
Path Sequence-Based
XML Query Processing

Ioana Manolescu * — Andrei Arion* — Angela Bonifati ** — An-
drea Pugliese ***

* INRIA Futurs PCRI, FRANCE - firstname.lastname@inria.fr
** ICAR CNR, ITALY - bonifati@icar.cnr.it
*** DEIS, University of Calabria, ITALY - apugliese@deis.unical.it

ABSTRACT. We present the path sequence storage model, a new logical model for storing XML
documents. This model partitions XML data and content according to the document paths; and
uses ordered sequences as logical and physical structures. Its main advantages are: fast and
selective data access plans, and intelligent combination of such plans, based on a summary of
the document paths. We validate these benefits through extensive experiments.

RÉSUMÉ. Nous présentons le modèle de stockage XML basé sur les chemins du document. Ce
modèle sépare la structure du contenu du document, et utilise des séquences comme structures
logiques et physiques de stockage. Il permet un accès sélectif aux données, et la combinaison
efficace de plans d’accès, en s’appuyant sur un résumé structurel des chemins. Nous démontrons
l’intérêt de ce modèle par une série d’experiences.

KEYWORDS: XML query optimization, storage model, structural joins

MOTS-CLÉS : Optimisation de requêtes XML, modèle de stockage, jointures structurelles

Bind
$k [="romantic"]

$d//emph
Bind

$d
Bind

Bind
$i//name

Serialize

$i
Bind

Combine

Figure 1. General XQuery evaluation strategy.

1. Introduction

XML data management has been a very active research field lately. The
XQuery [xml03] W3C standard for XML querying has almost reached its final state;
accordingly, XML database research is concentrating on storage and processing tech-
niques for XQuery evaluation [ALK 02, Y.W 03, TEU 03, BRU 02, HAL 03, CHE 03,
MAR 03, NGO 03]. To illustrate the issues involved in XQuery processing, we use the
XMark [XMa02] document snippet depicted in Figure 2(a). The document models an
on-line auction site: clients, items for sale, and a classification of items in categories.

Example 1. Consider the query:

for $i in //asia//item, $d in $i/description where $i//keyword=”romantic”
return <gift> <name> {$i/name} </name> {$d//emph} </gift>

For every asian item and every description of this item, such that the item has
at least one keyword descendent with value “romantic”, the query returns a new gift
element with the item name, and the emphasized points in its description. Items with
multiple “romantic” keywords must produce only one gift element, with the name and
emph descendants if any – or an empty gift element otherwise.

A central notion in XQuery evaluation is that of variable bindings. The bindings
of a query variable v are the elements (duplicate-free in the sense of element identity,
and in document order) found by following the path expressions defining v. For ex-
ample, the bindings for $i consist of the unique, ordered elements found by matching
the path expression //asia//item. Similarly, bindings for $d are obtained by following
//description from each binding of $i; $i bindings must also be unique, and ordered.

A generic query evaluation strategy in the spirit of [CHE 03] follows from XQuery
semantics [xq-]. Bind all the variables, and the subqueries in the return clause. Com-
bine these bindings through joins. Finally, serialize the XML results, as dictated by
the return clause. While the previous phases manipulate mainly element IDs, this step
requires retrieving and tagging XML element contents.

Figure 1 exemplifies this for the query in Example 1. We purposedly left unspec-
ified the details of each step; we discuss them later. Notice that the joins in Combine
pair bindings according to value-based predicates (none in this example), or to struc-
tural relationships among the element IDs they contain. The latter joins are known as

structural joins [ALK 02, CHI 02, BRU 02, ZHA 01]. In Figure 1, within Combine,
a structural join connects $i and $d bindings; a structural semijoin connects $i and
$k, since items with several matching keywords must produce only one result; and
structural outerjoins connect $name and emph elements to $i and $d bindings, since a
result must be output even for items without name and/or emph descendents.

The performance of XQuery evaluation depends on the efficiency of these three
steps: binding, combination, and serialization. The latter can be done efficiently, once
the content to be output has been gathered and ordered [SHA 00]. Thus, performance
is determined by: bindings variables, according to the query predicates, and the rela-
tionships between variables; and combining them.

Recent works provide efficient techniques for implementing [ALK 02] and order-
ing [Y.W 03, CHE 03] structural joins, relying on a relational or tree-structured stor-
age, augmented with B+-tree indexes [HAL 03, CHE 03]. These indexes provide or-
dered access to the identifiers of elements of a given tag. We call this storage and
indexing approach tag partitioning (TP).

In this paper, we propose the new path sequence storage model. Our model parti-
tions XML content and structure according to the data paths, and stores it in ordered
sequences. Its main advantage is its support for efficient variable binding, up to sev-
eral orders of magnitude faster than TP. This is due to the precise structural knowledge
of the document, included in the path sequence model. Our contributions are:

– We describe the logical and physical path sequence storage model. This model
is more compact than TP, and allows for efficient document loading. The model com-
prises a document path summary, encapsulating compact structural information.

– We show that based on the path summary, binding variables is much more effi-
cient than when TP is used.

– We extend the iterator execution model, for operators whose output is in docu-
ment order. Using path summary information, and based on this extension, we derive
a family of structural joins algorithms, which use selective predicates on one input to
access only the matching part of the other input.

– We show that our storage and query processing model integrates well with
XQuery optimization techniques developed for TP [Y.W 03, CHE 03]. Besides more
efficient evaluation options, our model also provides precise structural informations to
the optimizer, further improving XQuery performance.

The paper is organized as follows. Section 2 describes the path sequence storage
model. We then show how to efficiently answer XQuery queries based on this model.
Section 3 discusses the construction of variable binding plans. Section 4 addresses
binding combination, based on the path summary. Section 5 presents our experimental
validation. We discuss related work in Section 6, and conclude in Section 7.

