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Abstract

We present an extensive experimental study of
consequence-finding algorithms based on kernel
resolution, using both a trie-based and a novel
ZBDD-based implementation, which uses Zero-
Suppressed Binary Decision Diagrams to concisely
store and process very large clause sets. Our study
considers both the full prime implicate task and ap-
plications of consequence-finding for restricted tar-
get languages in abduction, model-based and fault-
tree diagnosis, and polynomially-bounded knowl-
edge compilation. We show that the ZBDD imple-
mentation can push consequence-finding to a new
limit, solving problems which generate over1070

clauses.

1 Introduction
Many tasks in Artificial Intelligence can be posed as
consequence-finding tasks, i.e. as the problem of finding
certain consequences of a propositional knowledge base.
These include prime implicates, abduction, diagnosis, non-
monotonic reasoning, and knowledge compilation.[Mar-
quis, 1999] provides an excellent survey of the field and
its applications. Unfortunately, there have been very few
serious computational attempts to address these problems.
After some initial excitement with ATMSs[de Kleer, 1986]
and clause management systems[Reiter and de Kleer, 1987;
Kean and Tsiknis, 1993], it was soon realized that these sys-
tems would often run out of resources even on moderately
sized instances, and interest on the topic waned. Thus, for
example,[Marquis, 1999] says in concluding his survey:

“The proposed approaches [to consequence-
finding] are however of limited computational
scope (algorithms do not scale up well), and
there is only little hope that significantly better
algorithms could be designed”

In this paper, we conduct the first extensive experimen-
tal study of consequence-finding (CF), more specifically of
one of the approaches referred to in the above quote, namely
kernel resolution[del Val, 1999]. Kernel resolution allows
very efficient focusing of consequence-finding on a subset
of “interesting” clauses, similar to SOL resolution[Inoue,

1992]. We also introduce novel consequence-finding tech-
nology, namely, the use of ZBDDs (Zero-Suppressed Binary
Decision Diagrams[Minato, 1993]) to compactly encode and
process extremely large clause sets. As a result of this new
technology, the well-known Tison method[Tison, 1967] for
finding the prime implicates of a clausal theory, a special
case of kernel resolution, can now efficiently handle more
than1070 clauses. The combination of focused consequence-
finding with ZBDDs makes CF able to deal computation-
ally with significant instances of the applications discussed
above for the first time. In particular, our experiments include
both full CF (the prime implicate task), and applications of
consequence-finding for restricted target languages in abduc-
tion, model-based and fault-tree diagnosis, and polynomially-
bounded knowledge compilation.

We assume familiarity with the standard literature on
propositional reasoning and resolution. Some definitions are
as follows. A clauseC subsumes a clauseD iff C ⊆ D. The
empty clause is denoted2. For a theory (set of clauses)Σ,
we useµ(Σ) to denote the result of removing all subsumed
clauses fromΣ. An implicate ofΣ is a clauseC such that
Σ |= C; a prime implicate is an implicate not subsumed by
any other implicate. We denote byPI(Σ) the set of prime
implicates ofΣ. We are often interested only in some subset
of PI(Σ). For this purpose, we define the notion of a target
languageLT , which is simply a set of clauses. We assume
LT is closed under subsumption (c.u.s.), i.e. for anyC ∈ LT
andD ⊆ C, we haveD ∈ LT . A target language can al-
ways be closed under subsumption by adding all subsumers
of clauses in the language.

Given these definitions, the task we are interested in is find-
ing the primeLT -implicates ofΣ, defined asPILT (Σ) =
PI(Σ) ∩ LT . We will mainly consider the following target
languages:L is the full language, i.e. the set of all claus-
es over the setV ar(Σ) of variables ofΣ. L2 = {2} con-
tains only the empty clause. Given a set of variablesV , the
“vocabulary-based” languageLV is the set of clauses over
V . Finally, for a constantK, LK is the set of clauses over
V ar(Σ) whose length does not exceedK. Thus we haveL1,
L2, etc.

