup(A)| + |sup(B)| < n and let us consider two
ZBDD A et B such that |sup(A)| + |sup(B)| = n. The case where |sup(A)| = 0 is
again covered by the rules 77 and T5. The case where |sup(B)| = 0 is covered by

the rules T3, and T3,. Otherwise, A and B contain both at least one internal node.
The eleven rules correspond to the different possible configurations.

The most general case corresponds to the situation where A = V(z, Ay, A2, A3) and
B = V(z, By, B2, B3). Then the rule R; applies and
[Ax B]=[V(z, ((A1 x B1)U (A1 x Bs)U(As x B1))\ (43 x Bs),
((A2 X BQ) L (A2 X Bg) L (Ag X B2)) “ (Ag X Bg),
A3 X B3)]]
But in this case, [A] = {z V [A1]} U {-z V [A2]} U [As] and [B] = {z V [B:1]} U
{—2 Vv [Bz]} U[Bs]. Thus
(Al [BD)Y = (({zVv[A}u{-zV[4:]}U[4s])@
{z VI[Bi]} U{-z V[B:]} U [Bs]))".
Because of the distributivity of ® with respect to U, this corresponds to
(({zv[Al}e{zvIBl)u{zVvIAlle{-V[B]}Hu
{z VA @ [Bs]) U ({—e v [Aa]} @ {z V [B1]})U
({me V [4a]} @ {2 V [Ba]}) U ({=2 V [42]} @ [Ba])U
(sl @ {z v [Bi1}) U ([4s] © {~a v [Bo]}) U ([As] @ [Bs]))".
However, clauses produced by ({z V [A1]} ® {—zV [B:]}) and ({-~z V[A:2]} @ {zV
[B1]}) contain both literals and —z and thus are tautologies, which are eliminated.
Among the remaining sets of clause, we may distinguish between the set of clauses
containing the literal z, those containing the literal =z and those containing neither
z nor —z. Thus
(Ao [BDY ={= Vv ([A] @ [B.]) U ([A:] © [Bs]) U ([As] @ [B:])) }u
{me v (([A2] @ [B2]) U ([A2] @ [Bs]) U ([4s] @ [B2])) U
([As] @ [Bs])".
Since the tree sets are disjoints, since clauses of the first subset do not contain the
literal -z, since clauses of the second subset do not contain the literal x and since
clauses of the third subset do not contain either z or —z, using twice property 6 we
obtain:
(Al [B])Y =
{z v (([A] @ [Bi]) U ([A:] @ [Bs]) U ([As] @ [B1]))}Y
\ ([4s] © [Bs])")u
({2 Vv (([A=] ® [B2]) U ([A=2] @ [Bs]) U ([As] @ [B2]))}'
N ([4s] @ [Bs])Y)u
([As] @ [Bs])"
Since [As] and [Bs] do not contain either z or -, this corresponds to

{zv ([e [Bi) U ([Ad © [Bs]) U ([As] © [B:])"

\ ([4s] ® [Bs])") I
({2 Vv (([A=] ® [B:2]) U ([A2] @ [Bs]) U ([As] @ [B2]))}'
\ ([4s] ® [Bs])")}u
([As] @ [Bs])"-
By property 7, this corresponds to

{zVv ([d e [BD)T (Al @ [Bs])Y U ([As] © [B:])")T
N ([As] © [Bs])")}u
{-z V((([A2] @ [B2D)Y U ([A2] © [Bs])Y U ([4s] © [B2])T)T

VW ([Ms] @ [Bs])")}u
([4s] © [Bs])"-

Since Vi,j, 1 < 4,5 < 3,|sup(4;)| < |sup(A4)| and |sup(B;)| < |sup(B)| we have
V1 < 4,5 < 3,|sup(4i)| + |sup(B;j)| < n. Therefore by induction hypothesis, we
have V1 < 4,5 < 3,[4; x B;] = ([Ai] @ [B;])Y. Thus,
([4] & [B)" = i
{2 vV ((([A1 x B1]) U ([A1 x Bs]) U ([As x B1]))" |
{-2 v ((([A2 x B2]) U ([A2 x Bs]) U ([As x B:]))"
(I[Ag X Bg]])
By theorem 3 and theorem 1, this is equivalent to
{ v (([A1 x B1]) U ([A1 x Bs]) U ([As x B:])) |
{-z v ((([A2 x Bz]) U ([A2 x Bs]) U ([As x Bz]))

(I[Ag X B3]])
This corresponds to the right side of the rule R;.