2. Path sequence-based storage

We now describe the principles and the implementation of path sequence storage.

2.1. The logical path-sequence storage model

Our model separates the document structure from the document content, and stores
each set of similar items in document order. We decompose the document into three
distinct structures, that we describe in turn.

The first structure contains a compact representation of the XML tree structure.
We assign unique, persistent identifiers to each element in an XML document. We
adopt the [pre, post] scheme used in [ALK 02, CHI 02, HAL 03]. The pre number
corresponds to the positional number of the element’s begin tag, and the post number
corresponds to the number of its end tag in the document. Using this scheme, an
element e1 is an ancestor of an element e2 iff n1.pre<n2.pre and n1.post > n2.post.
For example, Figure 2(a) depicts the [pre, post] ID of each element just above it.

[1 1000]/site
/site/people [2 10]
/site/people/person [10 9][3 7]

/site/regions/asia/item [19 66]

[10 9]

3
[3 7] [1 1000]

1
[2 10]
2

@id=
"person0"

city

Tampa

[7 3]
country

USA

[6 2]
street

35 McCrossin St

[8 4]

lace umbrella

category

category

name

name

description

site

regions
[17 300]

item ...

parlist

description

[1 1000]

[29 63]
listitem

[22 64]

[21 65]

[19 66]

listitem
[23 59]

[18 100]
asia

name

item item

europe

item

[33 200]

... ...

people

person

[2 10]

emailaddress
[9 6]

mailto:Wile@1tel.com

person

@id=
"person1"

name

T. Limaye

[13 11]

[14 51]

[15 12]

...

[16 50]

A special

text
[30 60]

keyword
[31 61]

romantic

emph

gift

[32 62]

From Paris

text
[28 58]

address
[5 5]

[3 7]

[10 9] [12 52]

[11 8]

[20 53]

parlist

listitem
[25 56]

[24 57]

Ivory

emph
[27 55]

text
[26 54]

Umbrellaname

M. Wile

[4 1]

person1
person0

[10 9]

3/@id
[3 7]

27/#text
[28 58]From Paris

people

person

site

regions

asia

item

description

parlist

listitem

listitem

parlist

europe

item

text keyword

1

2

3

4

16

15

17
19

5

8

category

category

description

name

name

11
12

13

14

10

name

6
7

address

country
city

street

9
emailaddress

text

emph

@id name
18

20
21

22 23
24

25 26emph

27 28

29
30

1 − site m =1 M =1N1=1 {2, 10, 15}

m =1 M =1

m =1 M =1

2,1

10,1

15,1

2 1 people N2=1{3}
3,2

2,1

10,1

3,23,2

15,1

m =2 M =2

(c)

(d)

(a)

(e)

(f) 4/#text
[3 7]
[10 9]

M. Wile
T. Limaye

/site/people/person/@id [3 7]person0

/people/person/name/#text [4 1]M. Wile

/site/regions/asia/item/description/parlist/listitem/text/#text

T. Limaye

person1

From Paris[28 58]

[11 8]

[10 9]

(b)

(g)

Figure 2. XMark document snippet, its path summary, and some of the resulting stor-
age structures.

Furthermore, we partition the identifiers according to the data path to which the
elements belong. Logically, each partition is a sequence of identifiers, ordered by their
pre field, which reflects the document order. For example, Figure 2(c) depicts a few
path sequences resulting from the sample document in Figure 2(a), for the paths /site,
/site/people, /site/regions/asia/item etc.

All IDs in a path sequence appear at the same depth in the document tree, which
is the path length. Thus, element depth is concisely stored within the paths.

Our second structure stores the contents of XML elements, and values of the at-
tributes. We pair such values to their closest enclosing element identifier (precisely
to the pre field of that element ID), and store them in a sequence of [pre, value] pairs
ordered by pre. We call such a sequence a container.1 Values found in a container are
classified as string, integer, or double values; this can be inferred from their format.
For example, Figure 2(e) shows some containers for the document in Figure 2(a), for
/site/people/person/@id, /site/people/person/name/#text etc.

The above two structures alone can represent a document without any loss. We
added a third indexing structure that will prove very useful in query processing. The
path summary of an XML document is a tree, whose internal nodes correspond to
XML elements, and whose leaves correspond to values (text or attributes). For every
simple path /l1/l2/.../lk matching one or several (element or value) nodes in the XML
document, there is exactly one node reached by the same path in the path summary.

To each node x in the path summary, we assign an unique integer path number
which characterizes both the node and the path from the summary root to the node
x. Thus, each path-driven ID sequence is uniquely associated to a path number. Each
container is associated to a pair of a path number, and: either @attrName for attributes,
or #text for text content. Figure 2(b) represents the path summary for the XML frag-
ment at its left. Path numbers appear in large fonts next to the summary nodes.

A path summary is different from a dataguide [GOL 97]. The former is always
a tree, while the latter can be a graph. Another difference is that a dataguide groups
nodes with the same tag, for example, a single dataguide node would stand for the
nodes 17 and 30 in Figure 2. We keep separate information about these element sets.

The path summary encapsulates a set of simple and concise statistics. Let x be a
node in the summary, on a path ending with the tag t, and y be a child of x. We record:

– Nx: the number of elements found on the path x (the size of the ID sequence
corresponding to x).

– mx,y, Mx,y: the minimum, resp. maximum number of y children of the XML
elements on the path x.

Notations. For a given document, we denote by N its size, h its height, and NPS

the number of nodes in its path summary. We show in Section 5.2.2 that the path
summary is very small compared to the document, and thus we keep it in memory at
query processing time.

ID sequences, containers, and the path summary together are all the storage we
materialize from a document, not indexes to be added to another persistent storage.

We load an XML document in a single pass, using an event-based parser [xml]
which raises events while traversing the document.The algorithm runs in time linear
with N , using O(h+NPS) memory for the stack and path summary.

