
The VLDB Journal manuscript No.
(will be inserted by the editor)

Serge Abiteboul · Omar Benjelloun · Tova Milo

The Active XML project: an overview

the date of receipt and acceptance should be inserted later

Abstract This paper provides an overview of the Ac-
tive XML project developed at INRIA over the past five
years. Active XML (AXML, for short), is a declarative
framework that harnesses Web services for distributed
data management, and is put to work in a peer-to-peer
architecture.

The model is based on AXML documents, which are
XML documents that may contain embedded calls to
Web services, and on AXML services, which are Web
services capable of exchanging AXML documents. An
AXML peer is a repository of AXML documents that
acts both as a client by invoking the embedded service
calls, and as a server by providing AXML services, which
are generally defined as queries or updates over the per-
sistent AXML documents.

The approach gracefully combines stored information
with data defined in an intensional manner as well as
dynamic information. This simple, rather classical idea
leads to a number of technically challenging problems,
both theoretical and practical.

In this paper, we describe and motivate the AXML
model and language, overview the research results ob-
tained in the course of the project, and show how all the
pieces come together in our implementation.

Keywords Data exchange, Intensional information,
Web services, XML

The first and third authors were partially funded by the Eu-
ropean Project Edos.

S. Abiteboul
INRIA-Futurs & LRI
serge.abiteboul@inria.fr

O. Benjelloun
Stanford University
benjello@db.stanford.edu

T. Milo
Tel-Aviv University
milo@cs.tau.ac.il

1 Introduction

Since the 60’s, the database community has developed
the necessary science and technology to manage data
in central repositories. From the early days, many ef-
forts have been devoted to extending these techniques to
the management of distributed data as well, and in par-
ticular to its integration, e.g., [42,78,71]. However, the
Web revolution is setting up new standards, primarily
because of (i) the high heterogeneity and autonomy of
data sources, and (ii) the scale of the Web. The goal of
this work is to propose a new framework for distributed
data management, which addresses these concerns, and
is therefore suitable for data management on the Web.

XML and Web services Our approach is based on XML
and Web services. XML [82] is a data model and rep-
resentation format for semi-structured data [9], which
raised a considerable interest among the data manage-
ment community as a standard for data exchange be-
tween remote applications, notably over the Web. Most
importantly for data management, XML comes equipped
with high level query languages such as XQuery [84], and
flexible schema languages such as XML Schema [83]. The
publication of XML data and the access to it are fa-
cilitated by Web services, which are network-accessible
programs taking XML parameters and returning XML
results. The WSDL [79] and SOAP [69] standards en-
able describing and calling these remote programs seam-
lessly over the Internet. In our approach, XML and Web
services are effectively leveraged for complex data man-
agement tasks.

Peer-to-peer architecture Centralized architectures for
data integration somehow contradict the essence of the
Web, which is based on a loose-coupling of autonomous
systems. Furthermore, centralized architectures hardly
scale up to the large size of the Web. Peer-to-peer archi-
tectures propose a credible alternative, and are already
spreading, notably in the context of file-sharing (e.g., see

2 Serge Abiteboul et al.

[52,40,21]). Peer-to-peer architectures capture the au-
tonomous nature of the participating systems, and their
ability to act both as producers of information (i.e., as
servers) and as consumers of information produced by
others (i.e., as clients). In our approach, a peer-to-peer
architecture forms the basis for scalable distributed data
management.

We present Active XML (AXML in short) [15], a lan-
guage that leverages Web services for distributed data
management and is put to work in a peer-to-peer ar-
chitecture. AXML documents are XML documents with
embedded calls to Web services. Such documents are en-
riched by the results of invocations of the service calls
they contain. Since service invocations rely exclusively on
Web services standards, AXML documents are portable
and can be exchanged. The AXML model also defines
AXML services, which are Web services that exchange
AXML documents. The ability of participating systems
to exchange AXML documents leads to powerful data-
oriented schemes for distributed computation, where sev-
eral systems dynamically collaborate to perform a spe-
cific data management task, possibly discovering new rel-
evant data sources at run-time.

One should note that data with embedded calls to
operations is not a new idea, and has even already been
considered in the context of XML and Web services. For
instance, in Microsoft Office XP, SmartTags within Of-
fice documents can be linked to Microsoft’s .NET plat-
form for Web services [66]. However, to our knowledge,
AXML is the first proposal that actually turns calls to
Web services embedded in XML documents into a power-
ful tool for distributed data management. By seamlessly
combining extensional data (expressed in XML) and in-
tensional data (the service calls, which provide means to
get data) our approach notably captures different styles
of data integration, such as warehousing and mediation,
and allows for flexible combinations of both.

We give here a comprehensive presentation of a many-
year project, which developed and used Active XML as
its foundation. We thoroughly discuss motivations for
AXML. Although such motivations appeared in shorter
forms in previous papers, they evolved greatly with our
understanding of the issues. So, we thought it was useful
to include them here in detail. We also present the key
technical issues raised by the management of AXML doc-
uments and services. While previous papers (e.g., [57,5,
14]) addressed these issues, none of them explained how
the various pieces fit together to form the big picture of
data management using AXML. The presentation will
not be detailed and the reader is referred to previous pa-
pers for detailed descriptions of particular aspects. We
also discuss a variety of applications that we developed
using AXML, and lessons we learned from them.

A first contribution of the paper is therefore a com-
prehensive presentation of Active XML, the language
and the general project, insisting on motivations. To a

certain extent, the aforementioned material is not new.
However, only facets of it were previously presented in
conference articles. We believe that it is important to
now present the general picture.

AXML documents and services fit nicely in a peer-to-
peer architecture, where each system is a persistent store
of AXML documents, and may act both as a client, by
invoking the service calls embedded in its AXML docu-
ments, and as a server, by providing services over these
documents. Building on this paradigm, we implemented
a system (called the AXML peer) that is devoted to the
management of AXML documents and services. The sec-
ond contribution of the paper is a detailed presentation
of the AXML Peer system, both in terms of its func-
tionality and its implementation. We cover extensions
to the system. In particular, we mention bridges to a
workflow system (namely BPEL4WS) and P2P proto-
cols (namely JXTA) that considerably extend the prac-
ticality of AXML. We also discuss some AXML peers
with persistent storage (provided by the eXist [37] and
Xyleme [86] systems), that we developed to support the
management of large volumes of AXML documents.

The paper is organized as follows. The AXML model
is presented and motivated in Section 2, where tech-
niques for schema-based exchange control and lazy query
evaluation are also overviewed. The functionality of the
AXML peer, both as a client and a server is the topic
of Section 3. The implementation of the AXML peer is
discussed in Section 4. Our experience with the AXML
peer in terms of building applications, and the lessons
we learned are presented in Section 5. Systems of AXML
peers are considered in Section 6. After a study of related
work in Section 7, we conclude in a last section.

2 The Active XML model

In this section, we introduce the fundamental compo-
nents of the Active XML language, namely AXML doc-
uments and AXML services. We illustrate them through
examples, and give motivations for this new model. We
overview at the end of this section two important is-
sues raised by the AXML model, namely AXML data
exchange and the optimization of queries over AXML
documents.

2.1 Active XML documents

Active XML documents are based on the simple idea
of embedding calls to Web services inside XML docu-
ments. More precisely, we define an XML syntax to de-
note service calls, and allow elements conforming to this
syntax to appear anywhere in a document. Intuitively,
these calls represent some (XML) information that is
not given extensionally, but intensionally , by providing
means to get the corresponding data. Service calls can

The Active XML project: an overview 3

be materialized , which means that the associated Web
service is invoked (using the SOAP protocol), and the
results it returns enrich the document, at the location of
the service call.

Figure 1 is a simple AXML document, which repre-
sents a local newspaper homepage. The document con-
sists of (i) some extensional information: the name of
the newspaper and the current date, and a news story
about Google (given in text with some HTML mark-up
as mixed content), and (ii) some intensional information:
a service call to get the weather forecast, and another one
to get a list of current exhibits from a local guide.

<?xml version="1.0" encoding="UTF-8" ?>
<newspaper xmlns="http://lemonde.fr"

xmlns:rss="http://purl.org/rss"
xmlns:axml="http://activexml.net">

<title>Le Monde</title>
<date>2-Apr-2003</date>
<edition>Paris</edition>

<weather>
% service call
< axml:call service=”forecast@weather.com” >
<city>Paris</city>
<unit>Celsius</unit>

< /axml:call>
</weather>

<exhibits>
% service call
< axml:call service=”getEvents@TimeOut.com”>
exhibits

< /axml:call>
</exhibits>

<stories>
<rss:item id="cx_ah_0_218">
<rss:title>Google goes Blog-Crazy</rss:title>
<rss:pubDate>
Feb 18, 2003 10:36:03 GMT

</rss:pubDate>
<rss:description>
Google just acquired Pyra labs,
the company that makes Blogger.

</rss:description>
</rss:item>
...

</stories>
</newspaper>

Fig. 1 An Active XML document

An AXML document is a syntactically valid XML
document, where service calls are denoted by XML el-
ements labeled call. Service calls, represented in bold
face, use the namespace http://activexml.net to un-
ambiguously differentiate them from the rest of the data.
We generally associate the prefix axml with this names-
pace. For each service call, the Web service that needs
to be called is identified by the service attribute of the
axml:call element. For instance, the service
getEvents@TimeOut.com means that we want to invoke

the service getEvents provided by TimeOut.com. For the
sake of clarity, the service attribute syntax that is used
in the paper, is actually a simplification of the full syn-
tax, which accounts for all the information needed to
invoke Web services using the SOAP protocol.

The subtrees below service calls form the parameters
of the calls. The call to forecast@weather.com, for in-
stance, uses the name of the city Paris and the Celcius
unit as parameters. In general, parameters can be arbi-
trary XML data, and we will see further on that they
may even contain service calls themselves.

To illustrate the meaning of service calls, we can make
an analogy with HTML documents. Just like hyper-links
use a special mark-up in HTML (), which
browsers are able to interpret, AXML service calls use
a special mark-up that provides enough information for
the AXML system to invoke the corresponding Web ser-
vices. It is important to note that calls to any Web ser-
vice can be inserted in AXML documents, thus taking
advantage of the wealth of already existing services (such
as those provided by Google, Amazon, e-bay, etc.), and
leveraging them as useful data sources. Moreover, it is of-
ten straightforward to wrap an existing data source as a
Web service, thereby making it interoperable with other
systems.

Materialization A service call embedded in an AXML
document can be activated, by invoking the correspond-
ing Web service, and the result of this invocation is used
to enrich the document. This process is termed mate-
rialization. Technically, the service invocation is done
using the SOAP protocol, based on the attributes of
the call element. The sent SOAP message also contains
the values of the parameters (i.e., the children of the
call element). The service answers this request with a
SOAP message, which contains the result of the invo-
cation, or an error message. If no error occurred, the
result is inserted in the document, in place of the ser-
vice call element. Figure 2 shows the modified part of our
sample document after the materialization of the call to
forecast@weather.com.

...
<weather>
<temp>16</temp>

</weather>
...

Fig. 2 After invoking forecast@weather.com

We will see in Section 3 that other strategies of ma-
terialization are possible:

– The call element does not have to be replaced by
the result of the invocation. In particular, it can be
kept for future reuse, such as a data refresh.

4 Serge Abiteboul et al.

– Invocations can be viewed as calls to remote proce-
dures. However, an invocation can also be a subscrip-
tion to some service. In such a case, a single invoca-
tion typically results in a stream of answers.

But for now, we assume that materialization simply
consists in replacing a piece of intensional information
(the service call), by its corresponding extent (the result
of the invocation of the referenced Web service).

Tree representation Just like XML documents, AXML
documents can be viewed as trees. AXML trees have
two types of nodes: data nodes and function nodes. Data
nodes correspond to the standard nodes in XML data,
whereas function nodes correspond to service calls. Ma-
terialization corresponds to replacing a function node by
the result of the corresponding service invocation. Fig-
ure 3 gives the tree representation of our example AXML
document, before and after the invocation of GetTemp.

Fig. 3 An AXML document before/after a materialization.

Motivations for AXML documents

We now give motivations for representing information
as AXML documents. It is important to observe that
since the calls embedded in AXML documents refer to
Web services, the corresponding extensional information
can be retrieved by virtually any system. Thanks to this
portability, a user that receives some intensional infor-
mation is given the means to obtain the corresponding
extensional information autonomously, if and when she
decides to. This is best illustrated by the following quo-
tation attributed to an ancient Chinese philosopher (and
sometimes to Maimonides):

Give a man a fish and you feed him for a day.
Teach a man to fish and you feed him for a life-
time.

