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Many tasks in Artificial Intelligence can be posed as
consequence-finding tasks, i.e.
certain consequences of a propositional knowledge bas%
These include prime implicates, abduction, diagnosis, non
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Abstract

We present an extensive experimental study of
consequence-finding algorithms based on kernel
resolution, using both a trie-based and a novel
ZBDD-based implementation, which uses Zero-
Suppressed Binary Decision Diagrams to concisely
store and process very large clause sets. Our study
considers both the full prime implicate task and ap-
plications of consequence-finding for restricted tar-
get languages in abduction, model-based and fault-
tree diagnosis, and polynomially-bounded knowl-
edge compilation. We show that the ZBDD imple-
mentation can push consequence-finding to a new
limit, solving problems which generate oved™
clauses.

Introduction

monotonic reasoning, and knowledge compilatiofMar-

guis, 1999 provides an excellent survey of the field and
Unfortunately, there have been very fe
serious computational attempts to address these proble

its applications.

After some initial excitement with ATMSke Kleer, 1986

and clause management systdiRsiter and de Kleer, 1987,

Kean and Tsiknis, 1993it was soon realized that these sys-
tems would often run out of resources even on moderatel
sized instances, and interest on the topic waned. Thus, for

example[Marquis, 1999 says in concluding his survey:

“The proposed approaches [to consequence-
finding] are however of limited computational

scope (algorithms do not scale up well), and
there is only little hope that significantly better

algorithms could be designed”

as the problem of findin
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1994. We also introduce novel consequence-finding tech-
nology, namely, the use of ZBDDs (Zero-Suppressed Binary
Decision Diagram§Minato, 1993) to compactly encode and
process extremely large clause sets. As a result of this new
technology, the well-known Tison methddlison, 1967 for
finding the prime implicates of a clausal theory, a special
case of kernel resolution, can now efficiently handle more
than107° clauses. The combination of focused consequence-
finding with ZBDDs makes CF able to deal computation-
ally with significant instances of the applications discussed
above for the first time. In particular, our experiments include
both full CF (the prime implicate task), and applications of
consequence-finding for restricted target languages in abduc-
tion, model-based and fault-tree diagnosis, and polynomially-
bounded knowledge compilation.

We assume familiarity with the standard literature on
propositional reasoning and resolution. Some definitions are
as follows. A claus&' subsumes a claude iff C C D. The
empty clause is denoted. For a theory (set of clauses),
we useu(X) to denote the result of removing all subsumed

%lauses fron. An implicate ofX is a clauseC such that

E C; a prime implicate is an implicate not subsumed by
any other implicate. We denote WyI(X) the set of prime

implicates ofY. We are often interested only in some subset
of PI(X). For this purpose, we define the notion of a target

VWanguageCT, which is simply a set of clauses. We assume
mE‘T is closed under subsumption (c.u,$.¢. for anyC € L

andD C C, we haveD € Lr. A target language can al-
ways be closed under subsumption by adding all subsumers
of clauses in the language.

y Given these definitions, the task we are interested in is find-
Ing the primeL-implicates of%, defined asPI. . (X) =
PI(X) N Ly. We will mainly consider the following target
languages:L is the full language, i.e. the set of all claus-
es over the seVar(X) of variables of$. L5 = {O} con-
tains only the empty clause. Given a set of varialMfeghe
“vocabulary-based” languagg€y is the set of clauses over
V. Finally, for a constanf, Lk is the set of clauses over

In this paper, we conduct the first extensive experimend ar(X) whose length does not exced Thus we havel,,

tal study of consequence-finding (CF), more specifically of£2, etc.
one of the approaches referred to in the above quote, namely Each of these languages corresponds to some important Al

kernel resolutior{del Val, 1999. Kernel resolution allows

task. At one extreme, finding the prime implicatesXbis

very efficient focusing of consequence-finding on a subsesimply finding PI.(X) = PI(X); at the other extreme, de-
of “interesting” clauses, similar to SOL resoluti¢moue,

ciding whethep is satisfiable is identical to deciding whether



Pl (¥) is empty. Vocabulary-based languages also have !
many applications, in particular in abduction, diagnosis, and @ |
non-monotonic reasoning (see elmoue, 1992; Selman and @ |
Levesque, 1996; Marquis, 1988mong many others). Final- o) B |
ly, Lk or subsets thereof guarantee ti#di;, (X) has poly- Nl | ). \ .
nomial size, which is relevant to knowledge compilation (sur- | @ @ @
veyed in[Cadoli and Donini, 199]7. oW

