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Abstract

In the present paper, we introduce an extension of the conceptual graph model suitable to the representation7
of data which are modelized using fuzzy sets. We extend the specialization relation of the conceptual graph
model to fuzzy conceptual graphs. Lastly we introduce a new way of comparing conceptual graphs, using the9
idea that a graph may be compatible with another graph with a given degree d, which allows to make more
1exible comparisons of fuzzy conceptual graphs. This work takes place within a project that aims at building11
a tool for the analysis of microbial risks in food products.
c© 2003 Published by Elsevier Science B.V.13
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1. Introduction15

Our research project is part of a national programme which aims at building a tool for the analysis
of microbial risks in food products. We are concerned with the storage and the querying of data that17
come from the bibliography of microbiology. These data have several particularities: (i) they are
polymorphic information in a ;eld that is continuously growing; we call them “weakly structured19
data”; (ii) they are often imprecise because of the complexity of the biological processes involved;
(iii) they are not exhaustive, as the bibliography does not cover all possible experimental factors21
and conditions. These particularities have the following respective consequences: (i) it is di>cult
to determine a classic database schema to store all the useful information; (ii) it is necessary to23
represent imprecise information; (iii) it is necessary to enlarge the querying in order to provide
close answers when the exact information is missing.25

The approach we chose consists in designing a uni;ed querying system (called UQS) that si-
multaneously scans two separate bases: a relational database containing the structured information,27
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and a conceptual graph knowledge base containing the data that do not ;t in the structure of the1
relational database. The justi;cation and the structure of the uni;ed querying system have already
been presented in [2]. To retrieve information from the conceptual graph knowledge base, the user’s3
query is translated into a conceptual graph which is used to scan the knowledge base. In this paper,
our objective is to extend the conceptual graph model in order to be able to represent imprecise5
data—including numerical values—and enlarged queries.

Classically the conceptual graph model allows one to represent symbolic data [16]. A numerical7
value cannot be represented otherwise than symbolic data. We propose a way of introducing a
numerical domain of values within the framework of the basic conceptual graph model.9

Concerning enlarged querying and imprecise information management, the bibliography in the
database framework covers two kinds of problems. In a ;rst category of papers, the fuzzy set11
framework has been shown to be a sound scienti;c way of modelling 1exible queries [1]. In the
second category of papers, the fuzzy set framework has also been proposed to represent imprecise13
values by means of possibility distributions [14].

Besides, the introduction of the fuzzy set theory into the conceptual graph model has been studied15
by Morton [10] and extended by several works such as [17,3]. Compared to the previous approaches,
we propose a more homogeneous and integrated way of combining conceptual graphs and fuzzy sets:17
(i) we propose a homogeneous representation of fuzzy types 1 and fuzzy markers (see footnote 1);
(ii) the domain of these fuzzy sets is built in accordance with the support (see footnote 1).19

Combining a knowledge representation model and a way of introducing imprecision has been
proposed in other previous works. In particular, we can cite formalisms that describe ontologies like21
the object model [7], or information retrieval using terminological logics [15]. The latter are part
of the “knowledge representation” sub;eld of arti;cial intelligence and more speci;cally semantic23
networks, just as the conceptual graph model.

The original contribution of this paper is thus mainly to provide an extension of the conceptual25
graph model suitable to the representation of imprecise data and enlarged queries, by using the fuzzy
set framework and by proposing a mechanism allowing a 1exible comparison of conceptual graphs;27
and secondly to propose a natural way of representing numerical values within the basic conceptual
graph model.29

Section 2 brie1y presents the representation models that we use, i.e. what we use fuzzy sets
for, and what the conceptual graph model is. Section 3 describes our choice for the representation31
of numerical values in the conceptual graph model, and the extension that we propose for the
representation of fuzzy values. In Section 4 we extend the specialization relation in order to allow33
comparisons of conceptual graphs that contain fuzzy concepts.

2. Preliminary notions35

2.1. Fuzzy sets

In our application we need ;rstly to be able to represent imprecise data, secondly to use enlarged37
querying. To perform this we use the fuzzy set theory [18].

1 These notions are explained in Section 2.
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Fig. 1. Fuzzy sets HighDuration and MyMilkProductPreferences.