More concretely, AXML documents provide the fol-
lowing advantages:

Dynamicity Data may change with time. For instance, in
our newspaper example, the temperature in Paris is up-
dated daily, and the news headlines possibly every hour.
We can call several times the same service and obtain
different answers (e.g., because the corresponding data
changed), so the same document at different times will

have different semantics, thus reflecting world changes.
An important related question is when to activate each
service call. We describe means to control service call
activations in Section 3.

Knowledge Intensional information conveys more knowl-
edge than extensional information. The receiver becomes
independent and can obtain the information directly. She
may then be able to generalize the use of the service. For
instance, a user (or system) may learn from using the
GetTemp service how to obtain directly the temperature
in any city in France.

We implicitly considered, in the previous examples,
that systems/users could not only represent information
locally as AXML documents, but that they could also re-
ceive such information from other systems. Indeed, the
fact that systems can exchange intensional information
is a central aspect of our approach. And since Web ser-
vices are the natural way for systems to communicate in
Active XML, we use them as the main vehicle for the
exchange of intensional information. We next introduce
AXML services, which are Web services that are able to
exchange AXML documents.

2.2 Active XML services

As mentioned earlier, AXML documents are portable (a)
because they are syntactically valid XML documents,
and (b) because the service calls they contain can be
materialized simply by following the SOAP and WSDL
specifications. A natural consequence of this portabil-
ity is that AXML document may be exchanged between
systems. This observation naturally leads to introducing
AXML services, i.e., Web services that accept AXML
documents as input parameters, and return AXML doc-
uments as results. Because AXML documents are valid
XML documents, AXML services are standard compli-
ant Web services: they exchange SOAP messages and
can be described using WSDL.

Observe that, when AXML services are involved, ma-
terialization becomes a recursive process, since calling an
AXML service may return some data that may contain
new service calls that also need to be materialized, and
so on recursively. This is illustrated in Figure 4, which
gives the modified portion of our sample document after
the invocation of the getEvents@TimeOut.com service.
Here, the service answered with a list of exhibits, plus a
service call to get more exhibits from Yahoo.

Now, an issue that arises is the one of termination:
Can we “fully” materialize a document? Can we know
in advance if the materialization of a document can be
performed in a finite time? It turns out that the ter-
mination problem is undecidable even in some rather
restricted setting [57]. This should not come as a sur-
prise in our large scale, highly dynamic Web-like context,

The Active XML project: an overview 5

where systems are autonomous and loosely-coupled. We
will mention in Section 6 some restrictions on both the
data model and the allowed services under which termi-
nation of document materialization and closely related
problems become decidable.

...
<exhibits>
<exhibit>
<name>Naive Painting in Ancient Greece</name>
<location>Le Louvre</location>
<from>25-Apr-2003</from>
<to>25-May-2003</to>

</exhibit>
< axml:call service=”getExhibits@Yahoo.com”>
<city>Paris</city>

< /axml:call>
</exhibits>
...

Fig. 4 After invoking getEvents@TimeOut.com

Motivations for AXML services

We now focus on benefits brought by AXML services.
Convenient means to define AXML services, e.g., using
queries or updates over AXML documents will be pre-
sented in Section 3. All motivations we gave for AXML
documents are of course important motivations for ser-
vices exchanging AXML documents. We next discuss ad-
vantages that are specific to the usage of AXML services,
and which come, on the one hand, from intensional re-
sults and, on the other hand, from intensional arguments.
We then discuss related performance gains potentially
brought by AXML services.

Intensional results A service invocation result with in-
tensional data represents a partial description of the an-
swer. It may typically provide only part of it or some
form of summary. This is in the style of search engines
that returns, for instance, the best 10 answers and a link
to get more. In some cases, the computation may be
on-going and some results may be provided, possibly in
push mode, before the computation is complete. In other
cases, the receiver may have to invoke some service calls
embedded in the result in order to complete the answer,
e.g., apply a decompression, decryption service, person-
alize the answer, or adapt it to a geographical context.
Intensional information in the answer may also be used
to “enrich” it, e.g., by providing some provenance data
if requested by the receiver.

Intensional arguments When the input to the Web ser-
vice contains intensional information, the server is asked
to perform the extra work needed to obtain the extent of
this input before proceeding to its regular task. Note that
this leads to a simple kind of service composition, basi-
cally by connecting the outputs of some services to the

input of others. For instance, to obtain the phone num-
ber of Google’s CEO, it is possible to call a White Pages
service, with as intensional parameter, a call to Google’s
Company description service, which gives the name of
the current CEO. So, although AXML does not address
directly the issue of Web service choreography, it does
provide some limited form of workflow. We will mention
the issue of adding more elaborate forms of workflows as
Web services in Section 3.

Performance motivations The motivations we presented
so far can be qualified as “logical” in the sense that they
deal with the way information is obtained and used, i.e.,
with the semantics of applications. There are also im-
portant performance incentives for using AXML docu-
ments and services (which are often counterparts of the
logical motivations we described). To give an example,
suppose some Web merchant S publishes its electronic
catalog, and a comparative shopping site S’ downloads
the catalog of S periodically. Information such as product
prices, which may change rapidly, is often stale. However,
if S decides to represent prices intensionally, then S’ is
able to refresh price information by invoking the cor-
responding service call, without reloading entire product
descriptions. Hence, the dynamicity of intensional results
induces substantial communication savings. Indeed, we
will see in Section 3 that S’ will even be able to subscribe
to price changes and be notified of such changes with-
out the need of polling S. As a consequence, S’ will have
a more accurate copy of the catalog at a much lower cost.

AXML documents and services, which we just intro-
duced and motivated, form the core of the AXML model.
In the rest of this section, we examine two novel issues
that arise as a direct consequence of this model, namely
the AXML data exchange problem, and the evaluation
of queries over AXML documents, summarizing results
from [57,14] and [5] respectively.

2.3 Exchanging AXML data

As motivated in the previous section, a key feature of
the AXML model is the ability to exchange AXML data
(e.g., as intensional parameters or results of AXML ser-
vices). The important issue we consider now concerns the
decision whether to send some piece of data extension-
ally or intensionally. To see an example, suppose that one
asks for the work phone number of an INRIA employee,
say Jean Dupond. The system may answer extension-
ally (and provide that phone number) or may prefer to
answer with the following intensional data:

< axml:call service=”directory@inria.fr”>
<employee>Jean Dupond</employee>

< /axml:call>

6 Serge Abiteboul et al.

More precisely, given a document to exchange, and some
specification about the nature of the exchange, the sys-
tem has to control which parts of the document should
be materialized, and which should not. We first mention
some considerations that may guide the choice of mate-
rializing intensional data or not:

– Capabilities: One of the two participants (the sender
or the receiver) may not be able to call a particular
service, for instance by lack of access rights or be-
cause she is missing some needed functionality (e.g.,
no support for calls to Web services).

– Security: One of the two (most typically the receiver)
may prefer not to perform some particular service call
for security reasons.

– Performance: Deciding where a particular service is
called allows some form of load balancing between
the sender and the receiver of the service.

– Functionality: Last but not least, the choice may be
guided by the application. As we saw already, a ser-
vice call in place of some materialized data provides
the receiver with knowledge such as the provenance
of the information. It also gives her the means to re-
use it and for instance, refresh the data without using
the site that provided her with this information.

For (extensional) XML data, Schemas (such as a
DTD or an XML Schema) are the natural tool to spec-
ify the format of exchanged data. In particular, the data
exchanged by Web services is controlled by schemas for
their input and output, specified within a WSDL descrip-
tion. Similarly, we use schemas to control the exchange
of intensional data, essentially by using them as a declar-
ative specification that guides the materialization of ex-
changed AXML documents. A key novelty of our setting
is that schemas may also entail information about which
parts of the data are allowed to be intensional and which
service calls may appear in the documents, and where.

A typical data exchange scenario is depicted in Figure
5. The sender and the receiver have agreed on a specific
data exchange schema. Now, consider some particular
data t to be sent (represented by the grey triangle in the
figure). In fact, this document represents a set of equiva-
lent, increasingly materialized, pieces of information, i.e.,
the documents that may be obtained from t by material-
izing some of the service calls q, g and f embedded in it.
Observe that the data returned by a service may itself
contain some intensional parts, which may have to be
materialized, so the decision of materializing some infor-
mation or not is inherently a recursive process. Among
these documents, the sender must find at least one that
conforms to the exchange schema (e.g., the dashed one)
and send it.

To specify the schema of the exchanged data, we use a
simple but flexible XML-based syntax based on an exten-
sion of XML Schemas. The extension consists in adding
new type constructors for service call nodes. In partic-
ular, the schema distinguishes between accepting a con-

m
at

er
ia

liz
at

io
n

of
 se

rv
ic

e
ca

lls

Exchanged AXML document

...r
q

g g
f

......

...

f q g

f gq

g

... ...

g
fq

g

r

r

q
g

...

ACL
capabilities

cost
...

ACL
capabilities

cost
...

Sender Receiver

Data exchange schema

......

Fig. 5 Data exchange scenario for an AXML document

data :
τ(newspaper) = title.date.(GetTemp | temp)

.(TimeOut | exhibit∗)
τ(title) = data
τ(date) = data
τ(temp) = data
τ(city) = data
τ(exhibit) = title.(GetDate | date)

functions :
τin(GetTemp) = city
τout(GetTemp) = temp

τin(TimeOut) = data
τout(TimeOut) = (exhibit | performance)∗

τin(GetDate) = title
τout(GetDate) = date

Fig. 6 An AXML data exchange schema (simplified syntax)

crete type, e.g., a temperature element, and accepting a
service call returning data of this particular type.

An example of such a schema τ is given in Figure 6.
To simplify, we use in the example a DTD-like syntax.
(The actual syntax we use in the system is an extension
of XML Schema.) An AXML exchange schema speci-
fies the structure of each element allowed in a compliant
document, describing the data elements and service calls
each element may have as children. Service call names
here start with capital letters. Observe that the schema
also details, for each service, the type of its input param-
eters (τin) and of its output (τout).

In practice, these service input/output signatures are
given separately from the exchange schema, as part of
the WSDL description of each service. In our actual
schema language, whenever a service is referenced in the
schema, a URL for its WSDL description must be pro-
vided, which allows the system to fetch the correspond-
ing service signature. We include service signatures here

The Active XML project: an overview 7

within the exchange schema for compactness and ease of
presentation. It is important to note that the WSDL de-
scriptions of AXML services remain standard compliant:
They may use our extended schema language to describe
their AXML input and output types, since the WSDL
standard does not impose the use of a specific schema
language.

In a nutshell, given a document t and a data exchange
schema s, the goal of the sender is to rewrite t by ma-
terializing some of its service calls, in order to cast it
into an instance of s. We provide in [57] algorithms to
find such a rewriting (if it exists), with various levels of
confidence:
– First, given a document, the sender may try to find

a sequence of calls that surely rewrites it into an in-
stance of the exchange schema. Surely means that
the sender is guaranteed to find such a sequence and
never activates any service call unnecessarily.

– Sometimes, such a guarantee cannot be provided. The
sender may then try to find a sequence that possibly
rewrites the document into one of the correct schema.
If the attempt fails, the server has to “backtrack” and
try another sequence. Observe that this may lead to
calling unnecessary services if a successful sequence
is not selected first or is not found.

– Finally, we provide algorithms to verify, at compile
time, whether all data that complies with some given
schema may be (surely or possibly) rewritten into an
instance of the exchange schema.
The core technique of this work is based on “alter-

nating” automata. These are automata that alternate
existential and universal states. Intuitively, an existen-
tial state corresponds to the server selecting the next
service call to perform. A universal state corresponds to
the arbitrary (but type correct) choice of a response by
the server of this particular service. This work motivated
a nice fundamental study [61] of “context-free games”.

The general problem of whether a document can be
rewritten to match an exchange schema turns out to be
undecidable. To overcome this difficulty, our algorithms
use simplifying assumptions. Namely, we search for a
rewriting that can be done in one left-to-right pass on the
document, with a bounded nesting of function calls. Un-
der these assumptions, the search space (i.e., the space
where we attempt to find a successful rewriting) remains
infinite. The algorithms are indeed quite complex and
in particular involve the construction of automata that
are potentially exponential in the size of the documents.
These automata are built in a lazy manner and the al-
gorithms turn out to be rather efficient in practice.

In [14], we considered even further restrictions to get
simpler and more efficient algorithms, while still cover-
ing most practical cases. There, we assume that exchange
schemas obey unambiguity conditions that naturally ex-
tend the ones imposed on XML Schema for regular XML
data. We show that the optimal rewriting strategy (i.e.,

the one that succeeds in rewriting the maximal set of
documents) is unique, and regular. Documents can be
rewritten in one pass using simple automata that are
easy to derive from the target schema.