Sometimes we will be interested in theories which are log- N L
ically equivalent toP1... (%), but which need not include all b
Lr-implicates, and can thus be much more concise. We refer h |
to any such theory as2y-LUB of ¥, following [Selman and |
Kautz, 1998, see alsddel Val, 1993. We'll see one partic- ‘ .
ular application of£,-LUBSs in our discussion of diagnosis BDD Tre
later.

Figure 1: ZBDD and trie representation for the set of clauses
2 Kernel resolution: Review E={aVbV-c,maVh-aV-e,7bV-ch
Kernel resolution, described ibdel Val, 1999; 2000k
is a consequence-finding generalization of ordered resol
tion. We assume a total order of the propositional variable
x1,...,2,. A Kernel clauseC is a clause partitioned into

two parts, the skip(C), and the kernek(C). Given any : . 0 -
; ) logically equivalent but not necessarily identicaRé,,, (X);
target languagé’, closed under subsumption, 3--kernel i.e., itis aLy-LUB of X. Note that, in either case, the de-

resolution deductiotis any resolution deduction constructed ;. . :
as follows: (a) for any input clausg, we set(C) = C and sired set of clauses is stored in the last buckets. The ad-
s(C) = 0; (b) resolutions are only permitted upon kernel lit- YaNtage of this ordering is that either form £i,-BE be-

erals; (c) the literal resolved upon partitions the literals of have exactly as directional resolution, a relatively efficient

the resolvent into those smaller (the skip), and those |arge§atisfiabilitymethod, up to the firsV-variable of the order-

; ; P ing. L£Y-BE stops right there (and is thus strictly cheaper
g)hgcﬁg\}zl)}céﬁﬁzi’nzccx;d'rg%Jﬁ;h:ngl\:ggo?\:g;:g]%’e?f_ (d) than deciding satisfiability with DR under such orderings),

acceptable, which means thdt?) € Lr. while Ly,-BE continues, computing the prime implicates of

0 : :
In order to search the space of kernel resolution proofs, w l‘;(fjég) N Ly with full kemel resolution over the/-

associate to each variahte a bucketb[z;] of clauses con- )

tainingz;. The clauses in each bucket are determined by a .

indexing functionl ..., so thatC' € b[z,] iff z; € I.,.(C). We 3 Zero—Suppressed BBDs: Review

can always definé.,.(C) = {kernel variables of the largest [Bryant, 1992 provides an excellent survey and introduction

prefixiy ...l of Cs.t.lily...ly_1 € L7}, whereC'is as-  of Binary Decision Diagrams (BDD). A BDD is a direct-

sumed sorted in ascending ordelel Val, 1999; resolving  ed acyclic graph with a unique source node, only two sinks

on any other kernel literal would yield a nali--acceptable  nodes { and0, interpreted respectively asue and false)

resolvent. and with labeled nodeA (z,n1,n2). Such noder has only
Bucket elimination, abbreviatedr-BE, is an exhaustive two children @, and n,, connected respectively to its 1-

search strategy for kernel resolutiofty-BE processes buck- arc and 0-arc) and is classically interpreted as the function

ing. L£i,-BE is simply £y-BE under this ordering assump-
ion. £3,-BE is identical, except that processing is interrupt-
ed right before the first variable df is processed. Thus
Li-BE(X)N Ly = Pl (¥), whereasC),-BE(X) N Ly is

etsblx1],. .., b[z,] inorder, computing in stepall resolvents  f = if xthen f, else fo (if f1 andf, interpret the BDD3:,
that can be obtained by resolving clausedaf;] upon z;, andny).
and adding them to their corresponding buckets, uging The power of BDDs derives from their reduction rules. A

