Active XML, Security and Access Control*

Serge Abiteboul'? Omar Benjellount Bogdan Cautis! Tova Milo?
'INRIA-Futurs and LRI-Université Paris-Sud

2Xyleme SA

3Tel Aviv University

Abstract
XML and Web services are revolutioning the automatic management of distributed information, somewhat in the

same way that HTML, Web browsers and search engines modified human access to world wide information. We
argue in this paper that the combination of XML and Web services allows for a novel distributed data management
paradigm, where the exchanged information mixes materialized and intensional, active, information.

We illustrate the flexibility of this approach by presenting Active XML, a language that is based on embedding
Web service calls in XML data. We focus on two particular issues, namely security and access control.

1. Introduction

The field of distributed data management has centered for many years around the relational
model. More recently, the Web has made the world wide (or intranet) publication of data much
simpler, by relying on HTML as a standard language, universally understood by Web browsers,
on plain-text search engines and on query forms. However, because HTML is more of a presen-
tation language for documents than a data model, and because of limitations of the core HTTP
protocol, the management of distributed information remained cumbersome. The situation is
today dramatically improving with the introduction of XML and Web services. The Extensible
Markup Language, XML [21], is a self-describing, semi-structured data model that is becoming
the standard format for data exchange over the Web. Web services [24] provide an infrastruc-
ture for distributed computing at large, independently of any platform, system or programming
language. Together, they provide the appropriate framework for distributed management of
information.

Active XML (AXML, for short), is a declarative framework that harnesses these emerging
standards for the integration and management of distributed Web data. An AXML document is
an XML document where some of the data is given explicitly, while some portions are given
only intensionally by means of embedded calls to Web services. By calling the services, one
can obtain up-to-date information. In particular, AXML provides control over the activation
of service calls both from the client side (pull) or from the server side (push). In AXML, all
communications occur through service calls. Moreover, AXML encourages an approach to data
exchange based on active messages, that is, messages that are AXML documents. The latter
can be used both for the input parameters of service calls and for the returned results.

Choosing which parts of a should be given explicitly and which should be given in an ac-
tive/intensional manner may be motivated and influenced by various parameters. These include
logical considerations, such as knowledge enrichment or context awareness, and physical con-
siderations like performance or capabilities.

*The research was partly funded by the RNTL Project e.dot and the French ACI MDP2P

In the present paper, we focus on the use of AXML for the management of security and
access control in the context of distributed data exchange. Such aspects are typically considered
in isolation from query processing. Indeed, the “historical” data models (e.g., the relational
model) do not directly address such issues. This is perhaps acceptable in a centralized context,
where a unique system is in charge of all data management aspects. It is much less so in the
context of distributed data management, in particular when the various systems that are involved
are autonomous. We will argue here that the model we recently proposed, namely Active XML,
overcomes this separation.

It should be noted that the idea of mixing data and code is not new. Functions embedded in
data were already present in relational systems [18] as stored procedures. Also, method calls
form a key component of object-oriented databases [9]. In the Web context, scripting languages
such as PHP or JSP have made popular the integration of (query) processing inside HTML or
XML documents. Embedding calls to Web services in XML documents is just one step further,
but is indeed a very important one. The novelty here is that since both XML and Web services
are becoming standards, AXML documents can be universally understood, and therefore can be
exchanged.

The rest of this paper is organized as follows. We first briefly recall some key aspects
of XML, Web services (Section 2) and Active XML (Section 3). The following two sections
informally discuss security and access control. The last section is a conclusion.

2. XML and Web services
In this section, we briefly discuss the context of our work, i.e., XML and Web services.
XML

XML is a new data exchange format promoted by the W3C [23] and widely adopted by
industry. An XML document can be viewed as a labeled ordered tree, as seen on the example *
of Figure 1. XML is becoming a lingua franca, or more precisely an agreed upon syntax,
that most pieces of software can understand or will shortly do. Unlike HTML, XML does not
provide any information about the document presentation. This is typically provided externally
using a CSS or XSL stylesheet.