The algorithms of [57] have been implemented and
tested in the context of the AXML Peer system presented
in Section 3. The rewriting algorithms are used in the
module in charge of controlling the dialogue between an
AXML peer and the rest of the world. They serve to
cast the data that is exchanged (if possible) in order to
meet the interface requirements of the services the peer
provides and/or invokes.

To conclude this section, it should be observed that
controlling service calls by enforcing a schema on the
exchanged is also useful (i) for customizing services to
particular client preferences [3] and (ii) for building se-
cure applications [2]. For security, it fits nicely with other
security and access models that were proposed for XML
and Web services, e.g., in [33,56].

2.4 Optimizing queries over AXML documents

Optimizing queries over AXML data involves an array
of techniques, including “traditional” query optimiza-
tion techniques developed for XML data. Our focus is
on the novel optimization challenges brought by the pres-
ence of embedded service calls in AXML documents. We
present here a local form of optimization, which considers
the evaluation of a query on a single AXML document
present at a given peer. We will see in Section 6 that more
global forms of optimizations can be considered, taking
advantage of the fact that data and services are spread
across several peers in order to distribute the evaluation
of queries.

The evaluation of a query (e.g., expressed in XPath,
or XQuery) over an AXML document naturally involves
standard query processing over the extensional part of
the document. However, the result of a query may also be
influenced by service calls present in the document. If the
data they provide possibly modifies the query answer,
such calls should be materialized. By analogy with the
notion of laziness in programming languages, we term
this approach “lazy evaluation”. This principle brings a
new dimension to query optimization, and is the essence
of the work in [5], which we briefly discuss next.

Consider, for instance, a site about a city’s night-life 1

described by an AXML document and containing infor-
mation about, say, movies and restaurants. Now, suppose
someone asks the query:

/goingOut/movies//show[title= "The Hours"]/schedule

Then, there is no point in materializing any call that
would appear below the path:

/goingOut/restaurants

1 In the style of http://www.timeout.com

8 Serge Abiteboul et al.

since the data they return would be set in a place where
they cannot contribute to the result. One would also like
to avoid materializing a call found below:

/goingOut/movies

with a signature indicating that the returned data is ir-
relevant to the query, e.g., a service calls returning movie
reviews.

The above desiderata rule out a naive approach that
would consist in materializing all the calls in the docu-
ment recursively, until a fixpoint is reached, and finally
running the query over the resulting document. On the
other hand, a query processor that would process the
query and materialize “on the fly” service calls found
to be relevant would be very inefficient, as the process-
ing may often block waiting for the results of calls. In
[5], we present an alternative efficient technique that is
based on identifying in advance a tight superset of the
service calls that should actually be invoked to answer a
query. The idea is to first materialize these calls and then
move to classical query processing. Observe that while
the problem we address is related to the classical medi-
ation paradigm of data integration, where data sources
are called when queries are asked on a mediated schema,
things are substantially different in AXML since service
calls may appear anywhere in the data, and dynamically
in results of previously materialized calls. Also, the inte-
gration of data sources is not defined through mappings
expressed at the schema level, but through service calls
embedded in the queried AXML documents.

More precisely, the technique of [5] is based on:

– Computing the set of relevant service calls: Given
a query, the algorithm generates a set of auxiliary
queries that, when evaluated on a document, retrieve
all service calls that are relevant to the query.

– Pruning via typing: The return types of services are
used to rule out more irrelevant service calls.

– Service calls sequencing: The relationships among the
calls are analyzed to derive an efficient sequence of
call invocations appropriate to answer the query.

– F-guide: A specialized access structure in the style
of data-guides [41] is used to speed up the search for
relevant calls. The structure acts as an index, summa-
rizing concisely the occurrences of functions (service
calls) in the documents (hence its name, F-guide).

Note that there is an essential difference between
this technique and the work on data exchange presented
in Section 2.3. The goal there was to identify the calls
that need to be materialized in order to make a doc-
ument match an AXML Schema, and the solution re-
lied on schema and data analysis via automata-based
algorithms. In contrast, the goal here is to find the se-
quence of call invocations needed to evaluate a query over
AXML data, and the solution is based on query analysis
and query rewriting.

In this section, we presented the AXML language,
which is based on AXML documents and AXML ser-
vices. We also examined two important issues that arise
in the AXML setting: the exchange of AXML documents,
and the lazy evaluation of queries. In order to effectively
support the AXML language, we adopted a distributed
architecture based on the peer-to-peer paradigm, where
each participant may act both as a client and as a server.
We developed the AXML peer system, to serve as an in-
dividual component in this distributed architecture. The
next two sections are respectively devoted to the descrip-
tion of the functionality of the AXML peer and of its
implementation.

3 The AXML peer: Functionality

In this section, we present the AXML peer from a func-
tional viewpoint. The implementation of the AXML peer
is the topic of Section 4. AXML peers have essentially
three facets:

– Repository: The first task of an AXML peer is to
manage persistent information, very much like a tra-
ditional database management system.

– Client: In order to take advantage of the intensional
data present in the AXML documents of its repos-
itory, an AXML peer may invoke the correspond-
ing Web services. By doing so, it acts as a client of
the peers that provide these services. We extend the
AXML language with features to control the acti-
vation of service calls in persistent documents (Sec-
tion 3.1).

– Server: An AXML peer may also provide Web ser-
vices for other peers to use. These services can be de-
fined using queries, transformations or updates over
the documents of its repository, and are indeed AXML
services (Section 3.2).

Since the AXML language is centered on the use of
Web services, our architecture relies on invocations of
Web services for all communications between participat-
ing peers. AXML peers exchange AXML data with each
other through the Web services they provide (as server)
and invoke (as clients). Note that existing Web service
providers (such as Google) and clients (such as the Fire-
fox browser) naturally fit in this architecture, since all
exchanges follow standards for Web services. However,
the exchange of AXML documents may only occur be-
tween systems that understand the AXML language.

3.1 The AXML peer as a client

The main roles of an AXML peer, seen as a Web client,
is the management of persistent AXML documents, and

The Active XML project: an overview 9

the invocation of the service calls embedded in the doc-
ument it manages. For instance, for the newspaper doc-
ument of Section 2, the peer may want to enforce the
following policy:

Temperature information is refreshed daily. New
exhibits are fetched every week and archived for 6
months.

The main novelty in managing AXML documents is
the control of the invocation of embedded service calls. In
a nutshell, we incorporate in the AXML language, simple
constructs to support specifying when service calls are
invoked. For instance, the language will enable specifying
the policy above. More precisely, we enrich the syntax of
service calls in AXML documents. Each individual call
will indicate its activation and persistence policy. It will
be the responsibility of the peer to enforce these policies.

Note that in this setting, service calls should gener-
ally be kept inside AXML documents, for future reuse.
Therefore, materialization will not replace service calls
by their results anymore, but will append the results of
each call next to it. While this is a slightly different se-
mantics than the one used in previous sections, it is nec-
essary in the context of an AXML peer managing per-
sistent data. We should mention that this change to the
model does not affect the algorithms of lazy evaluation
presented in Section 2.4 (calls are marked as executed
instead of being removed). For the document rewriting
algorithms of Section 2.3, calls are indeed replaced by
their results (since the main goal is to hide the inten-
sional definition of data), but recall that these algorithms
are mainly used in the context of data exchange, and
therefore only affect the exchanged messages, and not
the persistent data.

The space of persistence options for service calls in
AXML documents can be decomposed along three axes:
(i) where to find the arguments to be passed to a call,
(ii) when to activate a call, and (iii) what to do with its
result. These issues, and the language constructs that
support them are considered next in turn.

Where to get the arguments of a call?

Recall that the arguments of a service call are specified as
children of the call element. In the simplest case, an ar-
gument is plain XML. More generally, arguments can be
AXML data, and therefore may themselves contain ser-
vice calls. Indeed, a particular case of services turns out
to be very useful in this context, namely those defined
as XPath queries. For instance, as shown on the example
document of Figure 7, instead of stating explicitly that
the city we want the temperature of is Paris, we may
request the temperature of "../../edition/text()".

This construct actually denotes a regular call to a lo-
cal Web service, which is implicitly defined by the spec-
ified XPath query. More precisely, a relative XPath ex-
pressions (evaluated starting from the call element) trans-

lates to a query that refers to the unique ID of the corre-
sponding service call in the document. This ID is passed
as a parameter of the actual invocation. The fact that
we allow specifying the XPath expression directly in the
document is just useful syntactic sugar.

Such XPath parameters (now viewed as service calls)
are evaluated in lazy mode, whenever the service call
they bring parameters for, needs to be invoked. The al-
gorithms of Section 2.4 apply in this setting, to find and
invoke any calls (marked as lazy) that may be relevant to
answer the XPath query that retrieves the value of the
parameter. If calls retrieved by this analysis also have
XPath parameters, then (recursively) lazy evaluations of
these parameters are performed.

Note also that an XPath parameter cannot be passed
intensionally to the invoked Web service, because it only
makes sense in the context where it appears. Therefore,
such context dependent calls have to be resolved before
calling the service. In general, when the parameters of a
call contain some unresolved service calls, it is unclear
whether we should materialize them or not before send-
ing. Some have to be materialized, e.g., path expressions
that make sense only locally. For others, a particular
choice may influence the semantics of the application.
Observe that this is an instance of the AXML data ex-
change problem we discussed in Section 2.3, with the
service call parameter as the exchanged document and
the Web service input type (specified in the WSDL de-
scription of the service) as the exchange schema. In the
system, we use the schema-based rewriting algorithms of
Section 2.3 to control the materialization of service call
parameters.

When to activate a call?

Consider a service call in a document of a peer c (a
client) that calls a service on another peer s (a server).
One first distinguishes between calls that are activated
from the client side (pull mode), which are regular func-
tion calls, and those activated from the server side (push
mode). For the pull mode, we further distinguish be-
tween those calls that are activated explicitly (explicit
pull), i.e., because of a user request, and those that are
activated implicitly (implicit pull), because some other
operation might use data they retrieve. The particular
form of activation control that is used is specified using
a special attribute of the call element: the mode, such as
in:

<axml:call service="..." mode="daily">
...

</axml:call>

Let us now consider these alternatives in more detail.

Explicit pull The most common type of explicit pull is
based on time frequency, e.g., activate this particular call
daily, weekly, etc. For instance, we may want to call the

10 Serge Abiteboul et al.

Yahoo Weather service daily to get an updated forecast.
More generally, one can request the call to be activated
after some particular event occurred in the system, e.g.,
when some other call has completed. This aspect of the
activation problem is closely related to the field of ac-
tive databases, where triggers are used to update the
database whenever some particular events occur, and/or
some conditions are satisfied.

Implicit pull Sometimes, we want to call a service only
when the data it returns is relevant for a computation
the system needs to perform. Implicit pull is also called
the lazy mode. Indeed, when the computation to perform
is a query, the lazy evaluation algorithms mentioned in
Section 2.4 are used to determine and activate the calls
that are relevant to answer that query. In the system,
these algorithms apply only to a subset of the service
calls embedded in the documents of the repository: those
that are specified as lazy, again using the mode attribute
of the call element.

Push In push mode, the server pushes information to the
client. This starts by a client issuing a subscription to a
continuous service from a server. It is then the server
that sends information to the client, in the form of a
stream of data from the server to the (subscription) ser-
vice call node of the client document. Additional param-
eters can be specified by the client and/or the server to
control how the continuous service operates, e.g., when
the server decides to send some data. These will be con-
sidered in Section 3.2.

In our example, the local newspaper may subscribe
to exhibit announcements provided by the TimeOut lo-
cal guide, and be notified each time a new exhibit opens
in the city. Push services can also be useful for manag-
ing change control, and in particular for synchronizing
replicas of the same data. This aspect of the problem is
closely related to stream management and subscription
queries.

What to do with call results?

Another important issue when managing persistent
AXML documents is what to do with service calls re-
sults. This question has two facets: First, a policy must
be determined for each invocation of a service call, to de-
cide how long the returned data should be kept. Second,
when a service call is invoked multiple times, the result-
ing consecutive results need to be integrated. These two
aspects are considered next.

Managing individual call results The first issue we con-
sider is controlling how long data returned by a service
call remains valid (i.e., persists) once it has been ob-
tained. In the AXML system, the persistence of results
is also guided by an attribute of the service call, called
valid, which may take a number of values:

– 1 day, 1 week, 1 month, etc. This may be viewed as
a controlled form of caching.

– Validity is zero This means that the data remains
valid only for the time needed to serve the request
that asked for it. This is in the spirit of mediators,
which do not store any information but simply obtain
it when needed. The zero validity is generally used
together with the lazy mode, where calls are activated
when the data they retrieve is needed to answer a
query.