([As x Bs]))}u
\ ([45 x Bs])) U

([4s x Bs])) tu
\ ([45 x Bs])) v

The proof for the remaining rules may be done exactly in the same way. Each rule
covers a particular case, where one, two or three components among { A1, A2, By, Ba}
are missing in the ZBDDs A and B.

The rule R, (resp. Ragp) covers the case where the component By (resp. As) is
missing. The rule R, (resp. Rsp) covers the case where the component By (resp.
Ap) is missing. The rule Ry, (resp. Rap) covers the case where the component A;
and Bg (resp. Az and Bj) are missing. The rule Rs, (resp. Rsp) covers the case
where the component A; and Bz (resp. A; and Bj) are missing. The rule Rg,
(resp. Rgp) covers the case where the component By and By (resp. A; and Aj) are
missing. ad

4. Reviving the original DP procedure

The original Davis-Putnam procedure 4, proposed in 1960, is often confused with its
modified DLL version of 1962 4. However, the two versions differ in a fundamental
way. While DLL is a backtrack search procedure for SAT, DP rather amounts to
a succession of cut-elimination steps. Although generally considered as inefficient,
Dechter and Rish have noticed that, on some structured instances characterized by
a low induced width, DP may perform better than DLL implementations (without
backjumping and learning techniques). However, most of the time, DP produces
successive resolvents whose size grows in a prohibitive way. Galil first proved the
intractability of DP ?, using a problem for which any proof by directed resolution is

t 27 extended this result

exponentially long. Ten years later, Haken '° and Urquhar
to all resolution based procedures. These theoretical results suggest that resolution
based procedures like DP and DLL are not appropriate to solve such instances. But

they rely on the implicit assumption that resolution steps are performed one by one.

DP(f) -
I. Choose a propositional variable z of f.
IT. Replace all the clauses of f containing z (or —z)
by those which can be obtained by resolution on x.
III. a. If the empty clause is present,
then the original set is unsatisfiable.
b. If the current set is empty,
then the original set is satisfiable.
c. Otherwise, repeat I-11I for the new set of clauses.

Figure 4: The DP procedure

We here show that taking advantage of ZBDD structures for representing sets of
clauses may lead to reconsider this point.

In °, Galil describes the DP procedure as on figure 4. Assuming that f cor-
responds to a set of clauses ¥ encoded by a ZBDD A, we now describe the whole
DP algorithm in terms of ZBDD operations. The key point of the algorithm is the
step II, which corresponds to the cut elimination of the variable . In fact, this
amounts to replace the subset X, of clauses containing # and the subset X_, of
clauses containing —z by the set of clauses obtained by multiresolution from ¥,
and Y _,. Since multiresolution is based on clause distribution and since there is a
corresponding ZBDD operator for this notion, this may be done in a rather simple
way.

The ZBDDs A, and A, encoding ¥, and ¥, may be obtained using standard
subset operators 1% on ZBDD, namely subset; (I, A), which returns the ZBDD en-
coding clauses containing the litteral [. Let Xz the set of clauses containing neither
z nor =z and Az be the ZBDD encoding ¥z . To obtain Az, we introduce a new
operator without(z, A), that may easily be implemented using the subsety operator
of 16,

The next step is to caracterize the set of clauses Elx and X

i

_z obtained from ¥,
and Y, by removing the literal from clauses of ¥, and the literal =z from clauses
of ;. For this purpose we introduce a new simple ZBDD operator remove(l, A).
In a ZBDD encoding a set of clauses that all contain a given litteral {, all paths to
the 1 sink should pass through an internal node A(l, A, B) such that B = 0. Then,
supressing the literal { from the set of clauses amounts to replace each internal
node of the form A(l, A, 0) by A. Let A; = remove(x, subsety (z, A)) and Al_w =
remove(—x, subsety (—x, A)).

Since ¥ = ¥, UX.,UX, it corresponds to = {z VY, }U{-zVX._ }UXz and thus
to = {z V[AL]} U{-zV[AL,]} U[Az]. The cut elimination step then amounts
to replace {z V [A.]} and {-z Vv [AL,]} by [AL] ® [AL,]". As a consequence,
thanks to theorem 4, the whole process may be fully described in terms of ZBDD
operations by:

(A, x AL) U Az

The main advantage is that the cost of this operation does not depend on the size
of Elx, ¥ and ¥z, but only on the size of A;, Al
is possible to perform many resolutions in a single step, involving a huge number of

and Az. As a consequence, it

ar T

clauses, if the corresponding ZBDDs have reasonable sizes. Using ZBDDs with such
operators leads to completely reconsider the general consensus on DP inefficiency.