We denote the set of clauses computed by the algorithm a80BDD (Reduced Ordered BDD, simply noted BDD in the
L7-BE(X). The algorithm, which uses standard subsumptiorfollowing) requires that its variables are sorted according to
policies (so thatlr-BE(X) = u(Lr-BE(X))), is complete  a given order and that the graph does not contain any iso-
for finding consequences of the input theory which belong tanorphic subgraphnppde-sharingule). In addition, thenode-
the target languagér, thatis,L7-BE(X)NLr = Pl (¥).  eliminationrule deletes all nodeA (x,n, n) that do not care

As shown in[del Val, 1999, £-BE is identical to Tison's  about their values. With the classical semantics, each node is
prime implicate algorithmiTison, 1967, whereasCo-BE is  labeled by a variable and each path from the source node to
identical to directional resolution (DR), the name given bythe 1-sink represents a model of the encoded formula. The
[Dechter and Rish, 19940 the original, resolution-based BDD can thus be viewed as an efficient representation of a
Davis-Putnam satisfiability algorithriDavis and Putnam, Shannon normal tree.
1964. L5-BE(Y) is called thedirectional extensiorof 3, In order to use the compression power of BDDs for en-
and denoted R(X). coding sparse sets instead of just boolean functidnimato,

For £y, we will in fact consider two BE procedures, both 1993 introduced Zero-Suppressed BDDs (ZBDDs). Their
of which assume thdhe variables ol are last in the order-  principle is to encode the boolean characteristic function of a



set. For this purpose, Minato changed tlmle-elimination  solved according to thér-restriction in place, given the vari-
rule into theZ-eliminationrule for which useless nodes are ables that have been processed so far. For example, a clause
those of the formA(z,0,7n). So, if a variable does not ap- becomes dead fof (i.e. for DR) when just one of its vari-
pear on a path, then its default interpretation is rfalge  ables is processed; and 6§ when its firstK” + 1 variables
(which meansabsent instead ofdon’t carg. If one wants  are processed. Right before processing a variable, we obtain
to encode only sets of clauses, each ZBDD variable needs tits bucket” from the live ZBDD. Processing the variable is
be labeled by a literal of the initial formula, and each paththen done by multiresolution. Finally, when done with a vari-
to the 1-sink now represents the clause which contains onlgble, new clauses become dead, and they are moved from the
the litterals labeling the parents of all 1-arcs of this path.live ZBDD to the dead ZBDD.
Figure 1 represents the ZBDD encoding the set of clauses
E={aVbV-c,maVb-aV-c,-bV-ct 5 Experimental results

The “compressing” power of ZBDDs is illustrated by the

fact that there exist theories with an exponential number of2Ur €xperimental tests, which include structured benchmark
clauses that can be captured by ZBDDs of polynomial Sizegathenng and generating as well as random instances testing,

Because their complexity only depends on the size of the zBIEPresents more than 60 cpu-days on the reference méagchine

DD, not on the size of the encoded set, ZBDD operators cafrore than 10000 runs on structured examples and almost the
' ' ame on random instances. Only selected results are present-

be designed to efficiently handle sets of clauses of an expos- .
nential size. ed here, for an obwou_s lack of space. '
Times are reported in seconds. All experiments use a 1000

; seconds timeout, and a dynamic min-diversity heuristic for
4 Kemel resolution on ZBDDs variable ordering. This heuristic chooses the variable for
In order to deal with this compact encoding in the contex-which the product of its numbers of positive and negative oc-
t of kernel resolution, we need to define a way to efficient-currences is minimal, thus trying to minimize the number of
ly obtain resolvents, and to identify buckets. For the formerresolvents.
task,[Chatalic and Simon, 2000b; 20qdatroduced a very In addition to the ZBDD-based implementations, labeled
efficientmultiresolution rulewhich works directly on sets of zres , we also consider algorithms based on the trie-data
clauses, and thus which can compute the result of eliminatingtructure[de Kleer, 1992, namely,picomp anddrcomp,