– Unbounded The information remains present forever,
unless explicitly deleted. Unbounded validity is par-
ticularly useful for archiving purposes, where data is
never deleted. However, unbounded validity may also
be of interest in other settings. For instance, when
used together with a replace mode (the information
is erased when a new version is obtained, see fur-
ther), it allows keeping a single version of the result,
that is, the last one. Also, it may serve as the basis
for more advanced forms of caching, if used together
with other services that explicitly delete data to re-
claim space when needed.

Note that various portions of an AXML document
may follow different policies for validity and mode, based
on the nature of the information. For instance, in com-
parative shopping applications, one often needs to com-
bine a mediator style for some products that change price
very rapidly (e.g., plane tickets) and a warehousing style
for other products (e.g., housing).

To illustrate the use of attributes controlling the ex-
ecution of service calls, the newspaper document may
be written as in Figure 7. In this example, the service
call that gets the temperature is called when the data is
needed, and only if this data is older than 1 day, whereas
the one that gets exhibits is called weekly, and the data
it returns remains valid for 6 months.

Managing results of multiple invocations When the same
service call is invoked multiple times, one needs to de-
fine how the answers returned by an invocation interact
with those previously obtained. We first consider a local
insertion, where new results only interact with previous
results of the same service call. We then mention a more
global fusion that may involve the whole document. As
before, attributes of the call element are used to choose
between available options.

Recall that the result of a service call, a forest, is in-
serted as siblings of the call element. When the same call
is materialized again, we need to know how to combine
its result with the existing forest (the former siblings of
the service call). To do that, the AXML peer relies on
merge functions. Some are provided by the AXML peer
but more may be defined, locally or as Web services.
Those provided by default are:

– append: just append the new forest next to the pre-
vious one. This is the default behavior;

The Active XML project: an overview 11

<?xml version="1.0" ?>
<newspaper>
<title>Le Monde</title>
<date>06/10/2003</date>
<edition>Paris<edition>

<weather>
< axml:call service=”Yahoo.GetTemp”

mode=”lazy” valid=”1 day”>
<city>
<axml:xpath>
../../edition/text()

</axml:xpath>
</city>

< /axml:call>
</weather>
<exhibits>

< axml:call service=”TimeOut.GetEvents”
mode=”every Monday morning”
valid=”6 months”>

exhibits
< /axml:call>

</exhibits>
</newspaper>

Fig. 7 A persistent AXML document

– replace: replace the old forest by the new one;
– fusion: based on IDs or key specifications (similar to

the key mechanism of XML Schema), we identify the
“same” elements among the old AXML forest and
the new one and combine them, so that the resulting
forest still has unique IDs or satisfies the key specifi-
cation. Clearly, there are various ways of combining
two elements that have the same ID or key value into
a single one. The AXML peer provides simple strate-
gies, such as appending new children to old children
of the “same” element, or replacing the old children
by the new ones. It also supports nesting the appli-
cation of ID or key-based rules.

– Custom merge functions may also be used.

Now consider a more global merging mechanism, where
the new forest is merged with the whole document and
not only with the siblings of the call element. Again,
the merging is driven by IDs. It is important to observe
that global fusion makes it much harder to control which
portions of the document are affected by a service call
invocation. Therefore, the system currently forbids the
use of global merge together with the lazy mode.

In this section, we presented the client features of-
fered by AXML peers for managing the service calls em-
bedded in persistent AXML data. A variety of choices
are available to control (i) where to get call arguments,
(ii) when to invoke calls, and (ii) what to do with their re-
sults. These choices can be specified at the granularity of
each embedded call, through simple dedicated attributes,
which leads to a great flexibility in combining different
styles of data integration (e.g., mediation, warehousing)
or different kinds of service invocations (e.g., push, pull).
We believe this flexibility is a main strength of our ap-
proach.

3.2 The AXML peer as a server

The previous subsection discussed how the activation of
Web services embedded in the AXML documents a peer
manages is specified and controlled. So, the peer was
then viewed as a client of the Web. As a counterpart, an
AXML peer may also support and publish Web services,
i.e., be a server. Recall from Section 2 that AXML ser-
vices are Web services that exchange AXML documents.
In an AXML peer, AXML services can be defined as pa-
rameterized queries or updates over the peer’s AXML
documents. The system supports different languages for
the definition of services, and allows for push services.
Recent extensions to the AXML peer enable services that
leverage existing P2P infrastructures. We present these
different kinds of services in turn.

Pull: query and update services

The basic way for defining a service in an AXML peer
is to write a parameterized query over its repository of
AXML documents. Here is a sample service definition 2:

Declare service GetExhibitsByLocation($loc) as {
for $a in document("news.xml")/newspaper/exhibits,

$b in $a//exhibit
where $b/@name=$loc
return <exhibits> {$b} </exhibits> }

Fig. 8 An AXML (Query) Service definition

This query refers to the news.xml document from the
repository, which may be similar to the one of Figure 7.
When a call to this service is received by the peer, the
$loc variable is bound to the passed parameter value
(the location), then the query is evaluated, and its result
is returned as an answer. It should be noted that any
kind of AXML fragment can be passed as a parameter
to the service (e.g., a service call, a forest of AXML trees,
or an atomic value).

Again, the lazy evaluation technique of Section 2.4 is
leveraged, in order to find and invoke the service calls
that are relevant to the query that defines the service,
both in the repository documents and in the parameters
passed by the invocation.

Also, note that the query answer may naturally con-
tain service calls, since the query is evaluated on the
AXML parameters and the AXML documents of the
repository. The document rewriting algorithms presented
in Section 2.3 are used to make the result match the
output type of the service. This output type is generally
specified in the WSDL description of the service, that is,

2 The queries in the standard AXML system are written
in the X-OQL language [16], but to simplify the presentation
we use here the syntax of XQuery, which is a standard. A
version of the AXML peer running with XQuery and eXist
has also been developed.

12 Serge Abiteboul et al.

by the service provider. In our implementation, we also
allow the client to dynamically specify a desired output
type, as an extra parameter of the service invocation.

We also support update services, i.e., services that
have side effects on the documents of the repository.
These are also defined declaratively, as an extension to
X-OQL that is very much in the same lines as the update
extension to XQuery proposed in [72].

Pull: Other kinds of services

Other languages are sometimes more appropriate to de-
fine services than query/update languages. We integrated
the following important ones into the AXML system:

Workflow services AXML peers can provide access to
services defined using the Business Process Execution
Language for Web services (BPEL4WS) [24], one of the
main proposals to define a workflow language for Web
services. To execute such services, AXML relies on the
implementation provided by IBM, and enriches them
with the ability to return AXML answers whose type
is controlled using the algorithms of Section 2.3.

XSLT services Services can also be specified using the
XSLT transformation language [85]. Such services take a
single parameter, which is an XML document, and return
the result of transforming the input document using the
stylesheet specified in the definition of the service. While
XSLT uses XPath as a selection language, to extract in-
formation from the document to transform, in the cur-
rent implementation, such services do not take advantage
of the intensional information that may be present in the
input AXML document, since we have not integrated the
lazy evaluation technique of Section 2.4 within the XSLT
processor that we use for the transformation.

Push: continuous services

A server may work in pull mode, as described above, but
may also work in push mode: The client subscribes to a
particular push service, by issuing a service call, then the
server asynchronously sends a stream of messages as an
answer.

These services may also be specified declaratively,
e.g., using parameterized queries. In the AXML peer im-
plementation, any pull service can serve as a basis for a
continuous service. This continuous service periodically
reevaluates the query and pushes its answer. A number
of additional parameters can be specified, to control how
a continuous service operates:

– a frequency for the messages (e.g., daily);
– some limitations, such as the duration of the subscrip-

tion or some size limit on the data that is transmitted
in each message;

– a choice of representation for the changes: send con-
secutive versions or send a delta or an edit script for
the changes (as in, e.g., [30]).

– a choice of a media for the changes: send a notification
message, or publish the changes on the Web (possibly
as an RSS feed).

Typically, the client chooses between these options by
specifying parameters of the subscription call. (Note that
a particular server may support only a limited subset of
the options.)

The implementation of continuous services in AXML
peers emulates an asynchronous behavior on top of the
(synchronous) HTTP protocol. Each AXML peer ex-
poses a dedicated “call-back” Web service whose purpose
is to receive answers to any continuous services the peer
has subscribed to. When a subscription call is issued, the
client AXML peer automatically adds to the call some
(intensional) information about its call-back service. The
peer that provides the continuous service then sends its
answers asynchronously to that call-back service, which
integrates them at the right place (e.g., next to the cor-
responding subscription call).

In the Edos project (see Section 5), we need to deal
with subscriptions resulting in large volumes of very large
messages. In particular, the same set of large messages
may have to be sent to many peers. We are currently up-
grading the subscription system to include (i) the multi-
casting of messages and (ii) the use of BitTorrent-like
approaches [21]. These techniques aim to optimize re-
sources (bandwidth, machine load) in the distribution of
such large messages: multi-casting for intelligent pushing
of messages in the network, BitTorrent for parallelizing
message transfers.

Peer-to-peer services

We now overview two independent extensions of the
AXML peer that leverage the functionality of existing
peer-to-peer infrastructures. A first extension uses the
JXTA infrastructure essentially as a transport, in order
to facilitate finding and invoking AXML services. The
second extension provides access to the contents (docu-
ments and services) of AXML peers, by indexing them
in a distributed hash table. We discuss these extensions
next.

JXTA services JXTA [51] is a popular set of protocols
that can be used to create a virtual P2P network. It is
particularly useful to connect peers that are behind fire-
walls or on different networks. We essentially extended
AXML peers to become JXTA peers. A JXTA-enabled
peer can call both standard (AXML) Web services and
JXTA services. (The URL of the service specifies the
protocol that is used.) With this feature, AXML peers
can take advantage of the rich functionality of JXTA. In
particular, services that do not have a fixed IP address

The Active XML project: an overview 13

can be made accessible, as well as “generic” services, i.e.,
services that are supported by several peers (which in-
volves the selection of a specific peer first). A peer that
is not JXTA enabled may reach JXTA services simply
by using a JXTA enabled peer as a proxy.

Distributed Hash Tables The KadoP [12] system inte-
grates AXML and Distributed Hash Table (DHT) tech-
nology. KadoP is a system for constructing and main-
taining a warehouse of resources in a P2P environment.
Most importantly, KadoP maintains a distributed index
of the resources that have been published up to date.
These resources (XML documents, Web services, ontolo-
gies) are queried using a subset of XQuery. The system
relies on a DHT implementation [38] to keep the peer
network connected.

Using KadoP, AXML peers can easily discover global
resources, such as Web services in peers they did not pre-
viously know. On the other hand, KadoP peers are them-
selves AXML peers. The dynamicity of AXML turns use-
ful to maintain the indexing fresh. Also, part of the in-
dexing may be intensional in KadoP. To give an example
of this feature, consider a very popular word. The main-
tenance of the index for this word may penalize a peer
that would be in charge of it. This peer may delegate
some of the entries to other peers, and replace them by
a service call.

In this section, we presented AXML peers from a
functional viewpoint, both as clients, dynamically enrich-
ing their persistent AXML documents by materializing
the service calls they contain, and as servers providing
AXML services on top of their AXML documents. We
now turn to the implementation of AXML peers.

4 The AXML Peer: Implementation

We now overview our implementation of AXML peers.
We start with a brief overview of the technical environ-
ment, then focus on the main modules of the AXML
peer. After that, we consider alternatives for the storage
of persistent AXML data, and choices we provide for user
interfaces.

Before that, we should note that since the AXML ap-
proach mainly relies on standards for Web services, any
system that understands/implements these standards can
join the AXML world. The AXML peer is one such sys-
tem. It was built to fully take advantage of the AXML
model by supporting both its client-side and server-side
features and managing persistent AXML data. It was
typically designed to run on a fixed desktop workstation,
with a permanent network connection.

Of course, other implementations are possible, on
different platforms, or with different objectives. For in-
stance, we developed an AXML “lightweight” peer that
is designed to run on PDAs and mobile phones [32]. Due

to limited processing power and intermittent connectiv-
ity, such a system is more geared towards client-side func-
tionality, and has limited query and update capabilities.
(For instance, it supports only XPath queries.) It focuses
on a mobile usage, and is able to use a standard AXML
peer as a proxy, to which it delegates most resource-
intensive and/or bandwidth-consuming computations. In
particular, a proxy can carry out some computations (po-
tentially involving service calls) for a lightweight peer
that is currently off-line, and send it the results when it
is back online.

4.1 Technical environment

We start by briefly presenting the technical environment
we chose for implementing the AXML peer. Figure 9
presents the stack of technologies the system is built
upon. The AXML peer essentially relies on (1) a set of
widely-used public packages, and (2) X-OQL, an open-
source XML query engine.