XML documents may be typed using a language called XML Schema [22]. A schema
mainly enforces structural relationships between labels of elements in the document tree. For
instance, it may request a movie element to consist of a title, zero or more authors and reviews.
The typing proposed by XML Schema is very flexible, in the sense that it can describe, for
instance, an HTML webpage, as well as a relational database instance, thus marrying the docu-
ment world with the structured or semistructured world of databases. The presence of structure
in XML documents enables the use of queries beyond keyword search, using query languages
such as XPath or XQuery.

IWe will seein the next section that this XML document is also an Active XML document.

<di rectory>
<novi es>
<di rect or >Hi t chcock</ di r ect or >
<sc service="novi es@l | oci ne. cont’ >Hi tchcock</sc>
<novie> <title>Vertigo</title>
<actor>J. Stewart</actor> <actor>K. Novak</actor>
<revi ews> <sc service="reviews@i ne.com' >Verti go</sc></revi ens>
</ novi e>
<novi e> <title>Psycho</title>
<actor>N. Bates</actor>
<revi ews> <sc service="revi ews@i ne. cont >Psycho</sc></revi ews>
</ novi e>
</ novi es>
</directory>

directory

movies

directm

movie movie

Hitchcock movies@allocine.com N
title

Hitchcock
title
/ actor reviews \ actor reviews
actor
"Vertigo" ‘ "Psycho" ‘
"] Stewart" reviews@cine.com reviews@cine.com
“K. Novak" ‘ N. Bates ‘
"Vertigo" "Psycho"

Figure 1: An Active XML document and its tree representation

Web Services

Web services form a major step in the evolution of the Web. Based on Web services, Web
servers, that originally provide HTML pages for human consumption, become gateways to dis-
tributed resources. Although most of the hype around Web services comes from e-commerce,
one of their main current uses is for the management of distributed information. If XML pro-
vides the data model, Web services provide the adequate abstraction level to describe the various
actors in data management such as databases, wrappers or mediators and to manage the com-
munications between them.

Web services in fact consist of an array of emerging standards. To find the desired service,
one can query the yellow-pages: a UDDI [20] directory (Universal Discovery Description and
Integration). Then, to understand how to interact with it, one relies on WSDL [25] (Web Ser-
vice Definition Language), something like Corba’s IDL. One can then access the service using
SOAP [19], an XML-based lightweight protocol for the exchange of information. Of course,
life is more complicated, so one often has to sequence operations (see Web Services Choreog-
raphy [26]) and consider issues such as confidentiality, transactions, etc.

XML and Web services are nothing really new from a technical viewpoint. However, their
use as a large scale infrastructure for data sharing and communication provides a new, trendy
environment to utilize some old ideas in a new context. For instance, tree automata techniques
regained interest as they best model essential manipulations on XML, like typing and querying.

This new distributed, setting for data and computation also raises many new challenges for
computer science research in general, and data management in particular. For instance, data
sources ought to be discovered and their informations integrated dynamically, and this may
involve data restructuring and semantic mediation. Classical notions such as data consistency
and query complexity must be redefined to accommodate the huge size of the Web and its fast
speed of change.

3. Active XML

To illustrate the power of combining XML and Web services, we briefly describe Active
XML, a framework based on the idea of embedding calls to Web services in XML documents.
This section is based on works done in the context of the Active XML project [8].

In Active XML (AXML for short), parts of the data are given explicitly, while other parts
consist of calls to Web services that generate more data. AXML is based on a P2P architecture,
where each AXML peer is a repository of persistent AXML documents. It acts as a client, by
activating Web service calls embedded in its documents, and also acts as a server, by providing
Web services that correspond to queries or updates over its repository of documents. The acti-
vation of calls can be finely controlled to happen periodically, in reaction to some particular (in
the style of database triggers), or in a “lazy” way, whenever it may contribute data to the answer
of a query.