Each of these languages corresponds to some important AI
task. At one extreme, finding the prime implicates ofΣ is
simply findingPIL(Σ) = PI(Σ); at the other extreme, de-
ciding whetherΣ is satisfiable is identical to deciding whether



PIL2
(Σ) is empty. Vocabulary-based languages also have

many applications, in particular in abduction, diagnosis, and
non-monotonic reasoning (see e.g.[Inoue, 1992; Selman and
Levesque, 1996; Marquis, 1999] among many others). Final-
ly, LK or subsets thereof guarantee thatPILK (Σ) has poly-
nomial size, which is relevant to knowledge compilation (sur-
veyed in[Cadoli and Donini, 1997]).

Sometimes we will be interested in theories which are log-
ically equivalent toPILT (Σ), but which need not include all
LT -implicates, and can thus be much more concise. We refer
to any such theory as aLT -LUB of Σ, following [Selman and
Kautz, 1996], see also[del Val, 1995]. We’ll see one partic-
ular application ofLT -LUBs in our discussion of diagnosis
later.

2 Kernel resolution: Review
Kernel resolution, described in[del Val, 1999; 2000a],
is a consequence-finding generalization of ordered resolu-
tion. We assume a total order of the propositional variables
x1, . . . , xn. A kernel clauseC is a clause partitioned into
two parts, the skips(C), and the kernelk(C). Given any
target languageLT closed under subsumption, aLT -kernel
resolution deductionis any resolution deduction constructed
as follows: (a) for any input clauseC, we setk(C) = C and
s(C) = ∅; (b) resolutions are only permitted upon kernel lit-
erals; (c) the literall resolved upon partitions the literals of
the resolvent into those smaller (the skip), and those larger
(the kernel) thanl, according to the given ordering; and (d)
to achieve focusing, we require any resolventR to beLT -
acceptable, which means thats(R) ∈ LT .

In order to search the space of kernel resolution proofs, we
associate to each variablexi a bucketb[xi] of clauses con-
tainingxi. The clauses in each bucket are determined by an
indexing functionILT , so thatC ∈ b[xi] iff xi ∈ ILT (C). We
can always defineILT (C) = {kernel variables of the largest
prefix l1 . . . lk of C s.t. l1l2 . . . lk−1 ∈ LT }, whereC is as-
sumed sorted in ascending order[del Val, 1999]; resolving
on any other kernel literal would yield a non-LT -acceptable
resolvent.

Bucket elimination, abbreviatedLT -BE, is an exhaustive
search strategy for kernel resolution.LT -BE processes buck-
etsb[x1], . . . , b[xn] in order, computing in stepi all resolvents
that can be obtained by resolving clauses ofb[xi] uponxi,
and adding them to their corresponding buckets, usingILT .
We denote the set of clauses computed by the algorithm as
LT -BE(Σ). The algorithm, which uses standard subsumption
policies (so thatLT -BE(Σ) = µ(LT -BE(Σ))), is complete
for finding consequences of the input theory which belong to
the target languageLT , that is,LT -BE(Σ)∩LT = PILT (Σ).

As shown in[del Val, 1999], L-BE is identical to Tison’s
prime implicate algorithm[Tison, 1967], whereasL2-BE is
identical to directional resolution (DR), the name given by
[Dechter and Rish, 1994] to the original, resolution-based
Davis-Putnam satisfiability algorithm[Davis and Putnam,
1960]. L2-BE(Σ) is called thedirectional extensionof Σ,
and denotedDR(Σ).

ForLV we will in fact consider two BE procedures, both
of which assume thatthe variables ofV are last in the order-
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Figure 1: ZBDD and trie representation for the set of clauses
Σ = {a ∨ b ∨ ¬c,¬a ∨ b,¬a ∨ ¬c,¬b ∨ ¬c}.

ing. L1
V -BE is simplyLV -BE under this ordering assump-

tion. L0
V -BE is identical, except that processing is interrupt-

ed right before the first variable ofV is processed. Thus
L1
V -BE(Σ) ∩ LV = PILV (Σ), whereasL0

V -BE(Σ) ∩ LV is
logically equivalent but not necessarily identical toPILV (Σ);
i.e., it is aLV -LUB of Σ. Note that, in either case, the de-
sired set of clauses is stored in the last buckets. The ad-
vantage of this ordering is that either form ofLV -BE be-
have exactly as directional resolution, a relatively efficient
satisfiabilitymethod, up to the firstV -variable of the order-
ing. L0

V -BE stops right there (and is thus strictly cheaper
than deciding satisfiability with DR under such orderings),
while L1

V -BE continues, computing the prime implicates of
L0
V -BE(Σ) ∩ LV with full kernel resolution over theV -

buckets.