Another point worth reconsidering is the heuristics used for choosing the cut
variable, in step I. With more conventional data structures, a traditional criterion
is to select a variable which cut-elimination produces the minimal number of new
clauses 2. Of course, since the size of the ZBDD is bounded by the size of the for-
mula, this remains an interesting idea (if not specified, this is our default heuristic).
But since it is not necessarily directly related to the number of clauses, new criteria
may be also be investigated.

This revived DP procedure has been implemented to evaluate the effectiveness
of this approach. The resulting system, called ZRES, uses the Cudd package 2%,
which includes basic ZBDD operations, as well as useful dynamic reordering func-
tions. Two versions have been realized. The standard version (std) uses the stan-
dard ZBDD distribution operators and deletes tautologies and subsumed clauses
afterwards. The other version (cd, for clause-distribution) uses our x operator to
perform the three steps simultaneously.

5. Solving two hard problems for resolution

This section presents empirical and theoretical results obtained with ZRES on two
hard problems for resolution: Pigeon Hole '° and Urquhart 27. Since for these
problems DP must generate an exponential number of clauses, they seem good
candidates to evaluate the ability of our data structures to compress large sets
of clauses. All tests have been performed on a Linux Pentium-II 400MHz? with
256MB. Our results are compared, when possible, with those of several DLL imple-
mentations: ASAT &, a good-but-simple DLL implementation, SAT0o 3.0 2°, which
includes many optimizations such as backjumping and conflict memorization, and
which, until recently, was one of those obtaining the best results on Dimacs bench-
marks 7?8, We also mention the results obtained by ZCHAFF 8, a recent and very
much optimized version of DLL, that currently obtains the best results on many
benchmark instances 2323, as well as those of SaTz-215 1211 that uses lookahead
techniques to improve unit propagation, and those of EQsaTz '3 which incorporates
equivalency reasonning techniques in a DLL. All values correspond to cpu times and
are expressed in seconds. We assume that an instance that cannot be solved in less

than 10000 seconds counts for 10000s.

5.1. The Pigeon Hole problem

The well-known Pigeon Hole problem has received much attention since Haken 1°
used it to prove the intractability of resolution. The simplicity of this problem,

20n the Dimacs 7 machine scale benchmark, this machine has a user time saving of 305%.

Instances || AsaT SaTo ZCHAFF SATz-215 Eqsatz | ZREs std ZRES cd

Hole-09 11.94 890 549 12.98 257 88 1.87 T.01
Hole-10 141.96 80.94 36.04 12958 4191.32 3.26 1.61
Hole-11 1960.77 7373.65 2425 1804.2 >10000 5.7 2.65
Hole-12 >10000 >10000 245227 >10000 - 10.18 4.06
Hole-20 - - - - - 654.8 69
Hole-30 - - - - - >10000 1102
Hole-40 - - - - - - 9421

Table 1: Cpu time on Hole-n instances

which states that n + 1 pigeons cannot fit in n holes, contrasts with its intractabil-
ity. Results of our experiments are summarized table . Surprisingly, the best results
for this problem have been obtained with a heuristic function which tends to max-
imize the number of clauses produced at each step. This confirms that usual DP
heuristics may not remain appropriate with ZBDD structures (ZRES cannot solve
this problem with the default heuristics).

The first observation is that ZRES cd not only surpasses all DLL procedures,
but also solves much bigger instances, that cannot be solved by the DLL proce-
dures. ZREs even managed to solve Hole-55 (84756 clauses) in less than 2 days. In
comparison, Hole-10 only contains 561 clauses®. The second observation concerns
the std and cd versions of ZRES. Results confirm the effectiveness of our specialized
x operator. The savings obtained with the second version even seem to increase as
the size of the problem augments.

One may notice, on figure 5-a, that, from the clause point of view, the process
is composed of two phases. The first phase corresponds to the first n cuts and leads
to a super exponential growth. By studying precisely which cuts are performed, it
can be shown that, at the end of the first phase, the total number of clauses is n™.
The second phase corresponds to a regular step by step decreasing (each of the n+1
steps is n cuts long). To understand how ZRES manages with such a huge number of
clauses, we compare the respective variations of the total number of clauses (figure
5-a) with respect to the total number of nodes (figure 5-b). At the end of the first
phase, the latter has only increased by 10%. During the second phase, the number of
nodes looks like oscillating between two other curves, corresponding to the minimal
and maximal values for each period (a period corresponds to n cuts). During the
first cut of each period, the number of nodes jumps from its minimal to its maximal
value. During the n—1 remaining cuts of the period, it decreases regularly until the
minimal value of the next period. These oscillations clearly suggest the repetition
of the same phenomenon, closely related to the structure of the formula. Indeed,
sudden increases of the number of nodes correspond to eliminations of variables that
break some symmetries and reduce the number of shared nodes, while the remaining
cuts of a period progressively restore the regularities.