a variable without pairwise resolving clauses. for respectively prime implicates and directional resolution.
Definition (multiresolution) : Let AT andA~ be two sets  In contrast to the ZBDD programs, trie-based programs ex-
of clauses without the variable. LetR; be the set of clauses plicitly represent clauses and buckets, and use pairwise reso-

obtained by distributing the sé&t™ over A~. Multiresolution  |ution. The trie (illustrated in Figure 1) includes a number of

is the following rule of inference: significant optimizations to minimize trie traversal, for effi-
N B cient subsumption.
(@i vV NAD) A (2 v \ A7) = AR It can be shown that ZBDDs are never worse than tries in s-

pace requirements, and can be much better. Intuitively, while
tries can only share common structure on the prefix of claus-
. . . es, ZBDDs can do it on their prefix and postfix, i.e. they al-

solvents obtained by processihg:;]. The main advantage o factoring clauses from both the beginning and the end. In
of this definition is that it can be shown that7; is com- terms of time, as we will see, the situation is more complex.

pluted directly at tr|1e set Ievet!), V\(itgout e>(<jp|icit|3f/ ehnumerztting evertheless, the ZBDD implementation is the one that really
clauses, its complexity can be independent of the number qf ,sjyeg consequence-finding well beyond its current limits.
classical resolution step§Chatalic and Simon, 2000kpro-

pose a system called ZRes which implements the multiresolus, 1 Prime implicates

tion principle by means of ZBDDs. ZRes manipulates clause, . N . .

sets directly, through their ZBDD representation, with no exf?[:;l r||rgir:rsneplf:ﬁi:c;mgﬁa“&nsgma&z C;quc;f metr?ijsndsaergt(iagr-l
plicit representation of individual clauses. A bucket is easi—On our tvx?o ver differegnt Tiso.n’s aloorithm implementa-
ly retrieved from the ZBDD storing the current clause set inti ns. picom ynd Zres-tison Vg\]/ th pf low

the form of ZBDDs for appropriate\;” and A; ; and it is ons, picomp ' a es-liso ) € use the follow-

. i ing benchmarks, among othershandra-n [Chandra and
then processed using a specialized ZBDD operafayse- Ing y L
distribution, which implements multiresolution by distribut- Markowsky, 1978 andmxky [Kean and Tsiknis, 1990are

ing A+ overA; to obtainR;. The system comes with other problems with known exponential behaviadder-n  (n-bit

; i : : dders)serial-adder (n-bit adders obtained by connect-
ZBDDs operators designed for clause-set manipulation, sucﬁi‘g n full adders),bnp-n-p _(tree-structured circuits with

assubsumption-free unioandset-differenceAll these three rs. wheres | robability. [E] Fattah and Dechter
operators delete subsumed and tautologous clauses as s a%/e S, wherep j a plo.a iy, LE | 3. a %Id echter,
as possible, during the bottom-up construction of the result=222) répresent digital circuitsserial-diag-adder
ing ZBDD. and pnp-ab _represent the same circuits in a form suitable
To generalize these ideas for focused kernel resolution, w or diagnostic reasoningipes andplpes-syn are prob-
need to deal with complex indexing functions. For this pur-c > drawn from qualitative physicpe-k-n  problems,
pose, we keep two ZBDDs, for dead and live clauses respec- 'On the DimacgDimacs, 1992 machine scale benchmark, this
tively. A “dead” clause is one which can no longer be re-Pentium-Il 400MHz has a time saving of 305%

A bucket b[z;] can always be expressed in the form re-
quired by this rule, so thak; corresponds to the set of re-