3 Zero–Suppressed BBDs: Review
[Bryant, 1992] provides an excellent survey and introduction
of Binary Decision Diagrams (BDD). A BDD is a direct-
ed acyclic graph with a unique source node, only two sinks
nodes (1 and0, interpreted respectively astrue andfalse)
and with labeled nodes∆(x, n1, n2). Such nodex has only
two children (n1 and n2, connected respectively to its 1-
arc and 0-arc) and is classically interpreted as the function
f = if x then f1 else f2 (if f1 andf2 interpret the BDDsn1

andn2).
The power of BDDs derives from their reduction rules. A

ROBDD (Reduced Ordered BDD, simply noted BDD in the
following) requires that its variables are sorted according to
a given order and that the graph does not contain any iso-
morphic subgraph (node-sharingrule). In addition, thenode-
eliminationrule deletes all nodes∆(x, n, n) that do not care
about their values. With the classical semantics, each node is
labeled by a variable and each path from the source node to
the 1-sink represents a model of the encoded formula. The
BDD can thus be viewed as an efficient representation of a
Shannon normal tree.

In order to use the compression power of BDDs for en-
coding sparse sets instead of just boolean functions,[Minato,
1993] introduced Zero-Suppressed BDDs (ZBDDs). Their
principle is to encode the boolean characteristic function of a



set. For this purpose, Minato changed thenode-elimination
rule into theZ-eliminationrule for which useless nodes are
those of the form∆(x, 0, n). So, if a variable does not ap-
pear on a path, then its default interpretation is nowfalse
(which meansabsent, instead ofdon’t care). If one wants
to encode only sets of clauses, each ZBDD variable needs to
be labeled by a literal of the initial formula, and each path
to the 1-sink now represents the clause which contains only
the litterals labeling the parents of all 1-arcs of this path.
Figure 1 represents the ZBDD encoding the set of clauses
Σ = {a ∨ b ∨ ¬c,¬a ∨ b,¬a ∨ ¬c,¬b ∨ ¬c}.

The “compressing” power of ZBDDs is illustrated by the
fact that there exist theories with an exponential number of
clauses that can be captured by ZBDDs of polynomial size.
Because their complexity only depends on the size of the ZB-
DD, not on the size of the encoded set, ZBDD operators can
be designed to efficiently handle sets of clauses of an expo-
nential size.

4 Kernel resolution on ZBDDs
In order to deal with this compact encoding in the contex-
t of kernel resolution, we need to define a way to efficient-
ly obtain resolvents, and to identify buckets. For the former
task,[Chatalic and Simon, 2000b; 2000c] introduced a very
efficientmultiresolution rulewhich works directly on sets of
clauses, and thus which can compute the result of eliminating
a variable without pairwise resolving clauses.

Definition (multiresolution) : Let ∆+ and∆− be two sets
of clauses without the variablexi. LetRi be the set of clauses
obtained by distributing the set∆+ over∆−. Multiresolution
is the following rule of inference:

(xi ∨
∧

∆+) ∧ (¬xi ∨
∧

∆−)⇒
∧
Ri.

