
SatEx: Towards an Exhaustive and Up-to-Date SAT Experimentation

Laurent Simon
Laboratoire de Recherche en Informatique,
U.M.R. CNRS 8623, Université Paris-Sud,

91405 Orsay Cedex, France
phone: +33 (0)1 69 15 64 95, fax: +33 (0)1 69 15 85 86,

e-mail: simon@lri.fr, web: www.lri.fr/˜simon

Abstract

The SatEx web site is devoted to experimenta-
tion around SAT. It is not only a front-end to a
database gathering an exhaustive number of exe-
cutions, but it also allows dynamic result synthe-
sis as well as a detailed exploitation of all ex-
perimentations. Being dynamically generated and
constantly evolving, this site can be considered
as an always up-to-date SAT experimentationpa-
per. At this time, the first realease of the Sa-
tEx (http://www.lri.fr/˜simon/satex/satex.php3) is
already used by the SAT community, with more
than 15000 hits in a few months. The new release
will present the results of more than 450 cpu-days
on a recent machine and will incorporate some ma-
jor improvements.

1 Introduction
Experimentation takes an increasing place in AI and espe-
cially in the particular area of SAT, where it is widely used
to compare algorithms and implementations. Nine years a-
go, the Dimacs competition, bringing together a number of
different solvers and benchmarks, has provided a strong and
lasting interest in SAT algorithms. This kind of competition,
with an increasing number of real life problems encoded using
the poor-but-efficient SAT formalism, has driven authors to
constantly improve their algorithms. Since this fruitful meet-
ing, the number of benchmarks and solvers is growing up[12]
in such a way that, if the first Dimacs competition took only
some days to complete, this wouldn’t be the case today any-
more. For instance, if one wants to gather all benchmarks and
solvers in order to run each combination of them, then such
a competition would take more than one year today, even on
a very recent computer. Thus, achieving a satisfying exper-
imental analysis is not easy and is very cpu-time consum-
ing. One common solution is to compare only a few num-
ber of programs on a limited number of benchmarks. But, in
this case, the experimentation process is biased by the human
point of view on program performances.

The main ideas of our web site are the following: first,
we want to propose a new experimentation framework, in
which anybody could systematically check every parameters
and results of each execution in order to easily recreate the

same experimentation conditions as those presented in paper-
s. Who has never failed reproducing results reported in a pa-
per? Secondly, we want to share the cpu-time consumption
of this work by allowing one to explore by himself our own
base of results without running again the same couple of pro-
gram/benchmark. We provide all experimentations in exactly
the same format that one would have obtained by himself.
Anybody can thus compare his program in a more satisfying
and complete way with a minimum effort: just add it to the
database.

2 A Quick SatEx Guided Tour
At the submission date, the SatEx release1.0 is already on-
line and fully operational. Based on our experience of this
version, we propose to add some new functionalities. This
new release (2.0) represents more than 450 cpu-days1 of ex-
perimentations, in more than 30000 executions traces, in a
200 Mb database. The cut-off time given for an execution is
10000 s. The SAT provers used are:

• DLL [15] ones: asat and csat [9], eqsatz [13],
nsat and sat-grasp , [16], posit [10], relsat
[1], sato andsato-3.2.1 [18], satz andsatz-
213 [14];

• DP [6] ones:calcres [2], dr [7] andzres [4; 3];

• Randomized-DLL ones:ntab (with ntab-back and
ntab-back2 ) [5], andrelsat-200 [1];

• Other approaches:heerhugo [11] andmodoc [17].

The database currently contains 1488 benchmarks grouped
in the following families: aim , ais , barrel , beijing ,
bf , blockworld , dubois , f , fvp , g, hole, ii , jnh ,
joao , longmult , massacci , pader-easy , pader-
hard , parity , pret , quasigroup , queueinvar ,
satplan , ssa , sw100-8-0 , sw100-8-1 , ucsc-bf and
ucsc-ssa
Among the new (and old) functionalities available in the Sa-
tEx 2.0 release, the most important are:

• Given a subset of programs and a subset of families of
benchmarks, one can generate its automatic synthesis.

1On the Dimacs[8] machine scale benchmark, our Pentium-II
400MHz under Linux, taken as a reference in the current SatEx re-
lease, has a user time saving of 305%.

1



• View this synthesis with different format (Sum of cpu-
time, Mean (with standard deviation), Median, 50% In-
terval of cpu time).

• View the exact command line parameter used and the
output produced by the program for every launch.

• View a detailed summary of all executions of a program
on a family of benchmarks.

• Sort algorithms depending on their performances on
each families of benchmarks: sum, mean, median.

• Find automatically some kind of bugs (wrong or incon-
sistent program answer).

• View/Add comments on results (attached on a program
and/or a family of benchmarks).

• Extract automatically up-to-datechallenging bench-
marks (e.g.benchmark not solved yet by any program).