1. The term is inspired from the XMill project [LIE 00].

2.2. Physical storage for the path sequence model

An essential feature of the path sequence logical model is order in ID sequences,
and in containers. Thus, the physical storage structures implementing it must inher-
ently support order. We consider two ordered persistent structures:

B+-trees. This is the option is considered in many works [BRU 02, CHI 02, HAL 03,
ZHA 01]. Its advantage is robustness, and good support for updates. Its disadvantage
(Section 5.2.2) is the important bloating factor due to extensive ID indexing.

Persistent sequences. The alternative that we investigate is the usage of persistent
sequences as basic storage unit. The advantage of this model is its extreme compact-
ness, which leads to reduced memory usage. We found at least one persistent storage
system, endowed with locking and transaction functionality, supporting sequences as
first-class citizens [Ber]. A more recent system [LER 03] features a sequence-based
storage, largely outperforming an RDBMS in applications where data order is criti-
cal (e.g., financial series data). Its drawback is its poor behavior in the presence of
updates. In this work, we adopt persistent sequences as physical storage.

Figure 2(d) represents the physical storage of the ID sequences in Figure 2(b).
Items in these sequences have constant length, equal to the ID size. Figure 2(f) depicts
the sequences resulting from the containers in Figure 2(c). Container entries have
variable length, due to the data values. Thus, we use variable-length sequences.

We store the path summary as a sequence of variable-length items, as in Fig-
ure 2(g). There is one item per node, comprising: the node number, its parent number,
the children numbers, and the statistics previously described. The space occupied by
the path summary is linear in NPS .

3. Binding plans on a path sequence storage

We show how to construct variable binding plans using the path sequence model.
Binding plans output identifiers of the elements to which the variables are bound.

Notations. A linear path expression (lpe) is an expression of the form:
(vi?) (/|//) l1 (/|//) l2 . . . (/|//)lk, where each li is a tag or a ∗, the lis are con-
nected by / or //, k >= 0, and vi is an optional query variable. We refer to k as the
length of lpe Pi. We call an lpe of the form l1/l2/ . . . /lk a simple lpe. In particular,
each node of the path summary corresponds to the simple lpe connecting it to the root.
We say that two simple lpes are related, when the path summary node of one of them is
an ancestor of the other’s node. The path summary nodes matching an lpe P are those
obtained by top-down evaluation of the lpe against the path summary, considered as a
data tree. We also say the simple lpes of these nodes match P .

We consider a generic tuple-based execution model, following the iterator inter-
face. We denote op[i] the i-th column in the output of op. Each column may be either
of a simple type like string, integer etc., or of type structural ID.

3.1. Binding one query variable

The first problem we consider is binding a single variable to an lpe, such as $x
in the query fragment “for $x in /site/people/person/name”. Path partitioning allows
immediate access to the bindings: just scan the corresponding ID sequence, numbered
4 in Figure 2. We use IDScan(x) iterator, returning the IDs from the path sequence
associated to x; IDScan also fills in the depth field in element identifiers, with the
length of the simple lpe of x. Its output is ordered, and duplicate-free.

Now consider more complex lpes, as for example in the fragment “for $x in
//parlist//text”. We identify the set of path summary nodes matching //parlist//text. We
scan all corresponding ID sequences, and at the same time merge them in a pipelined
fashion. The resulting bindings are in document order, and free of duplicates.

In general, we can retrieve the bindings for $x by matching P against the path
summary into a set of elementary paths, reading exactly the useful ID sequences, and
merging them. No join is required.

Let xP be the number of nodes in the path summary matching P , NP be the
number of bindings for P , and b be the blocking factor.

Using path partitioning, the bindings for P can be obtained with an I/O cost of
O(NP /b+xP), and a CPU cost of O(NP ∗log(xP)). The memory occupancy required
is O(NPS + xP).

The I/O cost is due to scanning exactly the desired binding IDs. Each ID se-
quence is physically clustered, but all the xP matching sequences may not be clus-
tered together, thus the xP extra reads. The CPU cost corresponds to the merge of xP

ordered ID sequences. The Merge operator uses a balanced search tree with xP leaf
nodes. Each ID read from one input is inserted in the search structure in O(log(xP));
to produce an output, the Merge extracts from the search structure the smallest ID it
contains, again in O(log(xP)). The memory occupancy corresponds to holding the
path summary, and the Merge’s search structure.

To match an lpe P against the path summary, we traverse the summary top-down,
identifying the tags in P from left to right, and adding nodes found to match the last
tag in P to the result set. This can be done in O(NPS) time. For example, to bind
//asia//item, we start from node 1 with P , and attempt to match its first tag asia. Since
the root has a different tag, we propagate the search for P to all children of the root,
which propagate it further. On the regions/asia branch, the asia tag is matched, and
the search for //item is propagated to its children etc.

Binding with simple predicates. Consider simple selections on the text value, or
attributes of $x, as in: for $x in //people//person[@id=“person0”]. In such cases, we
need to access the container for person/@id. We use a ContScan(x) operator, where
x is a container path like 3/@id in Figure 2, returning the ordered [pre,value] container
tuples. On top of ContScan, a selection can be applied. If an index on the container ex-

ists, we use the IdxAccess operator to access only the desired tuples. We furthermore
apply a structural join with IDScan(4), to retrieve [pre,post,depth] IDs.

$k keyword
="romantic"

$d description

asia

$2 emph $1 name

$i item
*

$k keyword
="romantic"

asia

$1 name

$i item

$2 emph

*

(a) (b)

IDScan(18)
ContScan(18/#text)

STJ−FFD

STJ

TagContent

IndexAccess(28)IDScan(17)

STJ−FFA

STJ−FFD

IDScan(22)IDScan(18)
ContScan(18/#text) ContScan(22/#text)

STJ STJ

Merge

Figure 3. Generalized tree pattern (a) and reduced pattern (b) for the query in Exam-
ple 1 (left); complete query execution plan to be discussed later (right).