A bucket b[xi] can always be expressed in the form re-
quired by this rule, so thatRi corresponds to the set of re-
solvents obtained by processingb[xi]. The main advantage
of this definition is that it can be shown that ifRi is com-
puted directly at the set level, without explicitly enumerating
clauses, its complexity can be independent of the number of
classical resolution steps.[Chatalic and Simon, 2000b] pro-
pose a system called ZRes which implements the multiresolu-
tion principle by means of ZBDDs. ZRes manipulates clause
sets directly, through their ZBDD representation, with no ex-
plicit representation of individual clauses. A bucket is easi-
ly retrieved from the ZBDD storing the current clause set in
the form of ZBDDs for appropriate∆+

i and ∆−i ; and it is
then processed using a specialized ZBDD operator,clause-
distribution, which implements multiresolution by distribut-
ing ∆+

i over∆−i to obtainRi. The system comes with other
ZBDDs operators designed for clause-set manipulation, such
assubsumption-free unionandset-difference. All these three
operators delete subsumed and tautologous clauses as soon
as possible, during the bottom-up construction of the result-
ing ZBDD.

To generalize these ideas for focused kernel resolution, we
need to deal with complex indexing functions. For this pur-
pose, we keep two ZBDDs, for dead and live clauses respec-
tively. A “dead” clause is one which can no longer be re-

solved according to theLT -restriction in place, given the vari-
ables that have been processed so far. For example, a clause
becomes dead forL2 (i.e. for DR) when just one of its vari-
ables is processed; and forLK when its firstK + 1 variables
are processed. Right before processing a variable, we obtain
“its bucket” from the live ZBDD. Processing the variable is
then done by multiresolution. Finally, when done with a vari-
able, new clauses become dead, and they are moved from the
live ZBDD to the dead ZBDD.

5 Experimental results
Our experimental tests, which include structured benchmark
gathering and generating as well as random instances testing,
represents more than 60 cpu-days on the reference machine1,
more than 10000 runs on structured examples and almost the
same on random instances. Only selected results are present-
ed here, for an obvious lack of space.

Times are reported in seconds. All experiments use a 1000
seconds timeout, and a dynamic min-diversity heuristic for
variable ordering. This heuristic chooses the variable for
which the product of its numbers of positive and negative oc-
currences is minimal, thus trying to minimize the number of
resolvents.

In addition to the ZBDD-based implementations, labeled
zres , we also consider algorithms based on the trie-data
structure[de Kleer, 1992], namely,picomp anddrcomp ,
for respectively prime implicates and directional resolution.
In contrast to the ZBDD programs, trie-based programs ex-
plicitly represent clauses and buckets, and use pairwise reso-
lution. The trie (illustrated in Figure 1) includes a number of
significant optimizations to minimize trie traversal, for effi-
cient subsumption.

It can be shown that ZBDDs are never worse than tries in s-
pace requirements, and can be much better. Intuitively, while
tries can only share common structure on the prefix of claus-
es, ZBDDs can do it on their prefix and postfix, i.e. they al-
low factoring clauses from both the beginning and the end. In
terms of time, as we will see, the situation is more complex.
Nevertheless, the ZBDD implementation is the one that really
pushes consequence-finding well beyond its current limits.

5.1 Prime implicates
Prime implicate computation remains one of the fundamen-
tal consequence finding tasks. We focus in this section
on our two very different Tison’s algorithm implementa-
tions, picomp and zres-tison . We use the follow-
ing benchmarks, among others:chandra-n [Chandra and
Markowsky, 1978] andmxky [Kean and Tsiknis, 1990] are
problems with known exponential behavior;adder-n (n-bit
adders),serial-adder (n-bit adders obtained by connect-
ing n full adders),bnp-n-p (tree-structured circuits with
n layers, wherep is a probability,[El Fattah and Dechter,
1995]) represent digital circuits;serial-diag-adder
andbnp-ab represent the same circuits in a form suitable
for diagnostic reasoning;pipes andpipes-syn are prob-
lems drawn from qualitative physics;type-k-n problems,

1On the Dimacs[Dimacs, 1992] machine scale benchmark, this
Pentium-II 400MHz has a time saving of 305%