The shape of the top envelope also contrasts with the variation of the total
number of clauses. It increases progressively and reaches its maximum after ap-

2Hole-n contains n x (n + 1) variables and %(ng’ + n2) + n + 1 clauses.

100

107 -
- - Hole-10
Hole-20
- - - Hole-30
—~10%° L s —— Hole-40
910 K T - - Hole-50
5 |
73] Fl -
@) L! .
o
0
O
0
=
o
(@)
©
3]
o
e
S
P
LL
100 1 ! L ! ! il]
0 500 1000 1500 2000 2500 3000
Cut Number
a. Number of clauses
4
25X 10
y=2k>~k3(4n+2)+k(2n*~n+3)+31f-n-3
2,
- - Hole-20
-~ Hole-30
@ —— Hole-40
S5k —6— Top-Simul.
. —o— Bottom-Simul.
©
3]
o
e 1r YN
= \‘\1‘1““\\1\‘\\
z \‘|\‘\|\Hlm“\‘u\
) I‘I\ 1'\“,”"\\”\ i
Wy gy T |~‘m\‘ \
r'\\l\“\ \‘\“““HHH\
0.5¢ M (AR “"mﬂ
N Vi
' LAERY '\‘\\:\\‘\
N R ‘\H[‘\'\m I M
N ARN Y
0 L ~ L L > L L L (o
0 200 400 600 800 1000 1200 1400 1600

Cut Number

b. Number of nodes

Figure 5: Pigeon Hole resolvents

proximatively ”3—2 cuts. We have conducted an analytical study of the structure of
successive ZBDDs, to evaluate the successive maximal and minimal values. The
results confirm those obtained by regression analysis on experimental values and
prove that the max and min envelopes correspond to polynomial functions of de-
gree 3. On figure 5-b, we represent, for the Hole-40 case, the curve corresponding
to the top and bottom envelopes and give the precise equation characterizing the
top envelope obtained by analytical study, which should be read with k = [£].

n

Theorem 5 For the Pigeon Hole problem, there exists a literal ordering and a cut-
elimination ordering that lead to an exponential explosion of the number of clauses,
while the number of nodes in the ZBDD encoding remains bounded by a polynomial
function of degree 3.

Sketch of proof. The complete proof is too long to be reported here but may

22 We only sketch here its main lines. The pigeon hole problem at the

found in
order n may be described 9 by the formula Hole = Pos A Exc where Pos expresses
that any pigeon must be in some hole and where Ezc expresses that two different
pigeons cannot be in the same hole. More formally, this may be described using a
set of propositional variables {P; ;,1 <i < n+1,1 < j < n}, where P;; means

that pigeon i is in hole j and :

n

n+1
Pos = /\ \/Piyj
i=1j=1
n n+l

Ezxc = /”\ /\ /\ —Pi VP

i=1j=11l=j5+1
The proof strongly relies on the following variable elimination order:

periodl period 2 periodn+1

Pli<. .. <Pia< P <..<Php<...<Pp11<...< P

As mentionned above, the whole elimination process may be decomposed into n + 1
periods; The k** period thus corresponds to the successive elimination of variables
Pr1 < Pra<...< Pyq,ie. of all variables concerning the kth pigeon. Intuitively,
the elimination of these variables corresponds a propagatation of constraints result-
ing from the fact that the k** pigeon must be ” placed somewhere”. At the beginning
of the k" period (i.e. just before the cut-elimination of the variable Py 1), all vari-
ables concerning the k£ — 1 first pigeons have already been eliminated. Therefore,
additional constraints have already been inferred to take into account the fact that
the k—1 first pigeons have been placed ”somewhere”. The proof amounts to charac-
terize the structure of the successive sets of clauses obtained after each elimination
and to study the structure of the ZBDD encoding this set of clauses.