From a technical point of view, the internal architecture of
the SatEx consists of three databases. One focusing on the
web-presentation of results, answering user queries. The sec-
ond is an off-line copy of the first, used for checking new
updates before releases. The last database is the working one,
isolated from the web for security purposes, and used for job
submission, benchmarks and program additions. The main
upgrade of the SatEx regards this last database, in order to
allow different machines to request jobs. For this, a special
job server that dispatches jobs over a network of 20 biproces-
sor Linux workstation has been designed. This upgrade was
needed in order to face the incredible cpu-ressource needed
to maintain SatEx. It also allows randomized algorithm to
be added, where thousands of runs are needed for only one
benchmark. If the current release2.0 only contains results
from the same computer, this upgrade will also allow to main-
tain the database up-to-date with the constantly evolving com-
puter performances: we can launch again all failed execution-
s on more recent machines with the same cut-off parameter,
and automatically upgrade the results of the whole database
by scaling them up to some new reference machine. On this
topic, we are currently working on how to scale-up different
machines in a satisfying way.

3 Conclusion
For now, only complete algorithms are well considered in the
SatEx. Taking randomization and uncomplete algorithm in-
to account is one of the big improvements of the site, even
if this had already been considered during the database archi-
tecture design. We also plan to add other functionalities, such
as allowing job submission through the web, by submitting
benchmarks and/or programs, and allowing an easy download
of results for an easier (and local) consult.

We think that, for incrementality, homogeneity, transparen-
cy, programs/benchmarks distribution and programs behavior
study (which is the basis of experimentation in other areas), a
project like the SatEx is necessary. Moreover, we think that
a project like our site should be used in other AI fields than
SAT. Experimentation in AI could use some general frame-
work, based on a double publication. One using “regular”
paper, and the other one using the web. The web technology

allow us to publish all the details of all executions that are pre-
sented in any paper reporting an experimental analysis. Such
a framework will at least guarantee fair and unbiased results
to be published.

References
[1] R.J. Bayardo and R. Schrag. Using csp look-back tech-

niques to solve real-world sat instances. In14th Nation-
al Conference on AI, pages 203–208, 1997.

[2] Ph. Chatalic and L. Simon. Davis and putnam 40 years
later: a first experimentation. Technical Report 1237,
LRI, Orsay, France, 2000.

[3] Ph. Chatalic and L. Simon. Multi-resolution on com-
pressed sets of clauses. In12th ICTAI, pages 2–10, 2000.

[4] Ph. Chatalic and L. Simon. Zres: the old dp meets zbdds.
In Proceedings of the 17th CADE, pages 449–454, 2000.

[5] J.M. Crawford and L.D. Auton. Experimental results on
the crossover point in random 3sat.AI, 81, 1996.

[6] M. Davis and H. Putnam. A computing procedure for
quantification theory.JACM, pages 201–215, 1960.

[7] R. Dechter and I. Rish. Resolution versus search: T-
wo strategies for sat.Journal of Automated Reasoning,
24(1/2):225–275, February 2000.

[8] The DIMACS challenge benchmarks. from the site ft-
p://ftp.rutgers.dimacs.edu/challenges/sat.

[9] O. Dubois, P. Andŕe, Y. Boufkhad, and J. Carlier. Sat
versus unsat. InDimacs challenge on SAT, 1993.

[10] Jon William Freeman.Improvements to propositional
satisfiability search algorithms. PhD thesis, University
of Pennsylvania, 1995.

[11] Jan Friso Groote and Joost P. Warners. The proposi-
tional formula checker heerhugo.Journal of Automated
Reasoning, 24(1/2):101–125.

[12] Holger H. Hoos and Thomas Sttzle.SAT’2000, SATLIB:
An Online Resource for Research on SAT, pages 283–
292. IOS Press, 2000. (web site: http://www.satlib.org).

[13] Chu Min LI. Integrating equivalency reasoning into
davis-putnam procedure. Inthe proceedings of AAAI-
2000, pages 291–296, 2000.

[14] C.M. Li and Anbulagan. Heuristics based on unit prop-
agation for satisfiability problems. InProceedings of
IJCAI’97, pages 366–371, 1997.

[15] G. Logeman M. Davis and D. Loveland. A machine
program for theorem-proving.CACM, pages 394–397,
1962.

[16] Joo P. Marques-Silva and Karem A. Sakallah. Grasp:
A search algorithm for propositional satisfiability.IEEE
Transactions on Computers, 48(5):506–521, 1999.

[17] Allen VanGelder and Fumiaki Kamiya. The partial reha-
bilitation of propositional resolution. Technical Report
UCSC-CRL-96-04, 1996.

[18] Hantao Zhang. SATO: An efficient propositional prover.
In CADE-14, LNCS 1249, pages 272–275, 1997.

2