Benchmark #PIs picomp zres-tison
adder-10 826457 171 1.07
adder-50 1.0e+25 – 172
adder-100 7.2e+48 – 381
chandra-21 2685 0.1 0.29
chandra-100 9.2e+15 – 12.23
chandra-400 2.8e+63 – 318

bnp-5-50-ts4-rr-2 1240 0.02 0.42
bnp-7-50-ts4-rr-1 5.7e+6 – 10.9
bnp-7-50-ts4-rr-2 3.0e+10 – 15.9

bnp-ab-5-50-ts4-rr-2 1641 0.04 0.80
bnp-ab-7-50-ts4-rr-2 7.2e+10 – 311

m6k6 823585 1.18 0.36
m9k8 1.0e+8 – 1.81

m30k25 1.9e+37 – 256
n-queens-5 3845 1.72 4.26
pigeons-5-5 7710 12.4 49.6
pigeons-6-5 17085 93.5 356

pipes-simple-08 71900 390 38.9
pipes-simple-12 321368 – 239

pipes-syn-10 30848 35.2 2.69
pipes-syn-40 4.3e+6 – 518

serial-adder-10-4 8.4e+7 – 4.33
serial-adder-30-4 6.4a+21 – 717

serial-diag-adder-10-4 1.7e+10 – 78.3
serial-diag2-8-0b 2.2e+8 – 11.7

type1-800 319600 16.4 219
type5-150 3.7e+71 – 330

Table 1: Prime implicates with picomp and zres-tison

due to[Mathieu, 1991], attempt to mimic “typical” structures
of expert system KBs, with eachk representing a particular
kind of structure.

The first observation that can be drawn from Table 1 is
the scalability ofzres-tison , which can handle a huge
number of clauses on some particular instances (e.g.1071

for type5-150 ). Thus it forces us to completely reconsid-
er Tison’s algorithm efficiency and limitations. In all these
examples,picomp simply cannot physically represent such
sets of clauses and, like all previous Tison’s implementation-
s, is no competition forzres-tison . Yet, on some in-
stances,picomp remains faster. This is due to small distri-
butions computation, involving less than a thousand clauses
(e.g. type-1-800 ) at each multiresolution step. On such
examples, traditional approaches with explicit representation
of clauses remain faster. Notice finally the relative indepen-
dence of the running time ofzres-tison w.r.t. the number
of PIs, in contrast topicomp . For zres-tison there are
easy examples with a huge number of PIs, and hard examples
with few PIs. The latter includen-queens and satisfiable
pigeon problems, which contrasts with the excellent results
for satisfiability of similar problems in[Chatalic and Simon,
2000c].

5.2 Polynomial size compilation
One of the major theoretical limits of knowledge compila-
tion (KC) is that it is very unlikely that a KC method can

k(3) k(4) k(5) k(6) z-tison
k(3) – 52 (1.19) 46 (1.45) 46 (1.45) 31 (3.70)
k(4) 31 (1.04) – 41 (1.18) 41 (1.18) 23 (2.75)
k(5) 37 (1.05) 35 (1.06) – 0 18 (2.21)
k(6) 37 (1.05) 35 (1.06) 0 – 18 (2.21)

z-tison 53 (2.88) 56 (2.83) 58 (2.88) 58 (2.88) –

Table 2: Compilation with zres-kbound and zres-tison

be defined that always produces tractable compiled theories
of polynomial size, unless we restrict the query language to
have polynomial size. That’s whatLK-BE does. To imple-
ment this withzres , clauses having more thank processed
variables are moved to the dead ZBDD. We test here only
the zres-kbound implementation with differentk on the
same benchmarks used on prime implicates. Summarizing so
many test runs on so many different benchmarks families is
not easy. We attempt to do so in Table 2, where a cell on
row i and columnj contains the percentage of benchmarks
quickly solved by the programi in comparison with program
j. For instance,zres-kbound (3) terminates more quickly
thanzres-tison in 31% of the cases, and the median val-
ue of the cpu gain is 3.70. Of course, such a table can’t take
into account the particularities of each benchmark family, but
it still can give some taste of how the different approaches
behave with respect to each other.

What is striking is that Tison remains the fastest procedure
in most cases, with a median cpu gain of around 285%. But,
we can see that, in 31% of the cases, kbound(3) perform much
better thanzres-tison . This phenomenon (also observed
with kbound(4-6)) means that whenzres-tison fails, k-
bound remains an available solution. Moreover, our results
suggest that kbound(5) and kbound(6) perform similarly, yet
the latter computes a much more interesting base.