3.2. Binding several related variables

Binding with more complex predicates. This case can be thought of as binding
several variables, on some of which there are simple predicates. We address many-
variable binding next. In general, bindings must be computed for several related vari-
ables. For example, Figure 3(a) depicts the query variables from Example 1, structured
in a generalized tree pattern (GTP) [CHE 03]. We use simple lines for / relationships,
and double lines for //. Dashed lines denote left outerjoin connections between two
nodes, considering the parent at left. Edges with a ’*’ denote left semijoin relation-
ships (also considering the parent at left). We gave the ad-hoc names $1 and $2 to the
nodes corresponding to the return clause.

To bind such variables, we proceed in two steps. First, we determine the minimum
data sets that need to be accessed to bind the variables, by analyzing relationships
among variables, and the path summary. In this step, we may also discover useless
variables, or new relationship among them. Second, we construct binding plans, based
on the knowledge gathered in the first step.

Variable path inference. We start by computing, for every variable, the set of paths
in the path summary to which it may possibly be bound. Throughout this section, let
u, v be query variables such that u is a parent of v in the GTP, and su, sv be their
respective sets of possible paths.

We compute su sets by traversing the GTP and the path summary in parallel, using
su as a starting point to determine the sv. For example, for the query in Figure 3
and the path summary in Figure 2, si is {/site/regions/asia/item}. From the node in
si, we match the /description and sd is {/site/regions/asia/item/description}. Similarly,
matching //keyword from si yields the set sk={28} (denoting paths by their numbers
in Figure 2(b)). Using sd and si, we find s1={18} for $1 and s2={22, 26} for $2.

Semijoin transformation. During path inference, for every edge connecting a par-
ent variable v to a child variable u, and pair of related paths x ∈ su, y ∈ sv , we
compute the maximum path factor Mpfx,y. This factor is the maximum Mxi,yi

found

by traversing the path summary from node x to node y. For example, for the edge
between $i and $2 in Figure 3(a), we compute the Mpf17,22 and Mpf17,26; Mpf17,22

is the largest among M17,19, M19,20, M20,21, and M21,22.

If Mpfx,y ≤ 1, and if the edge connecting u to v is a semijoin, we transform it
into a join edge, since join and semijoin coincide. For example, if Mpf16,28 ≤ 1 in
Figure 2, the execution of the query in Example 1 could start with an access to $k,
followed immediately by a join with the bindings for $i. Without this optimization, a
duplicate-elimination step on $i would be needed, when combining the bindings.

Join branch elimination. Similarly, we compute the minimum path factor mpfx,y

for each related pair of paths x and y, as the minimum mxi,yi
along the path from

x to y. If the edge between u and v is a join, mpfx,y = 1 and Mpfx,y = 1 for all
related paths x, y, and there is no predicate directly on v, then we eliminate v from
the GTP, and “glue” all descendents of v to u directly. For example, on the GTP in
Figure 3(a), if all asian items have exactly one description, the variable $d is useless
and is eliminated, leading to the reduced GTP in Figure 3(b).

Variable path pruning. Next, we use each set sv to prune useless paths from su,
where u is a variable parent of v in the GTP. For example, consider the query: for $p
in //parlist, $k in $p//text return $k.

Path inference in this case yields sp={20, 23}, and sk={26}. Since we know by the
path summary that 26 is a descendent of 20, but not of 23, we eliminate the useless
path 23 from sp, which becomes {20}. Such pruning applies only when in the GTP, x
and y are connected by continuous edges only. It does not apply to children connected
to their parents by dashed edges, since these children are not required by the query.
Thus, even ancestors that do not have them must produce results.

The same pruning may find that a query has no answer, due to an empty path set
for a variable connected through joins and semijoins only to the root.

GTP enrichment. Finally, new structural relationships among variables may be
discovered. For example, consider the fragment “for $i in //item, $p in $i//parlist, $t in
$i//text”. After path inference and pruning, all paths of $t are descendents of some path
of $p. This translates into a new join edge from $p to $t, providing new possibilities
of binding combination (the GTP node set does not change).

The path inference algorithm. The algorithm is sketched in Figure 4. It consists
of a recursive traversal function traverse that is invoked on a path summary node pv,
given: its parent summary node pu; the last GTP node u that has been matched to an
ancestor of pv; the last GTP variable node x that has been mached to an ancestor of
pv2; and the path px where this x was matched.

The invocation of traverse on pv aims to match pv to one of the (GTP) children of
u. For each such child vi, we check if the tag of pv matches that of vi. If, furthermore,

2. Not all GTP nodes are variables; for example, the asia node in Figure 3 is not a variable, yet
it has to be matched before its descendents.

vi is a variable, then we mark the path we found for it, given that its parent variable x
was matched to the path px (line 5). Furthermore, we update mpfpx,pv and Mpfpx,pv

with the m and M statistics stored for pu and pv (line 6). Next, we propagate the
matching further by trying to match the children of vi (in the GTP) to the children of
pv (in the path summary), through recursive calls (lines 8-9). For this call, the last
variable matched is x (that may have changed when matching vi), and the last GTP
node matched is vi. Finally, if the edge beween u and vi is ancestor-descendent, we
also traverse pv’s children with the same parameters as for pv. This ensures that //
GTP edges are correctly matched at any depth in the path summary.