AXML is an XML dialect, as illustrated by the document in Figure 1. (Note that the syntax
is simplified in the example for presentation purposes.) The sc elements are used to denote
embedded service calls. Here, reviews are obtained from ci ne. com and information about
more Hitchcock movies may be obtained from al | oci ne. com The data obtained from the
call to al | oci ne. comcorresponds to the shaded part of the tree. In case the relationship
between data and the service call is maintained, we say that data is guarded by the call.

The data obtained by a call to a Web service may be viewed as intensional (it is originally
not present). It may also be viewed as dynamic, since the same service call possibly returns dif-
ferent, data when called at different times. When a service call is activated, the data it returns is
inserted in the document that contains it. Therefore, documents evolve in time as a consequence
of call activations. Of particular importance is thus the decision to activate a particular service
call. In some cases, this activation is decided by the peer hosting the document. For instance, a
peer may decide to call a service only when the data it provides is requested by a user; the same
peer may choose to refresh the data returned by another call on a periodic basis, say weekly. In
other cases, the service provider may decide to send updates to the client, for instance because
the latter registered to a subscription-based, continuous service.

A key aspect of this approach is that AXML peers exchange AXML documents, i.e., doc-
uments with embedded service calls. Let us highlight an essential difference between the ex-
change of regular XML data and that of AXML data. In frameworks such as Sun’s JSP or PHP,
dynamic data is supported by programming constructs embedded inside documents. Upon re-
quest, all the code is evaluated and replaced by its result to obtain a regular, fully materialized
HTML or XML document. But since Active XML documents embed calls to Web services,
and the latter provide a standardized interface, one does not need to materialize all the service
calls before sending some data. Instead, a more flexible data exchange paradigm is possible,
where the sender sends an XML document with embedded service calls (namely, an AXML
document) and gives the receiver the freedom to materialize the data if and when needed.

More motivationsfor exchanging AXML data

We now briefly consider some extra motivations for peers to exchange active messages.

A first family of motivations concerns enabling a client to autonomously reuse pieces of
information in the result of a service invocation without having to invoke the service again.
Another main motivation is to provide dynamic information that adapts to changes over time.
Also, an active answer allows the service to return directly some partial extensional informa-
tion, along with some service calls to obtain more (in the style of answers of search engines).
In general, active answers provides a more flexible paradigm for dealing with information such
as summarization, context awareness, access to metadata, access to methods to enrich data, etc.

Furthermore, besides such logical motivations for using active answers, the notion of an
active answer may be useful for guiding the evaluation of queries, when information and query
processing are distributed. To see one aspect that typically plays an important role on the
performance and quality of Web servers, consider the issue of freshness. Suppose some Web
server S publishes a book catalog (as a Web service) and that a comparative shopping site S’
accesses this catalog service regularly. The cache of S* will contain the retrieved data, but
information such as book prices that change rapidly will often be stale. The Web server S may
decide to make the answers of its catalog service active, e.g. by returning the price information
intensionally (i.e. as service calls). Then, the book prices information can be refreshed by
calling the corresponding services, without having to reload the entire catalog. This results in
savings in communication.

Supporting techniques

We have briefly discussed XML and Web services and the advantages of exchanging ac-
tive data. We presented AXML, that enables such a style of data exchange. To conclude this
section, we mention three important issues in this setting, and recent works performed in these
directions.

To call or not to call Suppose someone asks a query about the “Vertigo” movie. We may
choose to call ci ne. comto obtain the reviews or not before sending the data. This decision
may be guided by considerations such as performance, cost, access rights, security, etc. Now, if
we choose to activate the service call, it may return a document with embedded service calls and
we have to decide whether to activate those or not, and so on, recursively. We introduce in [15]
a technique to decide whether some calls should be activated or not based on typing. First, a
negotiation between the peers determines the schema of data to exchange. Then, some complex
automata manipulation are used to cast the query answer to the type that has been agreed upon.
The general problem has deep connections with alternating automata, i.e., automata alternating
between universal and existential states [17].