5.3 Directional resolution

Directional resolution compiles a theory into an equivalent
one in which one can generate any model in linear time. We
test here our two DR implementations,drcomp andzres ,
on some specific benchmarks, with two heuristics for each
one. In Table 3 thepar-8-* , pret150-25 , ssa0432
files are taken from the Dimacs database, and #KB means
the size of the theory obtained by the programs. As this size
depends on the order of variable deletions, we only report it
for the first case, where the two programs give the same result.

As shown in Table 3, good heuristics have a major effect.
Using just input ordering often forces the size of the KB to
grow in such a way thatdrcomp can’t compete withzres .
ZBDDs pay off in all these cases, showing their ability to
represent very large KBs. The min-diversity heuristics seem-
s to invert the picture, mainly because the ordering helps to
keep the clause set to manageable size (tens of thousands of
clauses). The same applies to theories which are tractable
for directional resolution, such as circuit encodings[del Val,
2000b], for whichdrcomp takes no time.zres , in contrast,
seems to include a significant overhead on theories which do
not generate many clauses, despite its relatively good perfor-
mance reported in[Chatalic and Simon, 2000b]. On the other



Input Order Min Diversity
Bench. #KB zres drcomp zres drcomp

adder-400 7192 482 1.36 310 1.23
chandra-400 1.3e+36 132 – 28.2 0.02

m8k7 2396801 1.19 24.05 0.50 0.01
m30k25 8.76e+37 292 – 79.1 0.05
par8-2-c 15001 332 – 1.24 0.04
par8-2 350 – 476.82 30.31 0.10

pret150-25 1.75e+15 8.69 – 4.83 20.8
ssa0432-003 2.01e+9 407 – 45.2 0.01
type1-850 849 99.9 0.08 91.5 0.11

Table 3: Directional resolution algorithm

hand, ZBDDs scale much better when dealing with very large
KBs.

5.4 Abduction

Given a theoryΣ and a setA of variables (called assump-
tions, hypothesis or abducibles), anabductive explanationof
a clauseC wrt. Σ is a conjunctionL of literals overA such
thatΣ ∪ L is consistent and entailsC (or a subsumed clause
of C). L is a minimal explanation iff no subset of it is also an
explanation.

On theadder-n , mult-n (adder and multiplier whose
result is smaller than n), and on thebnp circuits introduced
in section 5.1, we are given a circuitΣ with a set of input
variablesI and output variablesO. We want to explain some
observation (an instantiation of someO variables) with only
variables fromI (thus forgetting all internal variables). This
problem can be addressed throughLV -BE with V = I ∪ O.
In this case, the trie-based implementation failed in all bench-
marks (exceptadder-5 ), so we only report results for the
ZBDD-based implementation, in Table 4. We also tried our
algorithms on the ISCAS circuits benchmark family, without
success. To interpret these results appropriately, one should
note that obtainingPILV means precomputing answers for
all abduction problems forΣ, as explanations can be direct-
ly read off fromPILV (Σ). Kernel resolution also provides
methods for answering only specific abduction problems (as
opposed to all), but we have not tested them; for some test-
s with a similar flavor, check the diagnosis experiments on
ISCAS benchmarks, section 5.6.

Note that, surprisingly, all adder examples are treated much
more efficiently byzres-tison (table 1) than byL1

V -BE.
A similar phenomenon was already pointed out in[Chatalic
and Simon, 2000a], where, on some examples, computing DR
on a subset of variables was proved harder than on the whole
set of variables (L0

V -BE harder thanL0
A-BE, whereV ⊆ A).

But, here, in addition, the induced hardness overcomes the
simplification due to the use of DR instead of Tison, which is
clearly counter-intuitive. This is not the case for themult-n
nor for thebnp-10-50 instances, on whichpicomp and
zres-tison failed.