Algorithm traverse(GTPNodes u,x,
PSNodes pu, px, pv)

1 foreach GTP node vi child of u
2 nextX=x; nextPX=px
3 if (the tag of pv matches the tag of vi)
4 if (vi is a variable node)
5 mark(x, vi, px, pv)
6 upd(mpfpx,pv, Mpfpx,pv, mpu,pv, Mpu,pv)
7 nextX=vi; nextPX=pv
8 foreach PSNode pw child of pv
9 traverse(vi, nextX, pv, nextPX, pw)

10 if (the edge u-vi is ancestor-descendent)
11 foreach PSNode pw child of pv
12 traverse(u, x, pv, px, pw)

15
16

$x

22

$y $t

26

17

$z

3029

$d $2

26

$1 ki

17 19 22
18

28

Figure 4. The path inference algorithm, and sample results.

The inference process outputs the path lists found for each variable, grouped hier-
archically following the variables in the GTP. In Figure 4, at the top right, we depicted
the result for the query in Example 1. Each path found for a given variable points to
the corresponding paths found for its children variables in the GTP. (Arrows preserve
all edge semantics from the GTP; arrows leaving from the same path of a variable,
and reaching different paths of another variable, have or semantics.) Arrows are also
annotated with the mpf and Mpf computed factors.

Paths without required descendents are pruned at this point. For example, in Fig-
ure 4 at the bottom right, we show the paths resulting for the variables in: “$x in
//regions, $y in $x/*, $z in $y/item, $t in $z//emph” on the path summary in Figure 2.
Realizing that path 30 for $z has no descendent path for $t, we prune 30, and then 29.

Semi-join transformation and join branch elimination also apply (and may reduce)
on the result of path pruning. Finally, to infer new edges in the GTP, we analyze the
surviving variable paths. This process may be piggybacked on traverse, using a matrix
of N2

PS bits in which we mark which path is descendent of which other.

Binding plan construction. Using the path sets that result from the above steps, we
construct individual binding plans, as described in Section 3.1. For the query in Ex-
ample 1, this yields: IDScan(17) for $i; Join(IDScan(28), Filter(ContScan(28/#text))
for $k; IDScan(19) for $1; Merge(IDScan(22), IDScan(26)) for $2 ($d has been elim-
inated). These plans are selective, as they only access IDs whose paths allow them to
contribute to the query result.

Metadata and statistics for the binding plans. Let |op| denote the cardinal-
ity estimate for operator op. If op[i] is of type ID, we denote by pList(op, i) the
set of path numbers on which IDs from op[i] may be found. For IDScan(x) plans,
pList(op)={x}, |op|=Nx. For plans of the form Merge(IDScan(x1),. . ., IDScan(xk)),
pList(op)={x1,x2,. . . xk}, we estimate |op| as

∑
x∈pList(op) Nx. For Filter or IdxAc-

cess plans, predicate selectivity estimation are needed to estimate |op|. Value statistics
on containers can be used to this purpose.

4. Combining binding plans

Binding plans are combined bottom-up through joins and structural joins, as
in [Y.W 03, CHE 03]. We now focus just on efficient techniques enabled by the path
sequence model, which can be profitably integrated to the combination step.

Section 4.1 presents an order-preserving condition for structural joins. Section 4.2
describes more complex join algorithms enabled by our ordered path-partitioned stor-
age. We then briefly discuss query plan construction.

4.1. Order-preserving structural join

The StackTreeDesc (STD) and StackTreeAnc (STA) algorithms [ALK 02] directly
apply in our context. They pair inputs by structural relationships among structural
[pre, depth, post] element IDs they contain. STA and STD require inputs sorted in the
document order of the IDs to join; STA preserves the order of the ancestor IDs, and
STD the order of the descendent IDs. Both algorithms employ a stack; STA needs
some other data structures. Both work in pipeline.

To avoid sorting steps, it would be interesting to have a structural join operator
preserving both ancestor and descendent ID order; however, this is not always possi-
ble. A structural join preserves both input orders iff the IDs in the ancestor are free of
ancestor-descendent pairs [ALK 02, CHE 03]. This condition is data-dependent, and
thus impractical to check. We provide a sufficient, easier to check condition:

Let op1 and op2 be two operators, such that op1[i] and op2[j] contain element IDs. If
the paths in pList(op1, i) are all pairwise unrelated, then a structural join matching
ancestor IDs in op1[i] with descendent IDs in op2[j] can preserve both input orders.

Given a set pList of size k, the condition can be checked on the path summary in
O(k ∗ h): from each node in pList, we navigate upwards to the root; if we encounter

d11 d12 d13

(b)

(a)

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

a1 a2 a3

a6 a7 a8 a9a4 a5

Figure 5. Structural joins when inputs can be skipped.

another node from pList, then the paths are not pairwise unrelated. Thus, when anc
paths are unrelated, the (simpler) STD algorithm can be used with the knowledge that
it preserves both ancestor and descendent order.

4.2. The STD-FastForward family of algorithms

A structural join may avoid reading parts of the inputs. Figure 5 depicts two such
examples. Element IDs are shown as horizontal [pre,post] segments, dashed for IDs
of the anc operator, and solid for IDs of the desc operator. An anc ID a is an ancestor
of a desc ID d iff the segment of d is under the segment of a.

In Figure 5(a), the first descendent of a1 is d5. Thus, d1 − d4 could be skipped,
since they do not produce join results. Instead, the join should advance desc to the
first d that may be a descendent of a1, that is, such that d.pre>a1.pre. Since the desc
tuples are sorted on pre, it is possible to advance desc according to this order.

In Figure 5(b), after the pair a4, d11, the join could skip a5 − a7, and advance anc
to the first a that could be an ancestor of d12, that is, such that a.post>d12.post. This
requires skipping on post, but the inputs are ordered on pre; the skip is only possible
if the two orders coincide. From the pre and post semantics, it is easy to see that these
orders coincide in an ID set iff it has no ancestor-descendent pairs.

A sufficient condition applies: Given an operator op such that op[i] is of type ID,
if pList(op, i) are pairwise unrelated, then the pre and post orders in op[i] coincide.