Axis Engine

Tomcat Servlet Engine

User Interface (JSP / HTML)

X!OQL
Query
Engine

AXML Peer implementation

Applications (AXML documents & services)

XML Tools (Xerces, Xalan)

Java Virtual Machine

Operating System (Windows, Unix, etc.)

Fig. 9 The AXML peer technology stack

The standard tools our implementation is based on are
the following:

– The Java Virtual Machine The AXML peer is imple-
mented in Java [48], one of the most widely used and
portable programming languages.

– XML tools The AXML peer relies on the Apache
Xerces XML parser to parse documents, and manip-
ulate them through their Document Object Model
(DOM) [35] representation. The AXML peer also uses
the Apache Xalan processor for XPath queries and
XSLT transformations.

14 Serge Abiteboul et al.

– The Tomcat servlet engine In order to provide ser-
vices accessible over the Web, the AXML Peer needs
to act as a Web server. This role is fulfilled by the
Tomcat engine [73], a popular open source Java servlet
container.
Tomcat is also used to provide the basis for the user
interface of AXML applications. AXML documents
can be turned into a Web application through Java
Server Pages (JSP) [50]. A simple template library
gives the developer access to the peer’s AXML doc-
uments and their embedded service calls.

– Axis [19] is a Java toolkit that enables Web ser-
vices functionality both on the server-side and the
client-side. The AXML peer relies on the Axis toolkit
whenever service calls need to be issued or answered,
thereby ensuring that communications strictly follow
Web services standards, and that the AXML peer is
interoperable with other service providers and con-
sumers.

X-OQL: As mentioned already, the AXML peer relies
on the X-OQL engine [16] to execute complex queries on
XML documents. The X-OQL query language roughly
provides the same functionality as XQuery (with a SQL-
like syntax derived from the object query language OQL).

Note that the X-OQL engine did not need to be sub-
stantially modified in order to be used by the AXML
peer. Because the AXML approach is data-centric, ser-
vice invocations are issued from the data, not from the
programs or queries that operate on the data. As a conse-
quence, the query languages (here, X-OQL) remain the
same, and do not need to perform service invocations
themselves. This data-centric approach is quite differ-
ent from other techniques that extend query languages
(and processors) with primitives to invoke Web services
(see, e.g., [63]). In AXML, embedded service calls can
be leveraged at query time through the rewriting-based
lazy query evaluation we discussed in Section 2.4.

4.2 General architecture

We now give a high level overview of the AXML peer
architecture. Figure 10 illustrates its main components.
These can be divided into two categories: those responsi-
ble for the client-side functionality of the AXML peer (on
the left) and those responsible for its server-side ones (on
the right). Components that play a role in both appear
in the middle of the figure.

As a server, the AXML peer receives a service re-
quest through the SOAP Wrapper, which routes it to
the Service Provider. The latter finds the main Service
Type to execute, and orchestrates any necessary pre and
post processing of the request and the answer, which
may involve executing other (local or remote) services
through the Execution Engine. In case of a service with
side effects, updates may be performed on the persistent

AXML documents of the peer by the Persistence Man-
ager. Finally, the answer is returned through the SOAP
Wrapper.

On the client-side, a service call is activated by the
Document Manager (e.g., based on a mode specification),
and scheduled by the Execution Engine. In the case of
a remote service, the invocation is carried out by the
SOAP wrapper. The answer flows back (possibly asyn-
chronously) to the Document Manager, which updates
the corresponding AXML document through the Persis-
tence Manager.

The logger module keeps a trace of important events
in the AXML peer such as errors, both on the client and
the server side. For example, a client-side error arises if a
remote service does not respond, and a server-side failure
may happen is a service is invoked with a parameter of
the wrong type, or if the result of a service computation
cannot be cast into the output type schema declared for
the service (using the rewriting technique of Section 2.3).

Engine

Manager Lo
gg

er
Execution

SOAP Wrapper

Persistence Manager

Service

Service

types
Document

Client Server

Provider

In
te

rfa
ce

U
se

r

Fig. 10 The AXML peer architecture

We next discuss the main modules of the AXML
peer implementation. We start with the AXML Service
Provider module, which enables the server-side function-
ality of the AXML peer, and the extension of Axis with
declarative service types. We then consider the AXML
Document Manager, which provides the client-side func-
tionality of the peer, and the Execution Engine.

4.3 The AXML Service provider

This module provides the server-side functionality of an
AXML peer by answering the service requests the peer
receives. This module builds on the flexible architecture
of Axis for message processing, which is based on the
chain of handlers design pattern. A chain is simply a
sequence of handler invocations, where each handler is a

The Active XML project: an overview 15

program that performs some part of the required process-
ing. Handlers share a common message context, which is
used to pass information between them. Chains of han-
dlers are easily configurable on a per service basis, with-
out the need of changing the code or recompiling it, but
simply by specifying in an XML configuration file which
sequence of handlers is needed to provide a given service.

Besides the core functionality of a service, we saw
previously that AXML often requires the use of pre or
post processing, such as the lazy query evaluation tech-
nique of Section 2.4, or the schema-based rewritings of
Section 2.3.(The implementation of each of these mod-
ules is detailed in [57,5].) These techniques are exposed
as handlers, and incorporated in the chain of processing
of services.

To illustrate, Figure 11 shows such a chain for a query
service. In this example, the AXMLRequestHandler cre-
ates AXML documents for each parameter of the service
invocation, and puts them in the shared message con-
text. It also constructs the XOQLService handler corre-
sponding to the service to be answered, or retrieves it
from a cache if it has been accessed recently, and dy-
namically inserts it in the chain of handlers. Then, the
AXMLLazyHandler performs the lazy evaluation of Sec-
tion 2.4, to invoke any lazy services that are relevant to
answering the query, both in the documents of the repos-
itory and in the parameters of the invocation. After that,
the XOQLService evaluates the query corresponding to
the service, and puts the result in the message context.
Then, the OutputTypeFinder sets the target output type
of the service invocation, by checking if one of the in-
put parameters was a desired output type specified by
the caller, and if not, by using the output type speci-
fied in the WSDL definition of the service. Eventually,
the TypeValidator transforms, if possible, the result of
the query into an instance of the type previously set,
using the algorithms presented in Section 2.3, and the
AXMLResponseHandler generates a SOAP response from
the resulting AXML document.

Declarative service types AXML focuses on declaratively
specified services. Therefore, Axis was extended to sup-
port such specifications. We defined different service types,
one for each declarative language we needed to support.
Each service description is an XML document which ref-
erences an existing service type, defines the types of the
input and output parameters of the service, and gives its
declarative specification (e.g., an X-OQL query, or an
XSLT transformation). Service descriptions are stored
in the persistent repository, alongside AXML documents
(just like stored procedures are stored in the database in
a relational system). Declarative services of any service
type can be used to provide the core functionality of an
AXML service, and incorporated in a chain of process-
ing, as described above.

To implement service types, we introduced a flexible
mechanism that enables easily adding new types of ser-

vices. To define a new service type, one only needs to
register and provide classes that implement two simple
interfaces:

– IAXMLServiceFactory: a factory that generates, from
the declarative specification of the service an object
complying with IAXMLService.

– IAXMLService: An object that provides an invoke
method, to handle Web service requests.

New service types can be added to the AXML peer
without recompiling it, through a simple XML config-
uration file. Additionally, we provide default implemen-
tations of these interfaces, which support common func-
tionality (e.g. AXML parameter handling, partial gener-
ation of the WSDL description of the service), and can
be extended by each service type implementation. The
service types currently available in the system are those
described in Section 3.2.

4.4 The AXML Document Manager

This module is responsible for managing the peer’s per-
sistent AXML documents and their embedded service
calls. It interprets the client-side policies for the mode of
activation of service calls and the validity of their data
discussed in Section 3.1, essentially by registering events
corresponding to these policies in the scheduler of the
Execution Engine (see further). Additionally, the docu-
ment manager is in charge of updating the AXML docu-
ments by merging the results of service call invocations,
following the merge policies also discussed in Section 3.1.

To manage AXML documents, the Document Man-
ager loads them in memory as DOM trees. This repre-
sentation allows for easy manipulation and straightfor-
ward updates, e.g., when a service call is activated. Since
most operations on AXML documents have to do with
their embedded service calls, the calls are made accessi-
ble through a hash table, which uses unique, randomly
generated, persistent identifiers as an access key.

Parameters of service calls may consist of arbitrary
AXML data, and are recursively represented as AXML
document objects. Recall from Section 3.1 that parame-
ters can also be specified as relative XPath queries, which
are just syntactic sugar for calls to services defined as
queries. To speed up computation, we directly represent
such parameters as query objects.

Client-side handlers Just like on the server-side, some
additional processing may need to be performed on the
client-side of the AXML peer, when service calls are
activated. The chains of handlers mechanism discussed
above is also provided by Axis on the client-side. There-
fore, the same handlers can be reused. For instance, the
TypeValidator handler is used to ensure, when calling a
service, that the parameters that are transmitted match
the input type specified in the WSDL description of the
service.

16 Serge Abiteboul et al.

A
X
M
LR
eq
ue
stH
an
dl
er

A
X
M
LL
az
yH
an
dl
er

X
O
Q
LS
er
vi
ce

O
ut
pu
tT
yp
eF
in
de
r

Ty
pe
V
al
id
at
or

A
X
M
LR
es
po
ns
eH
an
dl
er

service
answerrequest

service

Fig. 11 Chain of handlers for a query service

4.5 The Execution Engine

This module plays a role on both the server and the
client side of the AXML peer. It is in charge of schedul-
ing all the service invocations in the AXML peer, which
can either be calls to remote Web services, or to locally
defined ones. In the latter case, the corresponding func-
tions are invoked directly in Java, avoiding unnecessary
(and expensive) SOAP communications.

Since Web services may take quite a long time to re-
spond (sometimes over half a second), calling them in a
blocking mode can be a serious performance bottleneck
for the AXML peer. To avoid that, the execution engine
must support the invocation of several services in paral-
lel, i.e., in a non-blocking mode. The Execution Engine
is multi-threaded, and uses a different thread for each
service invocations. Thread management in this context
is fairly complex, since some service calls may depend on
others (e.g., for calls that appear in parameters of other
calls) and therefore some threads need to wait for the
completion of others before being started.

Moreover, some service calls need not be executed
immediately, but at some fixed future time, and possibly
repeatedly. This is the case for instance on the client-side,
for service calls embedded in documents of the AXML
peer that follow a time-based explicit pull strategy. But it
is also the case on the server-side, for continuous services
defined by the peer that need to be reevaluated period-
ically. To enable differed and periodic invocations, the
execution engine relies on a scheduler, where such oper-
ations are registered. When these tasks are due, threads
are created to handle them and their execution inter-
leaves with the tasks currently being carried out by the
execution engine.

4.6 Storage

The AXML peer provides two main options for mak-
ing its data persistent: A storage based on a standard
file-system and a more scalable mass storage based on a
native XML repository. We discuss these options in turn.

Storage on a file-system This simple storage module is
the default storage option of the AXML peer. It manages
AXML documents, AXML service definitions, and the
F-guide summaries of documents used by the lazy query
evaluation of Section 2.4. Each of those corresponds to
an XML file stored on disk. The persistence manager
loads XML files into memory when they are needed, and
is responsible for keeping the disk copy in sync with the
one stored in memory whenever a document, service def-
inition, or F-guide is updated.

Documents are manipulated through their DOM rep-
resentation, which is generated by the Xerces XML parser
and stored in main memory. Accessing documents this
way was mainly a requirement of the X-OQL query pro-
cessor, which operates at the DOM level. Storing DOM
representations of documents in main memory clearly
becomes an issue when AXML documents are very large
or there are many of them.

XML mass storage To address the scalability issues of
the storage with a file-system, we developed a variant of
the AXML peer on top of a persistent XML repository.
More precisely, we experimented with two mass storage
XML repositories: (i) Xyleme Server [86], a native XML
repository, and (ii) eXist open source XML database [37].
The work on Xyleme is reported in [34].

In both cases, the AXML peer is integrated to the
repository server. Instead of being systematically loaded
as DOM objects in main memory, documents remain
in the XML persistent store. Information about service
calls embedded in documents is maintained in memory.
Queries from the XML repository are used to selectively
access portions of the data, and form the core of the Web
services provided by the AXML peer. They can also be
used to select parameter values for service calls issued
by the peer, as in Section 3.1. Similarly, updates of the
XML repository serve to modify a document without
having to load it entirely in main memory. The AXML
peer can thereby scale to millions of AXML documents.
It can serve XML or AXML documents and also take
advantage of Web services embedded in the documents
it stores.

The Active XML project: an overview 17

One can view this work as extending the AXML peer
with a mass storage functionality. However, one may also
see it as introducing more dynamicity and the manage-
ment of intensional information into a standard XML
repository.