Particularly, it may be proved that for any 2 < k < n + 1, the formula obtained
at the beginning of the kt? period is of the the form Holey = Posg A Exci A Bigy

with:

n+l n
POSk = \/Pz',j
i=k j=1
n n n+l
Frep, = /\ /\ —|Pi7j Vv —|P1J
j=li=kli=i+1
n+1

Bigk = /\ \/ /_‘Pz',j

where P;(n) = {S C {1,...,n}/|S| = j}. In this formula, Posy is a subset of
Pos and expresses that the remaining pigeons should be in some hole, and Ezcg
is a subset of Ezc andexpresses that any two of the remaining pigeons cannot be
in the same hole. Bigy 1s more tricky to understand. Intuitively, the subformula
/\7:+/,€1 —F; ; expresses that none of the remaining pigeons may be placed in the hole
j. If S corresponds to a subset of the holes, \/jeS /\7:'21 —F; ; expresses that there
is one hole among S in which none of the remaining pigeons may be placed. At this
stage, the last n + 2 — k pigeons still have to be placed somewhere. Each possible
mapping may be characterized by an element of Ppy,_g(n). Thus the whole Bigy
expresses in some way that whatever the way the n 4+ 2 — k pigeons are placed into
a subset of n + 2 — k holes, there is always one of these holes in which none of the
remaining pigeons may fit.

The major difficulty in this problem is to encode Bigy. Note that its above formu-
lation is not in clausal form. But during the elimination process, it is its clausal
representation that is encoded. Since there are n + 2 — k pigeons, (n + 2 — k) holes
to be selected and C"*t2~% ways of chosing n + 2 — k holes among n holes, Bigy
corresponds in fact to to a set of C?+27% (n 42— k)(”+2_k) clauses. For instance, at
the beginning of the second period, Bigs corresponds to n” clauses. This explains
the huge increase of the number of clauses that may be observed on figure 5-b. Still,
we may prove that Bigg, using the following variable ordering:

Pl,l < P271 <. < Pn+171 < P172 < P272 <. < Pn+1,n

may be encoded by a ZBDD the structure of which is presented on figure 6.

This ZBDD has a very regular structure. Actually each path from the top oval to
the 1 sink may be viewed as a selection of n+ 2 — k holes among n, where the hole ¢
is in the selection, if we leave the oval of line j on this path by the 1-arc. Any such
path thus corresponds to some set S € Pp4,_k(n). The whole ZBDD corresponds
to all possible selections of these form (i.e. the first conjunction in Bigg). But in
fact, each oval on a line j corresponds to a small ZBDD. The right part of the figure
6 corresponds to a zoomed view of any oval on line j on the left. This small set
corresponds to the encoding of /\7:11 —F; ; in Bigr. We may check that the total

n+2-k i

n+1-k

n+2-k

n+2-k Zoom on an oval of line j

|
Figure 6: Pigeon Hole resolvents

number of ovals is (n + 2 — k)(k — 1) and since each oval contains n 4+ 2 — k nodes
the total number of nodes of the ZBDD is in O(n?).
Note that Holer # Bigg. But it may be proved that incorporating the clauses of
Posg and Ezcy, doesn’t change the structure of the ZBDD in a fundamental way.
Eventually, we have only presented the structure of Holeg at the beginning of each
period k such that 2 < k < n 4 1. The rest of the proof establishes that during
each period, the size of the ZBDD remains in O(n3). This may be done by a precise
analysis of the variations of the set of clauses, after each variable elimination of a
same period, by identifying regularities in these variations and by characterizing the
corresponding variations in the structure of the ZBDD encoding this set of clauses.
For all details the reader is referred to 22.

O

Table 2: Cpu time on 100 Urg-3 instances

System Total # Solved Mean (solved)
Asar 404 287 69 1366
SATO 776 364 26 1398

ZRES cd 69.2 100 0.69

Table 3: Mean on 1000 Urquhart instances.

Initial Initial Max Max ZRES
Urq| Var Nb Cl Nb Cl Nb Nodes Nb Time
4 78 714 1010 440 1.72
6 178 1683 102 1011 8.88
8 318 3024 103 1808 29.6
10 498 4754 1087 2833 72.0

As a consequence, we have shown that despite bad complexity results charac-
terizing DP for the Pigeon Hole problem, ZREs is able to solve it effectively.

5.2. The Urquhart problem

The Urquhart problem 7 encodes a property of expander graphs, in a modified
version of those initially proposed by Tseitin 26. Galil ° also used such graphs to
exhibit an exponential lower bound on the cost of satifiability testing using directed
resolution. Practically, Urquhart’s instances correspond to a set of connected sub-
bases. Fach sub-base is the cnf translation of some biconditional formula (a chain
of equivalences of the form {; & ls & ... ¢ lg). As a consequence, all clauses of a
given sub-base have the same length, are built using the same variables (occurring
positively or negatively) and their number of negated literals are either all odd or
all even. Again, we may observe on table 2 that ZRES performs very well on such
examples.

We also tested bigger instances with the default heuristics. Results (table 3)
clearly show that the maximum number of clauses handled in each calculus is ex-
ponentially higher than the maximum number of nodes reached. Note that here,
we do not report the time of ZRES std time, because for this class of problem, no
significant difference may be observed.