Thus, we design the STJ-FastForward (STJ-FF) structural join algorithm; it is de-
rived from StackTreeDesc, although for readability we omitted the stack manipulation
details. STJ-FF skips inputs both based on anc.post and desc.pre. It relies on two new
methods provided by anc and desc:

– nextFF-pre(col, int n) positions an operator op to the first output tuple having
op[col].pre≥n. If such a tuple does not exist, nextFF-pre returns false.

– nextFF-post(col, int n) positions an operator op to the first output tuple having
op[col].post≥n. If such a tuple does not exist, nextFF-pre returns false.

Using these methods, a parent operator commands its children to produce tuples
with certain values only. They can only be called on operators op whose output is

sorted on op[col].pre; nextFF-post further requires that the paths in pList(op, col) be
pairwise unrelated.

IDScan and ContainerScan operators implement the nextFF methods by binary
search over the sequence. The Merge, and the STJs, implement it combining calls to
the nextFF methods of their child operators. An STJ supports: (i) nextFF-pre on both
the ancestor and descendent ID columns; (ii) nextFF-post on the ancestor and descen-
dent ID columns, if those paths are unrelated. For example, let op=STJ(IDScan(17),
Merge(IDScan(21), IDScan(24))) in Figure 2. op supports: nextFF-pre on columns 0
and 1, and nextFF-post on 0 only, since 21 and 24 are related.

In Figure 5(a), after the initial skip to d5, the region d5, d6, d7 contains useful IDs.
Thus, after finding d5, a binary search to find d6 would make useless effort. Therefore,
we implement skipping “optimistically” in the IDScan and ContScan operators: the
next available value is examined, and only if it doesn’t satisfy the skip condition,
binary search is performed.

Skipping in structural joins may lead to thrashing [ZHA 01]. For skipping to be
profitable, it must be used only above a certain useless ID frequency. If a block is
read for only one useful ID, skipping the comparisons for the other ones will not bring
noticeable benefits (Section 5.3).

The situations in Figure 5 do not always occur simultaneously. For example, con-
sider “for $x in //person[id=”person0”], $y in $x/name”. When joining bindings for $x
and $y, there will be many useless $y bindings, and a single (useful) one for $x. Thus,
we specialize STJ-FF into: STJ-FFA, which only skips anc tuples, and advances desc
through next() calls only; and STJ-FFD, which only skips desc tuples, and advances
anc through next(). We demonstrate their interest in Section 5.3.

Optimizing with structural joins and path sequences. To evaluate a given structural
join, the optimizer examines the operands’ pLists, and whenever ancestor pLists are
unrelated, it knows that both ordered will be respected. For example, all structural
joins derived from the XMark queries feature unrelated anc paths. The optimizer also
needs to decide when to use skipping structural joins as those described in Section 4.2.
Cardinality estimates on binding plans, and structural join plans, are used. For exam-
ple, for the query: “for $x in //person[@id=”person1”], $y in $x//age”, STJ-FFA is a
good join candidate, since $x is only bound to a single person.

5. Experimental validation

In this section, we assess the performance of the path sequence model: storage con-
ciseness and binding plans (Section 5.2) and binding plan combination (Section 5.3).

5.1. Hardware and software environment

We implemented the path sequence model in our Java-based Gex prototype; it
consists of about 150 classes, or 40.000 lines of code. The persistent storage is built
on the BerkeleyDB [Ber] database library. We used a DELL D800 laptop, with a
Pentium IVM at 1.4 GHz and 1Gb of RAM, running RedHat Linux 9.0. All times are
averaged over 20 hot runs. We report results on: an XMark document of 118 Mb; the
DBLP data set of 133 Mb; and the SwissProt dataset of 114 Mb.

5.2. Data storage and binding plans

5.2.1. Comparison baseline: tag partitioning

We compare our approach with the state-of-the-art XML storage model, based on
partitioning, and structural identifiers. Within this model, XML documents are stored
as persistent trees or relational tables. Redundant B+-tree indexes are added to the
storage, indexing all element IDs by a (tag+pre) key. These indexes give access to the
list of all IDs of a certain tag. We call this approach tag partitioning (TP); it is used
in [CHE 03, HAL 03, ZHA 01]. We refer to our approach as path sequences (PS).

In TP systems, index-based query processing is the best execution strategy. Thus,
we compare our query processing techniques with the techniques from [ALK 02,
Y.W 03, CHE 03] based on the tag indexes. To that purpose, we implemented TP
also, in two variants: B+-trees, and by tag-based sequences. The latter can be seen as
merging all sequences (or containers) ending in the same tag, in a single sequence.

5.2.2. Space occupancy

Figure 6 compares the space occupancy for PS, and TP using B+-trees as
in [CHE 03, HAL 03, ZHA 01]. For XMark, document structure stored with PS takes
about 10% of the document size; with TP, it takes 20 times more. This is due to the
presence of tags in the B+-tree keys (with PS, they are only stored in the path sum-
mary), and to the intermediary index pages. Overall, the document size is multiplied
by 3.5-4 by when stored with TP, close to the factor of 4 reported in [CHE 03]; with
PS, the storage size is slightly smaller than the document. The path summary occupies
26 Kb for XMark, 6 Kb for DBLP, 10 Kb for SwissProt; NPS is respectively 514, 122,
and 117. This validates the assumption that it can be kept in memory when processing
queries. Having demonstrated sequence conciseness, in the following, we report on
PS and TP performance on a persistent sequence-based storage.

5.2.3. Variable binding performance with TP and PS

Without loss of generality, we consider lpes where tags are connected by //.

The case most favorable to TP is a variable bound to a lpe of the form //tag: PS
merges several IDScans (Section 3.1), while TP only looks up the IDs of the given
tag. When only one path summary node matches //tag, PS and TP coincide.