The two experiments were promising but the result-
ing systems do not cover the entire functionality of the
AXML peer. The “official” AXML peer is therefore still
storing data in a file system.

4.7 User Interface

While Web services are essentially meant for commu-
nications between machines, applications are generally
meant for users. The AXML peer builds on the Tom-
cat dynamic Web serving capabilities to let developers
easily build Web applications based on the peer’s docu-
ments and services. Additionally, we developed custom
browser extensions to interact with AXML documents
and peers respectively. These user interface options are
discussed next.

The AXML peer provides the developers of Web ap-
plications with a generic JSP template library for gener-
ating Web pages from the AXML documents of the peer
and turning their embedded service calls into HTML
links (or forms, if some parameters of the calls need to be
provided by the user). The application developer simply
needs to write application-specific XSLT style-sheets to
define how the data contained in the AXML documents
should be presented to the user.

A particular application that we developed, (and which
comes with every AXML peer), is a Web-based manage-
ment interface. With this interface, a user can access and
modify the AXML documents of the peer, and she can
access, modify the definitions of AXML services provided
by the peer and test these services.

While such Web-based interfaces to the AXML peer
are an effective way for users to interact with it, in some
situations they are not adequate:

– First, users may receive an AXML document by e-
mail, or download one from a Web site. They should
be able to visualize the document, and take advan-
tage from embedded service calls, by activating them
and possibly changing the values of their parameters.
We developed the AXML browser, an extension to
the cross-platform Mozilla Firefox browser [60] that
allows just that. The implementation of this compo-
nent was done in Javascript and builds on the built-in
capabilities of Firefox for XML manipulation (DOM
parsing, XPath querying and XSLT transformations),
Web services invocation (SOAP API), and custom,
feature-rich user interface (XUL). A one-time, Web-
based installation of this plug-in enables its use for
all subsequently accessed AXML documents.

– Second, a developer or administrator may have to
manage several peers at once, and should be able to

do so without having to connect to the Web manage-
ment interface of each individual AXML peer. We
developed the AXML commander to that aim. This
stand-alone Firefox application allows the user to man-
age several peers at once, by viewing/modifying their
documents and services, and copying or moving con-
tents from one peer to another, or to their local disk.
Embedded service calls can be activated either lo-
cally (from the user’s machine), or remotely, from
the peer where the document resides. All communi-
cations with the managed peers are also performed
through service calls. We enriched the AXML peer
with basic Web services for downloading/uploading
documents and service definitions, and activating em-
bedded service calls. A screenshot of the AXML com-
mander is shown in Figure 12, which illustrates the
features mentioned above. For debugging purposes,
exchanged SOAP messages are also displayed by the
application.

Although these two applications are already usable, they
still leave a lot of room for improvement. In particular,
the AXML commander is still missing important features
such as access control and security mechanisms.

5 The AXML Peer: Experiences

We now describe some of the applications that we devel-
oped using AXML peers to validate our approach. All ap-
plications presented below were built using the features
of the AXML peer we have presented. All are based on
fairly small sets of AXML documents distributed among
the participating peers, and on AXML services declara-
tively specified as queries. After describing these appli-
cations, we will summarize the main conclusions we have
drawn so far from the use of AXML as a development
platform.

5.1 Demonstrations

Peer-to-peer auctions This is the first application we
built using AXML. It was demonstrated in [7]. The ap-
plication consists of a decentralized auctioning scenario.
Each peer has some items to sell, which other peers can
bid on. Each peer knows about some of the other peers,
and can search for items they provide. The returned an-
swers consist both of extensional data – items matching
the issued query, and intensional data, in the form of
service calls to get more items from other peers the re-
quester didn’t know about originally. Each item returned
by a query answer also contains a service call that can
be used to bid on the item. Eventually, when an auction
closes, the winner of the auction is notified.

The main goal of this application is to illustrate the
flexible discovery mechanism of new peers and auctions
which is made possible by the use of intensional answers,

18 Serge Abiteboul et al.

Fig. 12 AXML commander screenshot

and the possibility to perform actions on these auctions,
again through service calls which are shipped with the
answers.

RSS news syndication This second application was demon-
strated in [3]. It further shows the benefit of exchanging
AXML data, through a scenario based on the distributed
syndication and querying of news headlines. A number
of news sources (including actual news Web sites, such
as the New York Times, or Yahoo! news) expose their
latest headlines in a standard format called RSS [67].
AXML peers act as news brokers, integrating news from
several sources and/or from other news brokers. Queries
asked to one peer recursively propagate to the sources
and brokers it knows.

This application shows how services that aggregate
news headlines can be customized, to control how inten-
sional/extensional their answers are. This customization
happens without modifying their code (in this case, a
simple query on one of the peers’ AXML documents).
Instead, the customization is performed “declaratively”,
by varying the schemas used in the signatures of the ser-
vices. The rewriting algorithms presented in Section 2.3
are used to automatically match the specified schemas,
if possible. Such a customization can also be done by the
client of the service, since the application allows her to

specify a desired schema for the result as an additional
input parameter. The application also demonstrates con-
tinuous services, corresponding to news subscriptions,
These services are made constantly aware of the loca-
tion of the user, again using intensional information con-
trolled through types.

Electronic patient record management The goal of this
application, which was demonstrated in [2], is to show
that AXML can seamlessly manage distributed data and
the privacy of this data, through the example of sensi-
tive medical information. This is done by combining the
AXML language with GUPster [68], a framework devel-
oped at Lucent Technologies that unifies the description
of both data sources and access control requirements.

In this application, the lazy evaluation technique of
Section 2.4 is at the heart of the involved computa-
tions. It is used to seamlessly push queries in a uniform
way, both to relevant data sources and to Web services
in charge of protecting information (by restricting the
queries that can be asked).

The Active XML project: an overview 19

5.2 Academic and Industrial Collaborations

Content warehousing E.dot [36] was a French (RNTL)
project on content warehouse construction. The E.dot
system uses an AXML peer as a platform for a ware-
house definition, construction and maintenance. A high
level warehouse model is specified visually through a ded-
icated GUI. This model is then compiled into a set of
AXML documents and AXML services, which are main-
tained by an AXML peer. The warehouse also relies on a
set of external Web services, such as the Google WebAPI,
a Web crawler, a classification and clustering engine, and
a PageRank module. The system was tested on a partic-
ular application, namely the construction of a warehouse
on food risk management. In this application, the ware-
house takes advantage of external resources provided in
the form of Web services, e.g., relational databases con-
taining measurements and two domain ontologies. The
warehouse is dynamically enriched with data discovered
on the Web. This data is semi-automatically analyzed
and semantically enriched.

The declarative aspect of the approach is most use-
ful in a content warehouse context, because the design-
ers and users of the warehouse are typically non com-
puter scientists. For the particular application on food
risk management, they were biologists from the French
National Institute of Agronomy, and had some experi-
ence in knowledge management. They were very happy
with the tools developed in the project although there
is clearly a lot of room for improvements. One issue is
that tools to sequence the interaction with the warehouse
(in the spirit of workflow systems) were viewed as miss-
ing, which motivated the work on workflow extension to
AXML (see Section 3.2). Another issue was scalability,
which motivated the work on mass storage for the AXML
peer (see Section 4.6).

Telecom applications This ongoing joint work with tele-
com specialists at INRIA Rennes finds its motivation in
the Swan project between Alcatel, INRIA, and France
Telecom. One idea is that software and hardware com-
ponents get information on how to configure or reconfig-
ure themselves in the form of AXML data, where parts
that are likely to change are provided intensionally, in
order to seamlessly account for these changes. The use
of both push and pull modes of invocation is envisioned,
and AXML data should also prove useful to make compo-
nents dynamically aware of their environment. Also, we
have used AXML in the context of telecom network di-
agnosis. In short, each component of the system is mod-
eled as a communicating Petri net. The possible runs are
captured by the unfolding of the Petri nets, constrained
by the observed traces of execution. The diagnosis prob-
lem may then be stated as a recursive query on a large
volume of distributed data. This motivated the use of
AXML and a distributed query optimization technique
for AXML presented in [1].

Distribution of Mandriva Linux This ongoing work is
performed in the context of the Edos European project,
which aims at better controlling the production and dis-
tribution of Open Source software. Active XML is used
for the collective management of software packages and
their metadata by the developers.

Package locations in the network and package meta-
data are indexed and may be queried using the AXML-
based KadoP system, built on top of a distributed hash
table. Sets of packages located through such queries can
be obtained by developers using BitTorrent-based paral-
lel downloading. Also, developers may subscribe to dis-
tribution channels. When some update occurs or some
new version is released, subscribers are notified and may
automatically get new packages. Active XML services
provide the main communication functions in the sys-
tem: subscription, notification, querying, download acti-
vation.

In the application that is considered (Mandriva Linux),
there are thousands of developers sharing thousands of
packages, some of them quite large, in a P2P environ-
ment.

5.3 Lessons learned

Overall, the outcome of using the AXML language and
system to develop the applications described above has
been very positive. Thinking of distributed interactions
at a data level, in terms of (i) documents with embedded
calls, and (ii) local computations encapsulated as Web
services undeniably brings a higher level of abstraction,
and enables more declarative thinking than developing
the same applications at a code level, e.g., in Java.

However, developers are more used to traditional pro-
gramming paradigms, therefore the shift to AXML re-
quires some practice. To take an analogy with relational
databases, using SQL and deciding which parts of the
processing should be formulated as queries requires some
practice. Analogously, learning how to “design” an AXML
application requires specific skills. The development of
conceptual modeling tools suitable for the AXML para-
digm could help address this issue. The visual warehouse
model developed for the E.dot project can be viewed as
a first step in that direction.

Another lesson we learned is that for some applica-
tions, the AXML approach was just not adequate. In-
tuitively, this always happened when the task to per-
form were not “data-oriented” but “process-oriented”,
e.g. when a precise sequence of operations needs to be
carried out, or branching is involved. When such a behav-
ior is well isolated in a single peer, the natural solution
is to code the corresponding functionality in a program,
and to expose this program as a Web service, which can
be invoked in AXML documents. In case of a more global
process-oriented interaction, approaches in the spirit of
workflows, such as BPEL [24] are more adequate. As

20 Serge Abiteboul et al.

a first step, we already mentioned that service compo-
sitions defined in BPEL can be specified in an AXML
peer. Clearly, more work is needed to fully understand
the necessary interaction with workflow systems.

This discussion of the applications we built and the
lessons we learned from them concludes our presentation
of the AXML peer system. In the next section, we take a
more theoretical point of view to study the interactions
between several AXML peers. We consider global issues
such as termination, and distributed query evaluation.

6 AXML systems

A peer-to-peer AXML system involves several AXML
peers communicating with each other via service calls.
It is important, in such a distributed environment, to
understand how the peers interact and to be able to ver-
ify the properties of the overall system. For instance, we
may want to test for the termination of some global task
or globally optimize the usage of resources.

To analyze the behavior of such a distributed system,
we proposed a formal foundation for AXML systems.
Clearly, the general problem is complex, so we have lim-
ited our theoretical study to a restricted, yet powerful
enough model. We next briefly review this formal model
and theoretical results obtained in [6]. We then illustrate
how important issues like query optimization in a peer-
to-peer context can be revisited in the light of this formal
model.

6.1 Positive AXML

In [6], we consider a simple model where AXML docu-
ments are modeled as unordered labeled trees with two
kinds of nodes, data nodes and function nodes (the lat-
ter represent calls to Web services). The semantics of a
document is defined as the tree obtained at the limit of
an arbitrary fair sequence of service invocations, i.e., a
sequence where any service call that may be materialized
will eventually be. Once fired, each service call remains
active. This is meant to capture a peer-to-peer data man-
agement based on streams of data (both in pull and push
mode).

In that work, we consider only monotonic Web ser-
vices. The documents containing the calls are monotoni-
cally enriched by the answers. This is in the style of peer-
to-peer computations a la Kazaa [52], where data (e.g.,
the results of a search) is incrementally collected in a dis-
tributed network of peers. Observe that non-monotonic
service calls do occur in practice. However, they are hard
to envision in such a setting: one can never assume that a
fact is false, since this fact may be stated in some parts of
the network not investigated yet. Ignoring order in XML

documents and non-monotonic services are serious limi-
tations and more powerful models are also clearly worth
investigating.

We showed in [6] that if services are monotonic, then
the semantics of a document is possibly infinite but unique
(up to some equivalence relation), i.e., that this seman-
tics is independent of the order of service invocations.
So, monotonicity guarantees some form of confluence. On
the other hand, monotonicity does not guarantee termi-
nation. A call to a service may activate a call to another
service, and so on, possibly recursively. Also, a service
may return as an answer some data including new ser-
vice calls, which may in turn return more data including
more calls, etc. Therefore, monotonic computations may
never terminate.