Benchmark #PIs picomp | zres-tison | k(3) k(4) k(5) k(6) z-tison
adder-10 826457 | 171 1.07 k(3) - 52(1.19) 46 (1.45) 46(1.45) 31(3.70)
adder-50 1.0e+25| - 172 k(4) | 31(1.04) - 41(1.18) 41(1.18) 23(2.75)
adder-100 7.2e+48| - 381 k(5) | 37(1.05) 35(1.06) — 0 18 (2.21)
chandra-21 2685 0.1 0.29 k() | 37 (1.05) 35 (1.06) 0 - 18 (2.21)

chandra-100 9.2e+15 - 12.23 z-tison | 53(2.88) 56(2.83) 58(2.88) 58(2.88) -—

chandra-400 2.8e+63 - 318

bnp-5-50-ts4-rr-2 1240 0.02 0.42 Table 2: Compilation with zres-kbound and zres-tison
bnp-7-50-ts4-rr-1 5.7e+6 - 10.9
br?gpa;g%gsfszrzrz 3'105:110 0;) 4 3583 be defined that always produces tractable compiled theories
brip-ab-7-50-ts4-1r-2 | 7.2e+10 - 311 of polynomial size, unless we restrict the query Iar)guage to
EKG 823585 | 118 036 have pqunqmlal size. That's th’zﬁK-BE does. To imple-
moks 10648 - 1-81 ment this withzres , clauses having more thanprocessed
M30k25 1 ée+37 _ 2.56 variables are move.d to the dee}d ZB.DD..We test here only
: the zres-kbound  implementation with different on the
n_-queens-5 3845 1.72 4.26 same benchmarks used on prime implicates. Summarizing so
p!geons'5'5 7710 12.4 49.6 many test runs on so many different benchmarks families is
pigeons-6-5 17085 | 935 356 not easy. We attempt to do so in Table 2, where a cell on
pipes-simple-08 | 71900 | 390 38.9 row ; and columnj contains the percentage of benchmarks
pipes-simple-12 | 321368 | - 239 quickly solved by the prograrmin comparison with program
pipes-syn-10 30848 | 35.2 2.69 j. For instancezres-kbound  (3) terminates more quickly
pipes-syn-40 4.3e+6 - 518 thanzres-tison  in 31% of the cases, and the median val-
serial-adder-10-4 | 8.4e+7 | - 4.33 ue of the cpu gain is 3.70. Of course, such a table can’t take
serial-adder-30-4 | 6.4a+21| - 17 into account the particularities of each benchmark family, but
serial-diag-adder-10-4 1.7e+10| - 78.3 it still can give some taste of how the different approaches
serial-diag2-8-Ob | 2.2e+8 | - 11.7 behave with respect to each other.

type1-800 319600 | 16.4 219 What is striking is that Tison remains the fastest procedure
types-150 3.7e+71| - 330 in most cases, with a median cpu gain of around 285%. But,

e __ . we can see that, in 31% of the cases, kbound(3) perform much
Table 1: Prime implicates with picomp and zres-tison better tharzres-tison . This phenomenon (also observed

with kbound(4-6)) means that whemes-tison fails, k-

due to[Mathieu, 1991, attempt to mimic “typical” structures Pound remains an available solution. Moreover, our results
of expert system KBs, with eadhrepresenting a particular Suggest that kbound(5) and kbound(6) perform similarly, yet

kind of structure. the latter computes a much more interesting base.
The first observation that can be drawn from Table 1 is . . .
the scalability ofzres-tison , which can handle a huge 9.3 Directional resolution

number of clauses on some particular instances (0" pjrectional resolution compiles a theory into an equivalent
for types-150 ). Thus it forces us to completely reconsid- gne jn which one can generate any model in linear time. We
er Tison’s algorithm efficiency and limitations. In all these ast here our two DR implementatiordrcomp andzres
examplespicomp simply cannot physically represent such o some specific benchmarks, with two heuristics for each
sets of clauses and, like all previous Tison’s implementationgne  |n Table 3 theoar-8-* , pretl50-25 , ssa0432

S, is no competition fozres-tison . Yet, on some in- ~ fjjeg are taken from the Dimacs database, and #KB means
stancespicomp remains faster. This is due to small distri- the sjze of the theory obtained by the programs. As this size
butions computation, involving less than a thousand clausegepends on the order of variable deletions, we only report it
(e.g. type-1-800 ) at each multiresolution step. On such ¢ the first case, where the two programs give the same result.
examples, traditional approaches with explicit representation a¢ shown in Table 3 good heuristics have a major effect.
of clauses remain faster. Notice finally the relative indepenUSing just input orderiﬁg often forces the size of the KB to
dence (_)f the running _time afes-tison Wt the number grow in such a way thadrcomp can't compete witleres .