Figure 6. Space occupancy comparison for PS and TP (left), PS merging overhead
when binding one variable (right).

Figure 6 compares the execution time for binding plans when the TP and PS plans
differ. The lpes used are: P1=//item, P2=//description, P3=//bold, P4=//category on
XMark; P5=//title, P7=//author on DBLP; and P6=//Descr on SwissProt. The cardinal-
ities of the binding plans range from 2.000 (P1) to 720.000 (P7). The PS overhead,
due to scanning and merging different sequences, is negligible. This is because: (i)
the Merge is pipelined, CPU-only, and efficient due to the ordered tree of inputs it
maintains; (ii) IDs are tightly packed by PS in sequences and read sequentially, thus
no thrashing occurs; (ii) the Merge fan-out is of the order of hundreds, making it
possible to keep in memory one block from each sequence to be merged.

Binding a variable to longer lpes. In such cases, TP is handicapped by its unselective
data access. For example, let P be /site/people/person/name: TP only allows to access
all name IDs. Most of such IDs are not on the required path; they may be on paths 11,
18 etc. (Figure 2), leading to useless data scans. To separate just the person names,
we must access all person IDs (thus read even more data !), and apply a structural join
between the two. Furthermore, we must read all site and people IDs, and successively
join with them also, to separate just the proper names. In general, to bind a variable to
a lpe of length k, TP must scan the IDs of all tags involved, and compute an k-way join.
PS just scans the result. For the query “for $x in //parlist//text”, TP must join all parlist
IDs with all text IDs; but a new complication arises. A text ID may be a descendent
of two parlist elements, as is the case for the element [26,54] in Figure 2. Such text
elements will appear twice in the join result. Thus, a final duplicate elimination (dup-
elim) is required.

Optimized TP. To give TP a chance, we use the PS path summary to eliminate useless
data scans, joins, and dup-elims from TP binding plans. We call optimised TP (OTP)
the most efficient building plan derived this way from a TP stage.

Figure 7 (left) considers lpes of length 2: P8=//description//parlist,
P9=//parlist//listitem, P10=//item//keyword, P11=//person//name, P12 = //cate-

gory//name on XMark; P13=//article//title, P14=//book//author and P15=//book//title on
DBLP; P16=//METAL/Descr and P17=//LIPID//Descr on SwissProt. For P8 and P9, PS
and OTP coincide; TP performs one extra join and a dup-elim. From P10 to P17, OTP
only spares the dup-elim, which is cheap since the join result order was favorable.
The performance difference between PS and OTP reflects the proportion of useless
IDs scanned by OTP due to the tag-partitioned storage. This proportion reaches 430
for P14; PS is very fast for P14, P15 and P17.

In Figure 7 (right) we measured lpes of length 3. (O)TP performance is determined
by the data scans; PS speed-up is of up to several hundreds. The TP handicap grows
with the length of the lpe.

Figure 7. Binding one variable to lpes of length 2 (left), and 3 (right).

5.3. Combining variable bindings

Figure 8 compares TP and PS performance when binding two, respectively, three
related variables. In these cases, TP cannot benefit from any optimization, since the
scans and the structural join are required, in order to get binding pairs. Furthermore,
PS must also scan many inputs and join them. Also, in Figure 8, PS and TS use the
best possible join order. In Figure 8 (left), we consider again the paths P8 to P17 that
we used in Figure 7(left), but this time we replace “for $x in //tag1//tag2” with “for $x
in //tag1, $y in $x//tag2”. For example, in Figure 8(top), P ′

8 stands for the two-variable
pattern “for $x in //description, $y in $x//parlist”. We notice that for P ′

8 and P ′

9, PS and
TP are very close, since: TP makes no useless reads (all parlist elements are under
description elements, and similarly for P ′

9), and the cost is dominated by data access.
For P ′

10 - P ′

17, the unselective scans of TP translate directly into huge performance
differences with PS; the curves mirror quite closely those from Figure 7 (left). The
biggest time we measured for the join in itself was 4.2 seconds, for P ′

17.

In Figure 8 (right), we consider three-variable patterns, T1-T5 on XMark and T6

on DBLP, shown just underneath the corresponding graph. While quite small, these

patterns illustrate well the performance issues involved. We have chosen just 1-tag
lpes to connect $x to $y and $z, to pick the best possible case for TP: if longer paths
connect variables, TP will do useless scans and joins, as previously explained.

Overall, scan, join, and total time are still smaller for PS than for TP. For T1,
T3, T4 and T6, the join cost is negligible for both, compared to the data scan cost.
In these cases, simply using a PS storage provides for faster binding. For T2 and
T5, the joins by themselves take a more important part; even with the best ordering,
the first join creates many intermediary results, on which the second join spends more
time. This problem can be alleviated using holistic twig joins [BRU 02], which reduce
intermediary results in large structural join trees.

T1 $x in //person, $y in $x//name, $z in $x//watch
T2 $x in //asia, $y in $x//item, $z in $x//description
T3 $x in //item, $y in $x//description, $z in $x//parlist
T4 $x in //item, $y in $x//parlist, $z in $x//keyword
T5 $x in //categories, $y in $x//listitem, $z in $x//text
T6 $x in //article, $y in $x//title, $z in $x//year

Figure 8. Binding 2- and 3-variable patterns.

We have also performed measures with skipping join algorithms (STJ-FFA or STJ-
FFD); we conclude that they are profitable when one inputs size is very small (e.g.
point queries). We also tested reconstruction plans and found a good linear scaleup
(omitted for space reasons).

Conclusions The PS storage model is very compact, since it has practically no
overhead; it supports variable binding up to several orders of magnitude faster than
TP, due to its precise structural knowledge. The ordered PS model enables skipping
useles data, at the level of joins, but also larger plans. The target of PS optimizations
(selective data access) and techniques like [BRU 02] are complementary, thus these
optimizations can be fruitfully combined to improve query performance.