We went further in the analysis of AXML systems
where the semantics of service calls is known at analy-
sis time. Because of this knowledge, the analysis of the
systems may tell us more about their properties. In par-
ticular, we considered a class of AXML documents and
services, which we call positive AXML, where Web ser-
vices are defined using a monotonic query language that
corresponds to a core tree-pattern fragment of XQuery.
Because of the recursion between documents and ser-
vices, we still obtain an important expressive power. In
particular, a large class of Turing machine computations
can be simulated, and therefore termination is undecid-
able for such systems. We have isolated a subclass of
these systems based on simple queries, with interesting
properties. In short, simple queries are obtained by disal-
lowing the use in tree pattern queries of variables ranging
over subtrees of documents. Intuitively, such variables
can be used to copy subtrees of arbitrary complexity.
We showed that a number of interesting properties are
decidable for positive systems using simple queries only.
For instance, termination is decidable when AXML ser-
vices are defined by simple queries. The proofs are based
on tree automata.

6.2 Distributed query evaluation

We focused in Section 2.4 on the problem of optimiz-
ing a single query in isolation (in a single peer). In fact,
the evaluation of a query in an AXML system may in-
volve the evaluation of many service calls, and therefore
of many queries at different peers. Optimization now be-
comes a global issue, i.e., we want to optimize (for the
entire system of queries) a number of resources such as
communication, total execution time or response time.
This is taking us to the general setting of distributed
database systems [71] and many techniques developed
there are relevant to our context.

Of particular importance (as in distributed database
systems in general) is the replication of data and ser-
vice calls on various peers, to speed up the evaluation
of query services. This issue is investigated in [8] where

The Active XML project: an overview 21

in particular, the selection of which services and data to
replicate is considered, given some workload and some
cost model. To be able to support such distributed query
optimization, we rely on one main primitive, namely the
possibility to install a document or a service at a partic-
ular peer. This will be best illustrated with an example.

Suppose we want to perform at peer P1 a join of
three relations, say R1 stored locally, and R2, R3 stored,
respectively, at peers P2 and P3. P1 can get R2, R3 and
perform the join locally. Alternatively, P1 could, for in-
stance, install at P2 a service that would compute the
join of the two remote relations and call that service. To
compute the same join with a semi-join technique, one
would have to install more services on the various peers.
This is illustrating the installation of services. It is of-
ten interesting to also be able to store data at remote
peers, e.g., to cache results for re-use. This is achieved
by installing AXML documents.

The AXML peer was extended to allow the installa-
tion of documents or services at remote peers (assuming
appropriate access rights). This capacity, together with
query rewriting, transforms AXML into a middleware
system appropriate for supporting distributed query pro-
cessing. Details on the use of replication of data and ser-
vices to speed up the evaluation of a query in an AXML
system may be found in [8].

To conclude this section, we mention two works around
distributed query optimization that are founded on AXML.
The first is an extension of the query-subquery technique
from deductive databases [75], whereas the second is a
proposal of an algebra for distributed data management
that extends AXML.

AXML and deductive databases

We developed a distributed query optimization technique
for positive AXML systems, namely AXML-QSQ [1].
The core of the technique consists in pushing queries to
other peers (acting as servers) and passing information
sideways between peers. A difficulty here is that recur-
sion is built in the system via service calls. This is clearly
reminiscent of issues encountered in (distributed) deduc-
tive databases and query optimization techniques devel-
oped in those contexts such as query-subquery (QSQ)
[75] and Magic Sets [74]. In these two last works, the fo-
cus is on materializing only “relevant” tuples to answer
a query over a datalog program. Similarly, AXML-QSQ
generalizes QSQ so that only relevant service calls are ac-
tivated (in the entire AXML system) and furthermore,
that queries are pushed when possible to also limit the
quantity of information that is materialized.

To illustrate the AXML-QSQ technique, suppose that
we have some peers Pi (i ≥ 1). Each peer Pi stores lo-
cally a list of songs that can be accessed via a service
MySongsi. Peer Pi exports a list of songs with a ser-
vice Songsi. Songsi is defined as the union of MySongsi

and Songsi+1. Now suppose someone at peer P1 wants to
know about songs by Carla Bruni. To do so, she needs to
evaluate σ1(Songs1) where σ1 = σ(singer=”Carla Bruni”).
The selection is pushed to MySongs1, which is a sim-
ple local selection, and to Songs2, i.e., it leads to evalu-
ating σ1(Songs2) at P2. Next, we are lead to evaluate
σ1(Songs3) at P3, etc., so σ1 is pushed to more and
more distant peers. Observe also that this is a place
where continuous queries (mentioned in Section 3 and
supported by the formal model described above) are nec-
essary because P2 can start sending answers to P1 before
she is done with computing σ1(Songs2). Indeed, in case
of cyclic computation the use of continuous queries is
compulsory. Otherwise, the computation may never ter-
minate. The issue of detecting termination is critical in
this setting; see [1].

6.3 A distributed algebra based on AXML

As data management applications grow more complex
and distributed, query processing also becomes more com-
plex and distributed. Furthermore, the juxtaposition of
different computing models prevents reasoning on the
application as a whole, and wastes important opportuni-
ties to improve performance. It is argued in [13], that dis-
tributed query evaluation should be based on the evalua-
tion of queries expressed in a common algebra, performed
by collaborating query processors, installed on different
peers and exchanging streams of XML data. We would
also like query optimization to be performed in a dis-
tributed manner by algebraic query rewriting.

Relational calculus or SQL provides a logical lan-
guage for centralized table data. By analogy, AXML can
be seen as providing a logic for distributed tree data. [13]
proposes an extension of AXML as an algebra for dis-
tributed tree data. They introduce two main extensions
to AXML: (i) generic data and services and (ii) a more
explicit control of the distribution. Generic data and ser-
vices are data and services available on several sites, an
essential feature to capture replication and the fact that
a query service may be evaluated by any peer with query
processing facilities. The AXML algebra also provides
the capability to explicitly control the shipping of data
and queries (explicit send and receive operators), an es-
sential feature to specify the delegation of computations.

7 Related work

It should be observed that the AXML approach touches
upon a number of important areas of the database field.
Clearly it is based on semi-structured data. We already
mentioned connections with deductive databases. The
activation of some calls contained in a document essen-
tially leads to active databases. AXML services may be
in push mode, which relates to subscription queries and

22 Serge Abiteboul et al.

stream databases. We consider previous works from these
areas, and mention previous works on workflow and peer-
to-peer systems.

Data integration AXML was primarily developed as a
framework for the integration of distributed, autonomous
sources. Data integration systems typically consist of
data sources, which provide information, and of medi-
ators or warehouses, which integrate it with respect to
an integration schema, typically using mapping rules,
see, e.g., [39,54,55] In fact, AXML takes an hybrid path
between mediator systems (the integration is virtual)
and warehouses [43] (all data is materialized). Signifi-
cant attention has also been devoted to “semantic media-
tion” [17,44], where the integration involves an ontology.
By contrast to these schema-based or ontology-based ap-
proaches, mappings between data sources are captured
in AXML by service calls embedded in the data, with
new relationships discovered at run-time, in the answers
of service calls, somewhat in the style of the dynamic dis-
covery of mappings in [44]. The AXML approach is, in
some sense, complementary to schema-based approaches.
For instance, tools developed for schema/data transla-
tion and semantic integration can be wrapped as Web
services and used within an AXML framework.

Deductive databases The presence of service calls that
can be materialized, and this recursively, makes AXML
documents intensional in the sense of deductive data-
bases. Intensional information was mostly studied in a
relational setting, in the context of Datalog, a language
for deductive databases [11,58]. An important question
in the context of intensional information is that of the op-
timization of query evaluation. We explained how some
techniques from deductive databases have been adapted
to the AXML context.

Data with embedded calls As already mentioned, the idea
of embedding function calls in data is not new. Embed-
ded functions are already present in relational systems
[74] as stored procedures. They are indeed proposed as
first-class datatypes in [70]. Of course, method calls form
a key component of object databases [28]. In the Web
context, scripting languages such as PHP [65] or JSP
[50] have made popular the integration of processing in-
side HTML or XML documents. Combined with stan-
dard database interfaces such as JDBC and ODBC, func-
tions are used to integrate results of queries (e.g., SQL
queries) into documents. A representative example for
this is Oracle XSQL [64].

XML with embedded calls Service calls in semi-structured
data are considered in the context of Lore and Lorel [46,
53]. Our work is also related to Microsoft Smart Tags
[66], where service calls can be embedded in Office doc-
uments. In Smart Tags, this is meant mainly to enrich
the user experience by providing contextual tools, while

our goal is to provide means of controlling and enriching
the use of Web service calls for data management pur-
poses, in a distributed setting. Other systems, proposed
languages based on XML with embedded calls to Web
services, like Macromedia MX [31], or Apache Jelly [49].
Our results can be used in such settings.

Active databases and triggers The present work is, in
some sense, a continuation of previous works on Ac-
tiveViews [4]. There, declarative specifications allowed
for the automatic generation of Web applications where
users could cooperate via data sharing and change con-
trol. The main differences with ActiveViews are that (i)
AXML promotes peer-to-peer relationships vs. interac-
tions via a central repository, and (ii) the cornerstones of
the AXML language are XPath, XQuery and Web ser-
vices vs. object databases [28]. The activation of service
calls is also closely related to the use of triggers [74] in
relational databases, or rules in active databases [77]. Ac-
tive rules were adapted to the XML/XQuery context [22]
and the firing of Web service calls [23] was considered.
Our work goes beyond those by promoting the exchange
of AXML data.

Service choreography The integration and composition
of Web services is an active field of research [76]. Be-
fore Web services appeared, intensional data was used in
Multilisp [45], under the form of “futures”, i.e., handles
to results of ongoing computations, to allow for paral-
lelism. Ambients [27,26], as bounded spaces where com-
putation happens, also provide a powerful abstraction
for processes and devices mobility on the Web. Standard
languages for service workflow have even been proposed
such as IBM’s Web Services Flow Language [80] or Mi-
crosoft’s XLang [81], which converged into the BPEL4WS
proposal [24]. An overview of existing works can be found
in [47]. In the terminology of this latter work, the focus of
AXML is not on workflow or process-oriented techniques
[29] but more on data flow.

Peer-to-peer Peer computing is gaining momentum as a
large-scale resource sharing paradigm by promoting di-
rect exchange between equal peers, see [52] or [59]. We
propose a system where interactions between peers are
at the core of the data model, through the use of service
calls. Moreover, it allows peers to play different roles,
and does not impose strong constraints on interaction
patterns between peers, since they are allowed to define
and use arbitrary Web services. While we do not con-
sider issues such as dynamic data placement, distributed
indexing, or automatic peer discovery, solutions devel-
oped in the peer-to-peer community for such problems
can benefit our system as well as enrich it.

In a p2p context, security is a critical issue. To con-
clude, we would like to mention some works around AXML
in that direction. In [25], a new framework based on the
notion of trust (Trusted AXML) is proposed for handling

The Active XML project: an overview 23

security in Active XML. In [2,10], security and access
control are considered in the context of AXML.

8 Conclusion

The relational model and the SQL query language have
been important breakthroughs for data management in
centralized information systems. With the advent of the
Web, new data management paradigms are being con-
sidered, to master an inherently distributed planet-scale
information system. Semistructured data, and its stan-
dard incarnation XML, are being accepted as the suit-
able model for data exchange over the Web. XQuery, a
query language for XML promoted by the W3C, is often
advertised as the SQL of the Web. However, XQuery only
allows asking queries on centralized collections of docu-
ments, and does not capture the distributed essence of
the Web. Thus, XQuery cannot pretend alone to serve
as a comprehensive language for Web data management.
Based on XML, Web services and XQuery, we proposed
in this paper a first step towards such a language for
Web data management.

Active XML is based on XML with embedded calls
to Web services. These embedded calls allow AXML doc-
uments to integrate external information. With AXML
services and the exchange of AXML data, new perspec-
tives open for dynamic collaboration among peer systems
on the Web.

We mentioned a number of works that have been per-
formed around AXML. In particular, we showed how to
use schemas to control the exchange of AXML data. We
mentioned techniques, some related to deductive data-
bases, to efficiently answer queries in this context. We
briefly discussed some work on managing distributed and
replicated (A)XML documents. Finally, we presented the
implementation of a system for supporting AXML in a
peer-to-peer environment. The system is now distributed
as Opensource software [20] within the ObjectWeb frame-
work [62].