Because the Urquhart problem rather corresponds to a general framework, a
precise analytical study is not possible. But it is still possible to have some intuition
on the reason why ZRES still cope with such instances. By construction, each sub-
base built on i variables contains 2°~' clauses. But this highly structured set of
clauses can be encoded by a ZBDD having only O(¢) nodes. Successive cuts amplify
this exponential difference. As a matter of fact, a distribution between the clauses
of two different sub-bases, built respectively on i and j variables, leads to 2¢+7—2
clauses, which can be encoded with only O(i+ j) nodes. We thus have the following
theorem:

Theorem 6 Biconditional formula on n variables have a cnf representation of ex-

Figure 7: ZBDD encoding of an equivalency clause

ponential size (n.2"~1) but can be encoded by a ZBDD of exactly 4.(n — 1) nodes.

Proof. Let us recall that the set of clauses corresponding to a biconditional formula
b=1 &1y & ...l with Vi, 1 < i < n,l; € {z1,2;}is the set of clauses of
{21, 21} @ {22, 722} ®...@ {2y, ~2,} of which the number of negative literals has
the same parity as nbnl(b) + n + 1, where nbnl(b) denotes the number of negative
literals in the biconditional b. Let us now present a ZBDD A that exactly encodes
this set.

1.

. Connect na

Create four nodes nay, nby, na, and nb,. Label na; by x; and nb; by —x;. If
nbnl(b) +n+ 1 is odd, then label na, by —&, and nb, by and z,. Otherwise,
label na, by z, and nb, by and —z,.

Vi,2 < ¢ < n — 1, create four nodes na?’,nb?’ labelled z; by and na; ,nb;
labelled —z;.

Connect na, and nb, to 1 through its 1-arc and to 0 through its 0-arc.

+

n—1

(resp. nb}_|) to na, (resp. nb,) through its l-arc and to
o _ (resp. mb__,) to nb,
(resp. nay) through its its 1-arc and to 0 through its 0-arc.

na__, (resp. nb,_;) through its 0-arc. Connect na

Vi,2 < i< n—2, connect na;j (resp. nb}) to na;:_l (resp. nb;:_l) through its

l-arc and to na; (reps. nb;) through its 0-arc. Connect na; (resp. nb;) to
nbl'-*'_*_1 (resp. na;:_l) through its l-arc and to 0 through its 0-arc.

Table 4: 3-SAT, 190 Cl, 44 Var, 1000 exp.
ZRES cpu time Max. Node Num. Memory (MB)
std 306 5 638 848 186

cd 118 284 474 13

6. connect na; (resp. nby) to na; (resp. nb;) through its its 1-arc and to nby

(resp. 0) through its 0-arc.

The structure of A is described by figure 7 (for the case where the parity is even).
Note that all paths leading to the 1 sink are of length n and necessarily contain a
l-arc which parent node is labelled by either z; or —z;, Vi, 1 < ¢ < n. We may also
notice that the nodes na and nb caracterize in fact two subgraphs A and B of A,
which have almost the same structure (with the exception of the top and the bottom
node) and are strongly connected. In fact, one may check that any path from the
source node of length strictly smaller than n and which last node is in A corresponds
to a sequence that contains an even number of negated literals. Inversely, if the last
node is in B, it corresponds to a sequence containing an odd number of literals.
Going from one side to the other amounts to add one more negated literal. On this
graph, since the last node of A is labelled by a positive litteral and the last node
of B is labelled by a negative litteral, all clauses have an even number of negative
literals. Thus, A encodes exactly the set of clauses constructed on n variables, of
length n and that contain an even number of negated literals. Note that in order
to encode the complementary set of clauses that have an odd number of negated
literals the only thing to do is to exchange the labels of the node na, and nb,. O

Again, thanks to the high compression capabilities of ZBDDs, this second his-
torical problem, in proving intractability of resolution, seems practically solvable
using our DP implementation.

6. Other experimental results

6.1. ZREs std vs ZREs cd

To evaluate the benefit of using the x operator, we have performed an experimental
comparison between ZRES std and ZRES c¢d on random sets of clauses. We use the
fixed clause-length model 17, which is a reference problem in the literature. Two
conclusions may be drawn from this experiment®. First, the obtained results (see
table 4) confirm that ZREs is definitely not a good candidate for solving such un-
structured instances. The work of ? already pointed out that DP is not adequate for
random instances. In this context, improvements due to ZBDDs are poor. Because
they lack regularities, random instances are not really compressible. Nevertheless,

4AsaT and SATO results do not appear in the table, because both solve such instances
instantaneously

Table 5: Compression rates (std. dev.)