6. Related work

Our work is placed in the context of XQuery processing based on structural
joins. The closest related works have been done within the Timber and Niagara sys-
tems [ALK 02, Y.W 03, BRU 02, CHE 03, HAL 03], and are based on tag partition-
ing. A path-partitioned storage provides much better performance for variable binding
plans, as explained in Section 5.2.1.

Our join branch elimination (Section 3.2) is an instance of constraint-based
minimization [AME 01]; mx,y and Mx,y act as child constraints, while mpfx,y

play the role of descendent constraints. More recent works studied XPath con-
tainment and simplification using schema information, such as a DTD or an
XMLSchema [WOO 03]. While our path summary resembles a schema, there are
some informations that a schema provides, while a path summary doesn’t. Thus,
schema-driven techniques could be applied before/during our path inference process.
The path summary is easy to construct, concise, and very useful for XQuery process-
ing, especially for variable binding. Interestingly, 40% of the XML documents found
on the Web have a DTD [MIG 03], and about 1% have an XML Schema; without
schemas, path summaries still apply.

Techniques for input skipping in structural joins on pre were described using B+-
tree indexes [ZHA 01, CHI 02], chained stacks [BRU 02], and spatial indexing meth-
ods [TEU 03]. Our STJ-FF avoids the same comparisons as in [ZHA 01, CHI 02],
without a storage overhead, as we incorporate skipping into the execution model di-
rectly. Our first contribution in terms of skipping useless ID comparisons is path
inference, which allows to construct joins on IDs from related paths only. This opti-
mization can be composed with those in [TEU 03, BRU 02]. The second contribution
is skipping on post, under path-related conditions.

7. Conclusions

We have presented the path sequence storage model, a compact and fragmented
model for XML storage. The path sequence model improves over similar systems by
preserving precise path information, in the storage as well as under the form of a path
summary that is extensively used for query optimization. Our model is fully imple-
mented within the GeX system; we validated its performance advantages through a
series of experiments.

Acknowledgements. The authors are extremely grateful to Alberto Lerner, for many
useful comments on this paper.

8. References

[ALK 02] AL-KHALIFA S., JAGADISH H., PATEL J., WU Y., KOUDAS N., SRIVASTAVA D.,
“Structural Joins: A Primitive for Efficient XML Query Pattern Matching”, ICDE, 2002.

[AME 01] AMER-YAHIA S., CHO S., ET AL. L. L., “Minimization of Tree Pattern Queries”,
SIGMOD, 2001.

[Ber] “The BerkeleyDB database library”, http://www.sleepycat.com.
[BRU 02] BRUNO N., KOUDAS N., SRIVASTAVA D., “Holistic twig joins: Optimal XML

pattern matching”, SIGMOD, 2002.
[CHE 03] CHEN Z., JAGADISH H., LAKSHMANAN L., PAPARIZOS S., “From Tree Patterns

to Generalized Tree Patterns: On Efficient Evaluation of XQuery”, VLDB, 2003.
[CHI 02] CHIEN S., VAGENA Z., ZHANG D., TSOTRAS V., “Efficient Structural Joins on

Indexed XML Documents”, VLDB, 2002.
[GOL 97] GOLDMAN R., WIDOM J., “DataGuides: Enabling Query Formulation and Opti-

mization in Semistructured Databases”, VLDB, Athens, Greece, 1997.
[HAL 03] HALVERSON A., BURGER J., GALANIS L., KINI A., KRISHNAMURTHY R., RAO

A., TIAN F., VIGLAS S., WANG Y., NAUGHTON J., DEWITT D., “Mixed Mode XML
Query Processing”, VLDB, 2003.

[LER 03] LERNER A., SHASHA D., “AQuery: Query Language for Ordered Data, Optimiza-
tion Techniques, and Experiments”, VLDB, 2003.

[LIE 00] LIEFKE H., SUCIU D., “XMILL: An Efficient Compressor for XML Data”, SIG-
MOD, 2000.

[MAR 03] MARIAN A., SIMEON J., “Projecting XML Documents”, VLDB, 2003.
[MIG 03] MIGNET L., BARBOSA D., VELTRI P., “The XML Web: A First Study”, Proc. of

the Int. WWW Conf., 2003.
[NGO 03] NGOC T. T. D., GARDARIN G., “Evaluating XQuery in a full-XML mediation

architecture”, Proc. Journées Bases de Données Avancées, 2003.
[SHA 00] SHANMUGASUNDARAM J., SHEKITA E., BARR R., CAREY M., LINDSAY B., PI-

RAHESH H., REINWALD B., “Efficiently Publishing Relational Data as XML Documents”,
VLDB, Cairo, Egypt, 2000.

[TEU 03] TEUBNER J., GRUST T., VAN KEULEN M., “Bridging the GAP between Relational
and Native XML Storage with Staircase Join”, VLDB, 2003.

[WOO 03] WOOD P., “Containment for XPath Fragments under DTD constraints”, Proc. of
the Int. Conf. on Database Theory (ICDT), 2003.

[XMa02] “The XMark benchmark”, www.xml-benchmark.org, 2002.
[xml] “The SAX project”, www.saxproject.org.
[xml03] “The XQuery Language”, www.w3.org/TR/xquery, 2003.
[xq-] “XQuery 1.0 Formal Semantics”, www.w3.org/TR/2004/WD-xquery-semantics.
[Y.W 03] Y. WU J. PATEL H. J., “Structural join order selection for XML query optimization”,

ICDE, 2003.
[ZHA 01] ZHANG C., NAUGHTON J., DEWITT D., LUO Q., LOHMAN G., “On Supporting

Containment Queries in RDBMSs”, SIGMOD, 2001.