Lazy service calls and query composition As mentioned earlier, it is possible in AXML to
specify that a call is activated only when the data it returns may be needed, e.g., to answer
a query. Suppose that a user has received some active document and wants to extract some
information from it, by evaluating a query. A difficulty is then to decide whether the activation
of a particular call is needed or not to answer that query. For instance, if someone asks for
information about the actors of “The 39 steps” of Hitchcock, we need to call al | oci ne. com
to get more movies by this director. Furthermore, if this service is sophisticated enough, we
may be able to ask only for information about that particular movie (i.e., to “push” the selection
to the source). Algorithms for guiding the invocation of relevant calls, and pushing queries to
them are presented in [1]. Some surprising connections between this problem and optimization
techniques for deductive database and logic programming are exhibited in [7].

Cost model We describe in [5] a framework for the management of distribution and replica-
tion in the context of AXML. We introduce a cost model for query evaluation and show how it
applies to user queries and service calls. In particular, we describe an algorithm that, for a given
peer, chooses data and services that the peer should replicate in order to improve the efficiency
of maintaining and querying its dynamic data. This is a first step towards controlling the use of
intensional answers in a distributed setting.

Efficient query processing of structured and centralized data was made feasible by relational
databases and its sound logical foundation [18, 6]. Deep connections with descriptive complex-
ity have been exhibited [12, 6]. For the management of answers with active components, we
are now at a stage where a field is building and a formal foundation is still in its infancy. Some
recent results are presented in [3, 7]. The development of this foundation remains a main chal-
lenge for the researchers in the field.

4. Security

A main goal of the present paper is to show how AXML provides a uniform framework for
addressing standard query processing issues as well as issues such as security for data manage-
ment, that are typically considered separately. We believe that, in a Web context where various
functionalities may be supported by different peers, it is of particular importance to provide
an abstract model for distributed data management that captures these various viewpoints in
a unique framework. Such a uniform model allows addressing issues such as data exchange
protocol verification in a rigorous manner.

Security is a critical issue (arguably the most critical one) for Web applications. Not sur-
prisingly, there is a lot of activity around XML, Web services and security. The W3C is pro-
moting standardization efforts for security, e.g., for XML encryption [29], XML signature [27]
or cryptographic keys [30]. The Security Assertion Markup Language [28] is an XML-based
framework promoted by the Oasis consortium for exchanging security information.

Let us first illustrate by an example how basic security features may be supported in AXML.
Suppose for instance that an AXML peer Bob wants to send a message to an AXML peer Alice,
with a portion of the message encrypted. In AXML, the portion of the message to be encrypted
is a sub-tree rooted at some particular node, say n. To encrypt it, Bob has to remove the children
sub- trees of n, say t1, ..., tm, and to replace them with their encrypted value.

In an AXML setting, encrypted XML data will be represented using the now standard XML
Encryption with the following syntax:

<EncryptedData 1d? Type? M neType? Encodi ng?>
<Encrypti onMet hod/ >?
<ds: Keyl nf 0>
<Encr ypt edKey>?
<Agr eenent Met hod>?
<ds: KeyNane>?
<ds: Retri eval Met hod>?
<ds: *>?
</ ds: Keyl nf 0>?
<Ci pher Dat a>
<Ci pher Val ue>?
<Ci pher Ref erence URI ?>?
</ Ci pher Dat a>
<EncryptionProperties>?
</ Encr ypt edDat a>

We will rely on a public key encryption scheme. Each participant has a unique public/private
key pair denoted PUK/PRK. As usual, the private key is private, while the public one is made
accessible to the world, through the following service:

Publ i cKey@eer () -> string

A similar Pri vat eKey @eer () service exists, than can only be invoked by the peer
itself. We also assume that each peer has available the following generic services, that respec-
tively perform encryption and decryption.

encrypt @ ocal (publicKey, data) -> encryptedDat a
decrypt @ ocal (privat eKey, encrypt edData) -> data