Problems Beginning Best
Alea-130c-30v | 2.06(0.02) | 4.58(0.34)
Alea-180c-42v | 2.05(0.02) | 6.15(0.44)
Pret150 1.88(0) 1157(0)
Par32-c 2.14(0.02) | 107(107)
1i8 2.43(1.09) | 107(107)
Flat-50 1.76(0.01) | 9.61(2.14)
Ssa 1.72(0.01) | 5.72(0.28)
Massacci-R4, 7.16(0.25) | 72.9(8.95)
Aralia 1.79(0.28) 10%(107)

we still may observe a significant difference between the two versions of ZRES. The
explanation may be found in ? which pointed out the importance of subsumption
checking on such examples for DP. Actually, the use of the specialized x operator,
instead of usual ZBDD operators, leads to significant savings, especially in memory.

6.2. Compression capabilities of ZBDDs

Using ZBDDs for representing sets of clauses is motivated by the hypothesis that
structured instances should present some regularities, that should also be observable
when expressed under cnf. A possible way to validate such a hypothesis is to consider
the compression rate induced by this representation, defined as the ratio of the total
number of nodes of the ZBDD encoding the cnf, with the total number of literals of
the cnf. We measured the variation of this compression rate during the resolution
of random generated as well as structured instances.

Experiments on 1000 3-SAT instances with 42 variables and 180 clauses show
that the initial compression rate is almost always the same: 2.05. During the
successive cuts, it increases up to 6.15 and then decreases again. It reaches its
maximal value when handling the maximal number of clauses. It might be surprising
to obtain compression rates greater than 1 on random instances. But, given the
characteristics of the generated instances, there is some statistical evidence that
clauses begin and/or end in the same way. During the calculus, the rate increase
may be explained by the duplication of portions of clauses during the successive
cuts. Thus, generated resolvents do no more have the caracteristics of the initial
random instances.

For structured instances, results often differ in a significant way. Most of the
time, the compression rate has a low initial value but reaches much higher values.
This is the case for 28, pret150 and par32-c from Dimacs benchmarks as well as for

15 concerning a cryptography application. The ssa and

the problem of Massacci
flat classes are however exceptions. But, when looking closely at the characteristics
of these classes of problems, it is interesting to note that even if they correspond to
real problems (graph coloring and circuit testing), both kinds of instances seem to
incorporate a random factor in their generation process. This could be a possible

explanation for such differences. We also used the Aralia benchmark '°, which is

seldom used to evaluate SAT solvers. For these instances, the goal to achieve is
only to eliminate a subset of the variables of the initial formula and to produce the
resolvent. This task perfectly suits to ZRES. This benchmark is interesting because
its instances correspond to models of physical systems. Again, the compression
rates are quite different from those of random instances.

If these results confirm that ZBDDs are effective for compressing large structured
sets of clauses, a high compression rate doesn’t mean that ZREs is able to solve the
problem efficiently. In particular, ZRES cannot achieve the resolution of Massaci-
R/, 118 and of Parity-32. More generally, for the Dimacs benchmarks, most efficient
DLL remain quicker.

7. Conclusion

In this paper, we have proposed using ZBDDs to encode sets of clauses efficiently.
We have shown that memory savings due to this encoding may become very high
when considering structured instances. We have introduced specialized operators
for clause set handling and shown that the x operator may distribute sets of clause
of exponential size, while handling polynomial size data structures. This makes it
possible to reconsider the original DP procedure and to propose a revised version,
which is able to perform multi-resolution on large sets of clauses, in an efficient
manner. This allows this new DP to solve hard instances for resolution, which
contrasts with the widespread idea concerning its inefficiency.

Exponential lower bounds on the length of proofs have often led to consider
resolution based procedures as intrinsically limited. It is often suggested that the
way to surpass such limitations, which occur even on simple problems like Pigeon
Hole, is to switch to more powerful proof systems. Our feeling is that, in some
cases, the length of a proof is not a good indicator of its complexity, as only the
length of a message is not significant in information theory.

Many directions are interesting for further work. We have used our x operator
at the heart of a SAT prover. The introduction of ZBDDs give the opportunity to
consider the DP algorithm from a different point of view. New heuristics, based on
the ZBDD structure, instead of the number of clauses, have to be developed. This
x operator can also be used to solve efficiently other problems such as computing
sets of prime implicates ?*. From the SAT viewpoint, we think that the DLL
procedure could also take advantage of ZBDD representation to handle very large
sets of clauses in a compact way. A further perspective could be to develop a hybrid
algorithm, merging DP and DLL, to benefit from the best of both approaches.