of Pls, in contrast tgpicomp . Forzres-tison there are  7gppg pay off in all these cases, showing their ability to
easy examples with a huge number of Pls, and hard exampleg,resent very large KBs. The min-diversity heuristics seem-
with few PIs. The latter include-queens and satisfiable ¢y jnvert the picture, mainly because the ordering helps to
pigeon _pro_blems, Wh.'Ch contrasts W'th the _excellen_t reSUItSkeep the clause set to manageable size (tens of thousands of
for satisfiability of similar problems ifiChatalic and Simon, clauses). The same applies to theories which are tractable
2000d. for directional resolution, such as circuit encodidsl Val,
o _ 20004, for whichdrcomp takes no timezres , in contrast,

5.2 Polynomial size compilation seems to include a significant overhead on theories which do
One of the major theoretical limits of knowledge compila- not generate many clauses, despite its relatively good perfor-
tion (KC) is that it is very unlikely that a KC method can mance reported ifChatalic and Simon, 2000bOn the other



Input Order Min Diversity LY, L3,

Bench. #KB zres drcomp| zres drcomp Bench. Time #Ly-LUB | Time #PIL,,
adder-400 7192 482 1.36 310 1.23 adder-5 0.18 448 0.3 1396
chandra-400| 1.3e+36 132 - 28.2 0.02 adder-10 0.78 18184 3.6 354172

m8Kk7 2396801 1.19 24.05| 0.50 0.01 adder-20 3.51 1.88e+7 | 36.51 2.09e+10
m30k25 8.76e+37 292 - 79.1 0.05 adder-25 5.88 6.03e+8 - —
par8-2-c 15001 332 - 1.24 0.04 adder-100 | 423.51 2.28e+32 - -
par8-2 350 - 476.82| 30.31 0.10 mult-16 0.66 275 4.47 1918
pretl50-25 | 1.75e+15 8.69 - 4.83 20.8 mult-64 16.86 3466 - -
ssa0432-003 2.01e+9 407 - 45.2 0.01 mult-128 2.25 1307 585.99 39398
typel-850 849 999 0.08 | 915 0.11 bnp-7-50-1 | 6.12 193605 | 6.39 193605
bnp-7-50-3 | 5.97 24435 6.33 24435
Table 3: Directional resolution algorithm bnp-10-50-3| 805.53  2.30e+14| — -
bnp-10-50-4| 671.61 1.76e+19 - -

hand, ZBDDs scale much better when dealing with very large Table 4: Abduction on circuits: ZBDD-basdd, -BE
KBs. ' ' '

. Bench.| #KB  zres drcomp| #Pls | zres-is. picomp
4 Abduction p2r | 28 024 003 | 80 | 030 003
Given a theory> and a setd of variables (called assump-  p-6r | 7596 31.3 033 | 1332 48.5 0.36
tions, hypothesis or abducibles), abductive explanationf p-10r | 99100 374 18.7 | 122000| 360 229

a clauseC wrt. Y. is a conjunctionl of literals overA such
thatX U L is consistent and entai(s (or a subsumed clause
of C). L is a minimal explanation iff no subset of it is also an
explanation.