Now, Bob first rewrites the data (to be sent) by replacing the children of n with:

decrypt (PrivateKey@\l ice()), encrypt(PublicKey@lice(),tl,.,tm)
Note that the resulting message has the same semantics (intensional content) as the original
message. They only differ by the materialization of service calls. The exchange of information
in AXML is guided by typing. The typing of the interface (typically the output type of a service)
will specify that the information sent should not contain the service call "encrypt”. Thus, before
sending the data, the encrypt service call will have to be performed by Bob and Bob will send:
decrypt(PrivateKey@Alice(),E)
where E is the encrypted value of t1,.,tm, i.e. the result of:
encrypt(Publickey@Alice(),t1,.,tm).
When receiving the message, Alice will have to decrypt it; indeed, she is the only one able
to perform the decryption since she is the only one who can perform PrivateKey@Alice().
This is of course a simple setting. More complicated distributed exchange protocols may be
supported by AXML. For instance, it is very simple to capture signatures (by switching public
and private keys in the above example), authentication or delegation of privileges.

5. Access Control

Suppose we want to control the access to some resource, say F. Then we can simply hide
F and let users access it via a controlled service G. So, for instance, to obtain F(a) for some
input data a, a peer will call G(a,l) where | is some login information such as user name and
password, possibly encrypted. The service G simply checks that the user has the proper access
rights, eventually calls F, gets the result and returns it to the user. Note that this typically happens
in a distributed setting with the user, the database and the access control manager residing on
different peers. Note also that alternative strategies are also possible. For instance, the user
may call the database that calls the access control manager to check that this particular user
possesses the proper access rights.

To ensure the privacy of data, one may also choose to use a finer-grained control over the
requests initiated by users. In [2], we adopted the GUP*!" approach [2], that unifies access
control and source descriptions, by relying on a single query language to specify both. We use
AXML and a single query rewriting mechanism to enforce them.

GUP#" access control can be naturally incorporated into AXML documents by providing it
as Web services. More precisely, we use filtering services, that enforce the access control rules
on AXML data, given as their parameter. These services are used to protect some AXML data
by filtering the queries that can be evaluated on them, according to a set of access control rules.
Note that the protected data does not have to be sent extensionally as a parameter, but can be
represented intensionally by a service call, and thus hidden from the filtering service.

Let us see in more details how this works. Suppose we want to evaluate a query on an
AXML document for a particular user. This results in a call to some data guarded by a filtering
service. The query is pushed to the filtering service. The filtering service rewrites it based on
the access control rules defined for the particular user. The rewriting is performed by a GUP*st¢"
service. Then, the resulting query is evaluated either directly (lazily) by the filtering service or
via a request to the data data source. The choice of a specific evaluation strategy is controlled by
the input/output types specified for the filtering services, using techniques introduced in [15].

6. Conclusion

The relational model has been an important breakthrough for data management in central-
ized information systems. It brought a cleanly formalized data model, with strong logical foun-
dations. The SQL query language was essential for the adoption of this model, since it gave a
syntax to define queries. With the advent of the Web, new data management paradigms are con-
sidered, to take advantage of what essentially is becoming an inherently distributed planet-scale
information system.

Semistructured data, and its standard incarnation XML, are being recognized as the suitable
model and language for data representation and exchange on the Web. XQuery, the query lan-
guage for XML standardized by the W3C, is often advertised as the future “SQL” of the Web.
However, XQuery is just one element of solution to the issue of “designing a language for Web
data”, since it primarily allows to query centralized collections of documents. In some sense, it
misses to capture the distributed essence of the Web. With Active XML, we propose a first step
towards a suitable data model and language for Web data management. The main contribution
essentially consists in introducing intensional portions in semistructured documents, and en-
abling the exchange of this new kind of data. More precisely, we propose Active XML, a model
for distributed data management, based on XML and Web services. In this model, AXML
documents can integrate information from other Web sources, through embedded calls to Web
services. AXML services open new perspectives for dynamic collaboration among systems on
the Web, by enabling the exchange of AXML data.