References

[1] R.E. Bryant. Graph - based algorithms for boolean function manipulation. IEEE
Trans. on Comp., 35(8):677-691, 1986.

[2] Ph. Chatalic and L. Simon. Davis and Putnam 40 years later: a first experimentation.
Technical Report 1237, LRI, Orsay, France, 2000.

(3]

[19]
[20]
(21]
[22]

(23]

O. Coudert and J.-C. Madre. A new method to compute prime and essential prime im-
plicants of boolean functions”. In T. Knight and J. Savage, editors, Advanced Research
in VLSI and Parallel Systems, pages 113—-128, March 1992.

M. Davis and H. Putnam. A computing procedure for quantification theory. Journal
of the ACM, pages 201-215, 1960.

J. de Kleer. An improved incremental algorithm for generating prime implicates. In
AAAI’92 pages 7T80-785, 1992.

R. Dechter and I. Rish. Directional resolution: The Davis-Putnam procedure, revisited.
In Proceedings of KR-94, pages 134-145, 1994.

The DIMACS challenge benchmarks. ftp://ftp.rutgers.dimacs.edu/challenges/sat.
Olivier Dubois. Can a very simple algorithm be efficient for SAT? Electronically
available on ftp://ftp.dimacs.rutgers.edu/pub/challenges/sat /contributed /dubois.

Zvi Galil. On the complexity of regular resolution and the Davis-Putnam procedure.
Theorical Computer Science, 4:23-46, 1977.

A. Haken. The intractability of resolution. Theorical Computer Science, 39:297-308,
1985.

D. Le Berre. Exploiting the real power of unit propagation lookahead. In Henry Kautz
and Bart Selman, editors, Electronic Notes in Discrete Mathematics, volume 9, Boston
University, Massachusetts, USA, June 14th-15th 2001. Elsevier Science Publishers. Pro-
ceedings of the LICS 2001 Workshop on Theory and Applications of Satisfiability Test-
ing (SAT2001).

C.-M. Li. A constrained based approach to narrow search trees for satisfiability. Infor-
mation processing letters, 71:75-80, 1999.

C.-M. Li. Integrating equivalency reasoning into davis-putnam procedure. In Proceed-
ings of the National Conference on Artificial Intelligence (AAAI’00), pages 291-296,
2000.

G. Logeman M. Davis and D. Loveland. A machine program for theorem-proving.
Communications of the ACM, pages 394-397, 1962.

F. Massacci and L. Marraro. Logical cryptanalysis as a sat-problem: Encoding and
analysis of the u.s. data encryption standard. JAR, 2000.

S. Minato. Zero-suppressed bdds for set manipulation in combinatorial problems. In
30th ACM/IEEE Design Automation Conference, 1993.

D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of sat problems.
AAAI’92 pages 459-465, 1992.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th Design
Automation Conference (DAC’01), Juin 2001.

A. Rauzy. Boolean models for reliability analysis: a benchmark. Technical report,
LaBRI, Université Bordeaux I.

A. Rauzy. Mathematical foundations of minimal cutsets. TEEFE Transaction on Relia-
bility. (to appear).

B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability
problems. In AAAI-92, pages 440-446, 1992.

L. Simon. Multiresolution for consistancy checking and deduction in propositional logic.
PhD thesis, Université Orsay Paris XI, France, 2001. To appear, in French.

L. Simon and P. Chatalic. SATEx: a Web-based Framework for SAT Experimentation.
In Henry Kautz and Bart Selman, editors, Flectronic Notes in Discrete Mathematics,
volume 9, Boston University, Massachusetts, USA, June 14th-15th 2001. Elsevier Sci-
ence Publishers. Proceedings of the LICS 2001 Workshop on Theory and Applications
of Satisfiability Testing (SAT2001).

[24] L. Simon and A. del Val. Efficient consequence finding. In 17th International Joint
Conference on Artificial Intelligence (IJCAI’01), pages 359-365, Seattle, Washington,
USA, 2001.

[25] F. Somenzy. Cudd release 2.3.0. http://bessie.colorado.edu/fabio.

[26] G. Tseitin. On the complexity of derivation in propositional calculus. studies in Con-
structive Mathematics and Mathematical Logic, part 2, pages 115-125, 1968.

[27] A. Urquhart. Hard examples for resolution. Journal of the ACM, 34:209-219, 1987.

[28] The SatEx web site. http://www.lri.fr/ " simon/satex/satex.php3. (gathering of SAT
experimentations).

[29] Hantao Zhang. SATO: An efficient propositional prover. In CADE-14, LNCS 1249,
pages 272-275, 1997.