On theadder-n , mult-n  (adder and multiplier whose
result is smaller than n), and on thap circuits introduced
in section 5.1, we are giyen a circuit with a set o_f input 55 Fault-Tree Diagnosis
variablesl and output variable®. We want to explain some ] )
observation (an instantiation of sor@evariables) with only ~ The set of AralidRauzy, 1995 benchmarks arise from fault
variables from/ (thus forgetting all internal variables). This tree diagnosis, in which one wants to characterize the set of
problem can be addressed through-BE with V = I U O. eleme_ntary failures (coded by the predlcat_es) that entail
In this case, the trie-based implementation failed in all benchthe failure of the whole system (theot predicate). It thus
marks (exceptadder-5 ), so we only report results for the amounts to computing the set 6t -implicantsof the root,
ZBDD-based implementation, in Table 4. We also tried ourWhereV is the set off;. We use the well-known duality cn-
algorithms on the ISCAS circuits benchmark family, without /dnf and implicants/implicates to express those problems as
success. To interpret these results appropriately, one shoufet -implicatesproblems. . _
note that obtaining?I;,, means precomputing answers for _Usually, these benchmarks are efficiently solved usiag
all abduction problems foE, as explanations can be direct- ditional BDDs approaches.g. rewritting the initial formu-
ly read off from P, (X). Kernel resolution also provides la under Shannon Normal Form). [Rauzy, 199§ internal
methods for answering only specific abduction problems (ayariables (defined as an equivalency with a subformula), are
Opposed to a”), but we have not tested them; for some tesflot even enCOd.ed inthe BDD: they are dlreCtIy identified Wlth
s with a similar flavor, check the diagnosis experiments orihe BDD encoding the subformula. In our approach, such in-
ISCAS benchmarks, section 5.6. ternal variable are explicitly present in the cnf of the formula.

Note that, surprisingly, all adder examples are treated mucfh€ work ofzres - amounts to preciselgeleteall of them,
more efficiently byzres-tison (table 1) than byC!,-BE. thus obtaining a formula build ofy (and theroot) predicates.

A similar phenomenon was already pointed ouf@hatalic I_n table 6, we show that kernel resolution, Wlt_h multlresol_u-
and Simon, 200dawhere, on some examples, computing pRtion, can efficiently handle those problems without needing
on a subset of variables was proved harder than on the whol@ rewrite the formula under Shannon Normal Form. To our
set of variables£{,-BE harder tharC’,-BE, whereV’ C A). knowledge, this is the first time that such direct CF approach
But, here, in addition, the induced hardness overcomes theHCCESSes.

simplification due to the use of DR instead of Tison, which is
clearly counter-intuitive. This is not the case for thalt-n

nor for thebnp-10-50 instances, on whiclpicomp and
zres-tison failed.

Table 5 presents some easier examples, pih-kr

Table 5: Abduction on path problems

solving all abduction problems for the given instance in one
go.

5.6 Model-based diagnosis

In diagnosidde Kleeret al, 1997, we are given a theory
describing the normal behavior of a set of components; for
each component, there is an “abnormality” predicdie Let
problems fron{Prendingeet al,, 200d (abbreviateg-kr ), V = AB be the set otib;’s. Given a set of observatiors,
which can be solved by bottircomp and picomp . For  the diagnosis are given by the prindg -implicants (noted
comparison with their results, note that we, unlike them, areP A, ) of PI., (X UO). As we can obtain these implicants



Benchmark| zres | #PI.,, Bench. | #KB  zres drcomp| #Pls zres-tis. picomp
baobab2 1.9 1259 bnp-5-1 200 0.54 0.03] 6441 0.90 0.24
baobab3 | 16.32 | 24386 bnp-5-3 35 0.48 0.03 724 1.02 0.03
das9205 0.61 17280 bnp-7-1| 78109 19.26 21.6| 1.3e+8 304 -
das9209 | 11.98 | 8.2e+10 bnp-7-2 | 31166 8.55 52.1| 1.7e+11| 33.9 —
edf9205 154 21308 bnp-7-4 | 110829 13.89 - 8.2e+8 32.8 -
edf9206 | 669.3 | 7.15e+9
isp9602 | 17.05| 5.2e+7 Table 8: “Compiled” diagnosis on tree-structured circuits
isp9605 1.67 1454
Program Mean Med. Std 50% int. #Uns.(MT)
Table 6: Aralia abduction benchmarks zres-tison 8.15 3.43 14.03 1.32-895 0(232)
0 picomp 32.79 9.79 64.61 2.72-27.78 42
Bench. | T.Ly-BE #Lv-LUB | T. PAL, #PAL, zres-kbound 3| 3.78 2.67 3.61 157-471 0(34.3)
c432-d-03 |  99.16 1648704 | 315.13 1243 zres-kbound 4| 7.48 393 10.28 1.83-8.66 0 (152)
c432-d-06 | 462.16 3549876 - - zres-kbound 5| 8.86 3.97 1452 1.81-9.61  0(218)
c432-d-09 140.60 18084 180.67 6651166
c499-d-03 | 42.14 102 470.12 7347194 Table 9: Consequence Finding in Random Formulae
c499-d-04 43.39 227 - -
c499-d-09 68.51 1065 198.74 3.2e+7 . . .
[Dechter and Rish, 1994; Chatalic and Simon, 2(0adat
c880-d-03 98.16 174 103.13 13349 .