Table 5 presents some easier examples, thepath-kr
problems from[Prendingeret al., 2000] (abbreviatedp-kr ),
which can be solved by bothdrcomp and picomp . For
comparison with their results, note that we, unlike them, are

L0
V L1

V
Bench. Time #LV -LUB Time #PILV
adder-5 0.18 448 0.3 1396
adder-10 0.78 18184 3.6 354172
adder-20 3.51 1.88e+7 36.51 2.09e+10
adder-25 5.88 6.03e+8 – –
adder-100 423.51 2.28e+32 – –
mult-16 0.66 275 4.47 1918
mult-64 16.86 3466 – –
mult-128 2.25 1307 585.99 39398

bnp-7-50-1 6.12 193605 6.39 193605
bnp-7-50-3 5.97 24435 6.33 24435
bnp-10-50-3 805.53 2.30e+14 – –
bnp-10-50-4 671.61 1.76e+19 – –

Table 4: Abduction on circuits: ZBDD-basedLV -BE.

Bench. #KB zres drcomp #PIs zres-tis. picomp
p-2r 28 0.24 0.03 80 0.30 0.03
p-6r 7596 31.3 0.33 1332 48.5 0.36
p-10r 99100 374 18.7 122000 360 22.9

Table 5: Abduction on path problems

solving all abduction problems for the given instance in one
go.

5.5 Fault-Tree Diagnosis
The set of Aralia[Rauzy, 1996] benchmarks arise from fault
tree diagnosis, in which one wants to characterize the set of
elementary failures (coded by thefi predicates) that entail
the failure of the whole system (theroot predicate). It thus
amounts to computing the set ofLV -implicantsof the root,
whereV is the set offi. We use the well-known duality cn-
f/dnf and implicants/implicates to express those problems as
LV -implicatesproblems.

Usually, these benchmarks are efficiently solved usingtra-
ditional BDDs approaches (i.e. rewritting the initial formu-
la under Shannon Normal Form). In[Rauzy, 1996], internal
variables (defined as an equivalency with a subformula), are
not even encoded in the BDD: they are directly identified with
the BDD encoding the subformula. In our approach, such in-
ternal variable are explicitly present in the cnf of the formula.
The work ofzres amounts to preciselydeleteall of them,
thus obtaining a formula build onfi (and theroot) predicates.
In table 6, we show that kernel resolution, with multiresolu-
tion, can efficiently handle those problems without needing
to rewrite the formula under Shannon Normal Form. To our
knowledge, this is the first time that such direct CF approach
successes.

5.6 Model-based diagnosis
In diagnosis[de Kleeret al., 1992], we are given a theoryΣ
describing the normal behavior of a set of components; for
each component, there is an “abnormality” predicateabi. Let
V = AB be the set ofabi’s. Given a set of observationsO,
the diagnosis are given by the primeLV -implicants(noted
PALV ) of PILV (Σ ∪O). As we can obtain these implicants



Benchmark zres #PILV
baobab2 1.9 1259
baobab3 16.32 24386
das9205 0.61 17280
das9209 11.98 8.2e+10
edf9205 15.4 21308
edf9206 669.3 7.15e+9
isp9602 17.05 5.2e+7
isp9605 1.67 1454

Table 6: Aralia abduction benchmarks

Bench. T. L0
V -BE #LV -LUB T. PALV #PALV

c432-d-03 99.16 1648704 315.13 1243
c432-d-06 462.16 3549876 – –
c432-d-09 140.60 18084 180.67 6651166
c499-d-03 42.14 102 470.12 7347194
c499-d-04 43.39 227 – –
c499-d-09 68.51 1065 198.74 3.2e+7
c880-d-03 98.16 174 103.13 13349
c880-d-08 98.96 87 99.65 698
c880-d-05 153.35 1 153.47 23
c1355-d-01 268.48 965 – –
c1355-d-02 233.46 182 – –
c1355-d-10 224.89 11 225.57 49856

Table 7: Model-based diagnosis for ISCAS benchmarks

from any equivalentLV -LUB of Σ, eitherL1
V -BE orL0

V -BE
can yield the diagnosis, so we use the cheaperL0

V -BE.
We first consider ISCAS benchmarks. We generated for

each of the four easiest circuits their normal behavior formu-
la (by introducingabi variables on each gate), and 10 faulty
input-output vectors. The results are given in Table 7 (with
T. denoting the total time), only for the ZBDD-based imple-
mentation. In a number of cases (whereLV -LUB is of rea-
sonable size),drcomp can also go through the first phase,
but our current implementation fails to complete the second
phase, thus we don’t report its results here. To generate the
implicants with our ZBDD-based system, we use one of its
procedures that can negate a given formula. 3 of the 40 in-
stances were too hard forL0

V -BE, and 14 failed to compute
theLV -implicants. To our knowledge, this is the first time
such instances are tested with a direct consequence-finding
approach.