The focus of the present paper was on aspects such as security or access control inan AXML
setting. Typically, one would like to consider each aspect separately in the style of aspect-
oriented programming [13]. For instance, one would prefer to ignore security issues when
designing a data management application. We are currently working on extending AXML to
do just that. The idea is to abstract some particular aspect such as security using rewrite rules.
The application programmer may then ignore this aspect while designing the application. The
rewrite rules are then in charge of automatically rewriting the data (for instance at the time it is
exchanged) to meet the requirements of the aspect. This allows for a more modular approach.
We have designed and implemented such an extension of AXML. We are currently validat-
ing it by considering various settings such as security management, access control, transaction
processing or distributed query optimization.

References

[1] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu, T. Milo, N. Preda, Lazy Query Eval-
uation for Active XML, Sigmod 2004.

[2] S. Abiteboul, O. Benjelloun, B. Cautis, I. Fundulaki, T. Milo, A. Sahuguet, An Elec-
tronic Patient Record on Steroids : Distributed, Peer to Peer, Secure and Privacy Conscious
(demo), VLDB 2004.

[3] S. Abiteboul, O. Benjelloun, T. Milo, Positive Active XML, In Proc. of ACM PODS, 2004.,
2004.

[4] S. Abiteboul, P. Buneman, D. Suciu, Data on the Web, Morgan Kaufmann Publishers, 2000.

[5] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, T. Milo, Active XML Documents with
Distribution and Replication, ACM SIGMOD, 2003.

[6] S. Abiteboul, R. Hull, V. Vianu, Foundations of databases, Addison-Wesley, 1995.

[7] S. Abiteboul, T. Milo, Web Services meet Datalog, 2003, submitted.

[8] The AXML project, INRIA, http://activexml.net.

[9] The Object Database Standard: ODMG-93, editor R. G. G. Cattell, Morgan Kaufmann, San
Mateo, California, 1994.

[10] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, M. Tommasi,
Tata, Tree Automata Techniques and Applications, www.grappa.univ-lille3.fr/tata/

[11] F. M. Cuenca-Acuna, C. Peery, R. P. Martin, T. D. Nguyen, Using Gossiping to Build Con-
tent Addressable Peer-to-Peer Information Sharing Communities, Department of Computer
Science, Rutgers University, 2002.

[12] N. Immerman, Descriptive Complexity, Springer 1998.

[13] G. Kiczales et al., Aspect-Oriented Programming, Proceedings European Conference on
Object-Oriented Programming, 1997.

[14] M. Lenzerini, Data Integration, A Theoretical Perspective, ACM PODS 2002, Madison,
Winsconsin, USA, 2002.

[15] T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, F. Dang Ngoc, Exchanging Intensional
XML Data, ACM SIGMOD, 2003.

[16] M.T. Ozsu, P. Valduriez, Principles of Distributed Database Systems, Prentice-Hall, 1999.

[17] A. Muscholl, T. Schwentick, L. Segoufin, Active Context-Free Games, Symposium on
Theoretical Aspects of Computer Science, 2004.

[18] J.D. Ullman, Principles of Database and Knowledge Base Systems, Volume I, 1I, Com-
puter Science Press, 1988.

[19] The SOAP Specification, version 1.2, http://www.w3.org/TR/soap12/

[20] Universal Description, Discovery and Integration of Web Services (UDDI),
http://www.uddi.org/

[21] The Extensible Markup Language (XML), http://www.w3.org/ XML/

[22] XML Typing Language (XML Schema), http://www.w3.0org/XML/Schema

[23] The World Wide Web Consortium (W3C), http://www.w3.0rg/

[24] The W3C Web Services Activity, http://www.w3.0rg/2002/ws/

[25] The Web Services Description Language (WSDL), http://www.w3.org/TR/wsdl/

[26] W3C, Web Services Choreography, http://www.w3.0rg/2002/ws/chor/

[27] W3C XML Signature specification, www.w3.org/TR/xmldsig-core

[28] The Security Assertion Markup Language, www.oasis-open.org/committees/security

[29] W3C XML Encryption specification, www.w3.0rg/TR/xmlenc-core

[30] W3C XML Key Management specification, www.w3.0rg/TR/xkms2