. such instances are very hard for DR, d8dhrag and Craw-
c880-d-08 98.96 87 99.65 698 .

" ford, 1998 observed even worse behavior for consequence-
¢880-d-05 153.35 1 153.47 23 o . .
C1355-0.01 26848 965 — — finding for instances generated near the SAT phase transition

’ threshold. Using a more powerful computer than in the pre-
c1355-d-02| 233.46 182 - - . b h Ks . fi
c1355-d-10 224.89 11 295 57 49856 vious benchmarks we comparepicomp , zres-tison

Table 7: Model-based diagnosis for ISCAS benchmarks

from any equivalenf, -LUB of ¥, eitherL},-BE or L{,-BE

can yield the diagnosis, so we use the chedjjeBE.
We first consider ISCAS benchmarks. We generated fotime needed if all instances have been solved).

andzres-kbound on 1000 formulae at the ratio 4 (30 vari-
ables, 120 clause80% satisfiable). If we focus on satisfiable
theories, their mean number of prime implicates is 494 (std:
1595; median: 6550% confidence interval: 30-254; max:
20000). Table 9 summarizes cpu-time results (the last colum-
n is the number of unsolved instances and the maximal cpu

each of the four easiest circuits their normal behavior formu- We observe from this table that ZBDDs are always better
la (by introducingab; variables on each gate), and 10 faulty than tries on random instances. For instance, witts-
input-output vectors. The results are given in Table 7 (withtison |, the maximal number of clauses reached by each run
T. denoting the total time), only for the ZBDD-based imple- has a median of 4890 (mean; 5913, std: 423} int:
mentation. In a number of cases (whdrg-LUB is of rea-  2891-8022, max: 30147), but the maximal number of ZB-
sonable size)drcomp can also go through the first phase, DDs nodes has only a median of 3393 (mean: 3918, std:
but our current implementation fails to complete the secon@522,50% int: 2096-5236, max: 19231). This gives less than
phase, thus we don't report its results here. To generate thene node per clause on average, despite the fact that most
implicants with our ZBDD-based system, we use one of itsof the clauses are longer than 4. Even if such instances are
procedures that can negate a given formula. 3 of the 40 intunstructured”, at the beginning of the calculus, resolution
stances were too hard fdr,-BE, and 14 failed to compute (which we have seen really amounts to clause distribution)
the Ly -implicants. To our knowledge, this is the first time introduces many redundancies in formulae, which seem to be
such instances are tested with a direct consequence-findingell-captured by ZBDDs.
approach.

Table 8 presents results fonp-ab circuits for the much g  Conclusion
harder “compiled” approach to diagnosis, where we basicall
precomputeP,,, for all possible input-output vectors, by
computingPI. , . ..,- Clearly, in this case it pays off to use
the vocabulary-based procedures (as opposed to full PIs) fi
both tries and ZBDDs.

)(Ne presented an extensive experimental study of
consequence-finding, including results on many of its
@pplications, using two quite different implementations. By
combining the focusing power of kernel resolution with the
ZBDD representation and multiresolution, we have shown
the scalability of our approach and the relative independance
Finally, we consider random instances generated with th&f ItS Performances with respect to the size of the handled
B. The until now mainly theoretical applications of CF

fixed clause-length model. While conclusions drawn from S :
them do not say anything about the behavior of algorithm-can now be approached for problems of realistic size, and in
some cases of spectacular size.

s on structured and specially real-world instances, they pro
vide in our case a good tool for evaluating subsumption and 2AMD-Athlon 1GHz running Linux with a Dimacs machine s-

optimization techniques for resolution. It was observed incale of 990% cpu savings.

5.7 Random instances
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