Table 8 presents results forbnp-ab circuits for the much
harder “compiled” approach to diagnosis, where we basically
precomputePILV for all possible input-output vectors, by
computingPILAB∪O∪I . Clearly, in this case it pays off to use
the vocabulary-based procedures (as opposed to full PIs) for
both tries and ZBDDs.

5.7 Random instances
Finally, we consider random instances generated with the
fixed clause-length model. While conclusions drawn from
them do not say anything about the behavior of algorithm-
s on structured and specially real-world instances, they pro-
vide in our case a good tool for evaluating subsumption and
optimization techniques for resolution. It was observed in

Bench. #KB zres drcomp #PIs zres-tis. picomp
bnp-5-1 200 0.54 0.03 6441 0.90 0.24
bnp-5-3 35 0.48 0.03 724 1.02 0.03
bnp-7-1 78109 19.26 21.6 1.3e+8 30.4 –
bnp-7-2 31166 8.55 52.1 1.7e+11 33.9 –
bnp-7-4 110829 13.89 – 8.2e+8 32.8 –

Table 8: “Compiled” diagnosis on tree-structured circuits

Program Mean Med. Std 50% int. #Uns.(MT)
zres-tison 8.15 3.43 14.03 1.32-8.95 0 (232)
picomp 32.79 9.79 64.61 2.72-27.78 42

zres-kbound 3 3.78 2.67 3.61 1.57-4.71 0 (34.3)
zres-kbound 4 7.48 3.93 10.28 1.83-8.66 0 (152)
zres-kbound 5 8.86 3.97 14.52 1.81-9.61 0 (218)

Table 9: Consequence Finding in Random Formulae

[Dechter and Rish, 1994; Chatalic and Simon, 2000a] that
such instances are very hard for DR, and[Schrag and Craw-
ford, 1996] observed even worse behavior for consequence-
finding for instances generated near the SAT phase transition
threshold. Using a more powerful computer than in the pre-
vious benchmarks2, we comparepicomp , zres-tison ,
andzres-kbound on 1000 formulae at the ratio 4 (30 vari-
ables, 120 clauses,80% satisfiable). If we focus on satisfiable
theories, their mean number of prime implicates is 494 (std:
1595; median: 65;50% confidence interval: 30-254; max:
20000). Table 9 summarizes cpu-time results (the last colum-
n is the number of unsolved instances and the maximal cpu
time needed if all instances have been solved).

We observe from this table that ZBDDs are always better
than tries on random instances. For instance, withzres-
tison , the maximal number of clauses reached by each run
has a median of 4890 (mean; 5913, std: 4239,50% int:
2891-8022, max: 30147), but the maximal number of ZB-
DDs nodes has only a median of 3393 (mean: 3918, std:
2522,50% int: 2096-5236, max: 19231). This gives less than
one node per clause on average, despite the fact that most
of the clauses are longer than 4. Even if such instances are
“unstructured”, at the beginning of the calculus, resolution
(which we have seen really amounts to clause distribution)
introduces many redundancies in formulae, which seem to be
well-captured by ZBDDs.

6 Conclusion
We presented an extensive experimental study of
consequence-finding, including results on many of its
applications, using two quite different implementations. By
combining the focusing power of kernel resolution with the
ZBDD representation and multiresolution, we have shown
the scalability of our approach and the relative independance
of its performances with respect to the size of the handled
KB. The until now mainly theoretical applications of CF
can now be approached for problems of realistic size, and in
some cases of spectacular size.

2AMD-Athlon 1GHz running Linux with a Dimacs machine s-
cale of 990% cpu savings.
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