AXML opens up an array of challenging and excit-
ing issues, notably in concurrency control, query opti-
mization, access control, security, workflow management
or fault tolerance. Research is needed on these various
fronts. Now from an AXML application viewpoint, one
would like to consider each such aspect separately in the
style of aspect-oriented programming [18]. For instance,
one would prefer to ignore concurrency control issues
when designing a data management application, or secu-
rity issues when considering concurrency control. Of par-
ticular importance is the issue of distributed query opti-
mization. As already mentioned, an extension of AXML
has been recently proposed as an algebra for distributed
management [13]. Encouraged by experiences in query
optimization involving AXML, in particular [8,1,5], we
believe that this is a promising direction. Clearly a lot
remains to be done.

Acknowledgments The authors would like to thank all
the people who participated in the Active XML project:
Zoe Abrams, Bernd Amann, Vikas Bansal, Jérôme Baum-
garten, Angela Bonifati, Bogdan Cautis, Gregory Cobena,
Cosmin Cremarenco, Frederic Dang Ngoc, Eric Daron-
deau, Florin Dragan, Ioana Manolescu, Bogdan-Eugen
Marinoiu, Radu Pop, Nicoleta Preda, Shobhit Raj
Mathur, Gabriela Ruberg, Nicolaas Ruberg, Emanuel
Taropa, Minh Hoang To, Gabriel Vasile, Dan Vodislav,
Boris Vrdoljak and Roger Weber.

In particular, many ideas in the present paper were
influenced by discussions with Ioana Manolescu who co-
authored several of the papers on AXML that were cited.

References

1. Abiteboul, S., Abrams, Z., Milo, T.: Diagnosis of Asyn-
chronous Discrete Event Systems - Datalog to the Res-
cue! In: Proc. of ACM PODS (2005)

2. Abiteboul, S., Alexe, B., Benjelloun, O., Cautis, B., Fun-
dulaki, I., Milo, T., Sahuguet, A.: An Electronic Patient
Record on Steroids : Distributed, Peer to Peer, Secure
and Privacy Conscious (demo). In: Proc. of VLDB (2004)

3. Abiteboul, S., Amann, B., Baumgarten, J., Benjelloun,
O., Ngoc, F.D., Milo, T.: Schema-driven Customization
of Web Services (demo). In: Proc. of VLDB (2003)

4. Abiteboul, S., Amann, B., Cluet, S., Eyal, A., Mignet,
L., Milo, T.: Active Views for Electronic Commerce. In:
Proc. of VLDB (1999)

5. Abiteboul, S., Benjelloun, O., Cautis, B., Manolescu, I.,
Milo, T., Preda, N.: Lazy Query Evaluation for Active
XML. In: Proc. of ACM SIGMOD (2004)

6. Abiteboul, S., Benjelloun, O., Milo, T.: Positive Active
XML. In: Proc. of ACM PODS (2004)

7. Abiteboul, S., Benjelloun, O., Milo, T., Manolescu, I.,
Weber, R.: Active XML: Peer-to-Peer Data and Web Ser-
vices Integration (demo). In: Proc. of VLDB (2002)

8. Abiteboul, S., Bonifati, A., Cobena, G., Manolescu, I.,
Milo, T.: Dynamic XML Documents with Distribution
and Replication. In: Proc. of ACM SIGMOD (2003)

9. Abiteboul, S., Buneman, P., Suciu, D.: Data on the
Web: From Relations to Semistructured Data and XML.
Morgan Kaufmann Publishers, San Francisco, California
(1999)

10. Abiteboul, S., Cautis, B., Fiat, A., Milo, T.: Digital sig-
natures for modifiable collections. In: ARES, pp. 390–399
(2006)

11. Abiteboul, S., Hull, R., Vianu, V.: Foundations of
Databases. Addison-Wesley Publishing Company, Read-
ing, Massachusetts (1995)

12. Abiteboul, S., Manolescu, I., Preda, N.: Constructing and
Querying Peer-to-Peer Warehouses of XML Resources.
Workshop on Semantic Web and Databases (2004)

13. Abiteboul, S., Manolescu, I., Taropa, E.: A framework
for distributed xml data management. In: EDBT, pp.
1049–1058 (2006)

14. Abiteboul, S., Milo, T., Benjelloun, O.: Regular and Un-
ambiguous Rewritings for Active XML. In: Proc. of ACM
PODS (2005)

15. The Active XML homepage.
http://activexml.net/

16. Aguilera, V.: The X-OQL homepage.
http://www-rocq.inria.fr/∼aguilera/xoql

17. Amann, B., Beeri, C., Fundulaki, I., Scholl, M.: Querying
XML Sources Using an Ontology-Based Mediator. In:
Proc. of CoopIS (2002)

24 Serge Abiteboul et al.

18. The Aspect-Oriented Software Development homepage.
http://aosd.net/index.php

19. The Apache Axis soap Engine.
http://xml.apache.org/axis

20. Open Source Active XML.
http://forge.objectweb.org/projects/activexml/

21. The BitTorrent Homepage.
http://www.bittorrent.com

22. Bonifati, A., Braga, D., Campi, A., Ceri, S.: Active
XQuery. In: Proc. of ICDE (2002)

23. Bonifati, A., Ceri, S., Paraboschi, S.: Pushing Reactive
Services to XML Repositories using Active Rules. In:
Proc. of the Int. WWW Conf. Hong Kong, China (2001)

24. Business Process Execution Language for Web Services
Version 1.1. Available from
http://www.ibm.com/developerworks/library/ws-bpel/

25. Canaud, E., Benbernou, S., Hacid, M.S.: Managing trust
in active xml. In: IEEE International Conference on Ser-
vice Computing (2004)

26. Cardelli, L.: Abstractions for Mobile Computation. In:
Secure Internet Programming, pp. 51–94 (1999)

27. Cardelli, L., Gordon, A.D.: Mobile Ambients. In: M. Ni-
vat (ed.) Proc. of FoSSaCS, vol. 1378, pp. 140–155.
Springer-Verlag, Berlin, Germany (1998)

28. Cattell, R.G.G.: The Object Database Standard:
ODMG-93. Morgan Kaufmann, San Mateo, California
(1994)

29. Christophides, V., Hull, R., Kumar, A., Siméon, J.:
Workflow Mediation using VorteXML. IEEE Data Engi-
neering Bulletin 24(1), 40–45 (2001)

30. Cobena, G., Abiteboul, S., Marian, A.: Detecting
Changes in XML Documents. In: Proc. of ICDE (2002)

31. Macromedia Coldfusion MX (2004).
http://www.macromedia.com/software/coldfusion/

32. Cremarenco, C.: Implementation of the Active XML Peer
for the J2ME platform (2003). Internship report, avail-
able from http://purl.org/net/axml

33. Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Sama-
rati, P.: Securing XML Documents. In: Proc. of EDBT
(2001)

34. Active XML and Xyleme. Mḿoire CNAM (2005)
35. The Document Object Model (DOM).

http://www.w3.org/DOM/
36. RNTL Project E.dot, Content Warehouse open to the

Web.
http://www-rocq.inria.fr/ amann/edot/

37. exist, an open source native XML database.
http://exist.sourceforge.net/

38. The FreePastry Distributed Hash Table.
http://freepastry.rice.edu

39. Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Ra-
jaraman, A., Sagiv, Y., Ullman, J., Widom, J.: The
TSIMMIS Approach to Mediation: Data Models and
Languages. Journal of Intelligent Information Systems
8, 117–132 (1997)

40. The Gnutella homepage.
http://www.gnutella.com

41. Goldman, R., Widom, J.: DataGuides: Enabling
Query Formulation and Optimization in Semistructured
Databases. In: Proc. of VLDB (1997)

42. Gupta, A.: Integration of Information Systems: Bridging
Heterogeneous Databases. IEEE Press (1989)

43. Gupta, H.: Selection of Views to Materialize in a Data
Warehouse. In: Proc. of ICDT, pp. 98–112 (1997)

44. Halevy, A.Y., Ives, Z.G., Mork, P., Tatarinov, I.: Piazza:
data management infrastructure for semantic web appli-
cations. In: Proc. of the Int. WWW Conf. (2003)

45. Halstead, R.: Multilisp: A Language for Concurrent Sym-
bolic Computation. ACM Trans. on Programming Lan-
guages and Systems 7(4), 510–538 (1985)

46. Hugh, J.M., Abiteboul, S., Goldman, R., Quass, D.,
Widom, J.: Lore: A Database Management System for
Semistructured Data. Tech. rep., Stanford University
Database Group (1997)

47. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-
services: a look behind the curtain. In: Proc. of ACM
PODS (2003)

48. The SUN Java Technology.
http://java.sun.com/

49. Jelly: Executable XML.
http://jakarta.apache.org/commons/sandbox/jelly

50. SUN’s Java Server Pages.
http://java.sun.com/products/jsp/

51. JXTA.
http://www.jxta.org/

52. The Kazaa Homepage.
http://www.kazaa.com

53. Lahiri, T., Abiteboul, S., Widom, J.: Ozone: Integrat-
ing Structured and Semistructured Data. In: Proc. Int.
Workshop on Database Programming Languages (1999)

54. Levy, A., Rajaraman, A., Ordille, J.: Querying Hetero-
geneous Information Sources Using Source Descriptions.
In: Proc. of VLDB, pp. 251–262 (1996)

55. Manolescu, I., Florescu, D., Kossmann, D.: Answering
XML queries over heterogeneous data sources. In: Proc.
of VLDB (2001)

56. Microsoft and IBM: The WS-Security specification.
http://www.ibm.com/webservices/library/
ws-secure/

57. Milo, T., Abiteboul, S., Amann, B., Benjelloun, O., Ngoc,
F.D.: Exchanging intensional XML data. In: Proc. of
ACM SIGMOD (2003)

58. Molina, H., Ullman, J., Widom, J.: Database Systems:
The Complete Book. Prentice Hall (2002)

59. The Morpheus homepage.
http://www.morpheus-os.com

60. The Mozilla Firefox Browser.
http://www.mozilla.com/firefox

61. Muscholl, A., Schwentick, T., Segoufin, L.: Active
Context-Free Games. In: Proc. of STACS (2004)

62. ObjectWeb, Open Source Middleware.
http://forge.objectweb.org/

63. Onose, N., Simeon, J.: XQuery at your web ser-
vice. In: Proc. of the Int. WWW Conf., pp. 603–
611. ACM Press, New York, NY, USA (2004). DOI
http://doi.acm.org/10.1145/988672.988754

64. Oracle XML Developer’s Kit for Java.
http://otn.oracle.com/tech/xml/

65. The PHP Hypertext Preprocessor.
http://www.php.net

66. Powell, J., Maxwell, T.: Integrating Office XP Smart
Tags with the Microsoft .NET Platform.
http://msdn.microsoft.com (2001)

67. RSS 1.0 Specification.
http://purl.org/rss/1.0

68. Sahuguet, A., Hull, R., Lieuwen, D., Xiong, M.: Enter
Once, Share Everywhere: User Profile Management in
Converged Networks. In: Proc. of CIDR (2003)

69. Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/SOAP

70. Stonebraker, M., Anderson, E., Hanson, E., Rubenstein,
B.: QUEL as a data type. In: Proc. of ACM SIGMOD
(1984)

71. T. Özsu and P. Valduriez: Principles of Distributed
Database Systems, 2nd Edition. Prentice-Hall (1999)

72. Tatarinov, I., Ives, Z., Levy, A., Weld, D.: Updating
XML. In: Proc. of ACM SIGMOD (2001)

73. The Apache Tomcat Servlet Container.
http://jakarta.apache.org/tomcat

74. Ullman, J.: Principles of Database and Knowledge Base
Systems. Computer Science Press (1989)

The Active XML project: an overview 25

75. Vieille, L.: Recursive axioms in deductive databases: The
Query/Subquery approach. In: L. Kerschberg (ed.) Proc.
First Intl. Conf. on Expert Database Systems, pp. 179–
193 (1986)

76. Weikum, G. (ed.): Special Issue: Infrastructure for Ad-
vanced E-Services, vol. 24, no. 1 (2001)

77. Widom, J., Ceri, S.: Active Database Systems: Triggers
and Rules for Advanced Database Processing. Morgan
Kaufmann Publishers (1996)

78. Wiederhold, G.: Intelligent Integration of Information.
In: Proc. of ACM SIGMOD, pp. 434–437. Washington,
DC (1993)

79. Web Services Definition Language (WSDL).
http://www.w3.org/TR/wsdl

80. Web Services Flow Language (WSFL 1.0).
Available from http://www.ibm.com/

81. XLANG, Web Services for Business Process Design.
http://www.gotdotnet.com/team/xml wsspecs/xlang-c

82. The Extensible Markup Language (XML) 1.0 (2nd Edi-
tion).
http://www.w3.org/TR/REC-xml

83. The XML Schema specification.
http://www.w3.org/TR/XML/Schema

84. XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery

85. XSL Transformations (XSLT) Version 1.0.
http://www.w3.org/TR/xslt

86. Xyleme Home Page.
http://www.xyleme.com