De�nition 1. A fuzzy set A on a domain X is de;ned by a membership function �A from X to1
[0, 1] that associates with each element x of X the degree to which x belongs to A.

The domain X may be continuous or discrete. These two cases are illustrated by the examples3
given in Fig. 1. The fuzzy set MyMilkProductPreferences is also noted:
1/Full milk + 0.5/Half-skimmed milk.5
A fuzzy set may be interpreted in two ways:

1. as the expression of preferences on the domain of a selection criterion. For example the fuzzy7
set HighDuration in Fig. 1 may be interpreted as a preference concerning the required value of
the criterion Duration: a duration between 50 and 70 s is fully satisfactory, values outside this9
interval may also be acceptable, but with smaller preference degrees;

2. as an imprecise datum represented by a possibility distribution. For example the fuzzy set MyMilk11
ProductPreferences may be interpreted as an imprecise datum if the kind of milk that was used
in the experiment is not clearly known: it is very likely to be full milk, but half-skimmed milk13
is not excluded.

Of course either a continuous or a discrete domain can be used to express a preference as well15
as an imprecise datum.

In our application, “imprecise data” refer to:
17

• data known with a given variability, e.g. a concentration measure can take diMerent values if we
make the same experiment several times, because of the complexity of the underlying biological19
processes. This measure is not to be represented by a precise value, but by a minimum–maximum
interval of values, e.g. (49:8; 51:1 U=ml), corresponding to the extrema of the obtained results;21
• data whose precision is limited by the measuring techniques. For example by using a method

able to detect bacteria beyond a given concentration threshold (e.g. 102 cells per gramme), not23
detecting any bacterium means that their concentration is below this threshold. This imprecise
value is noted “¡ 102 cells=g”;25
• vague data, like “in products having a weak water activity (aw), microorganisms with spores can
appear”. In this example [20] the piece of information “weak water activity” may be represented27
by a fuzzy set.

The fuzzy set framework allows one to represent a precise value, an interval or a fuzzy value29
using the same formalism.
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Fig. 2. A part of the concept type set for the microbial application.

2.2. The conceptual graph model1

The weakly structured data of the application are represented using the conceptual graph model,
which is a knowledge representation model based on labelled graphs, introduced by Sowa [16]. We3
use the formalization presented in [13]. In the conceptual graph model, knowledge is divided into
two parts: the terminological part (the support) and the assertional part (the conceptual graphs). In5
this section, we brie1y and intuitively present the conceptual graph model through the example of
our application.7

2.2.1. The support
The support provides the ground vocabulary used to build the knowledge base: the types of9

concepts used, the instances of these types, and the types of relations linking the concepts. It describes
the hierarchical organization of these elements.11

The set of concept types is partially ordered by a kind of relation. Universal and Absurd are,
respectively, its greatest and lowest elements. Fig. 2 presents a part of the set of concept types used13
in the application.

The concepts can be linked by means of relations. The set of relation types is partially ordered15
by a kind of relation. Each relation type is characterized by an arity, and a signature which speci;es
the maximal concept types that a given relation can link together. The set of relation types we use17
contains relation types such as Agt, which is a binary relation having (Action, Germ) as a signature.
It means that “an Action has for agent a Germ” (for example an interaction an have a bacterium as19
an agent).

The third set of the support is the set of individual markers. Each individual marker represents21
an instance of a concept. For example, Celsius degree can be an instance of Degree. The generic
marker (noted ∗) is a particular marker referring to an unspeci;ed instance of a concept.23
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Fig. 3. An example of a conceptual graph.

1 2
Experiment : E1 Obj Interaction : I1

1
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1

2
ObjListeria Scott A:*

1 2
Res Reduction : *

Interaction : *
1 2Agt Bacteriocin : *

12
ObjPathogen Germ : *G

G'

Fig. 4. There is a projection from G into G′, G′6G (G′ is a specialization of G).

2.2.2. The conceptual graphs1
The conceptual graphs, built upon the support, express the factual knowledge. They are composed

of two kinds of vertices: (i) the concept vertices (noted in rectangles or in brackets) which represent3
the entities, attributes, states, events; (ii) the relation vertices (noted in ovals or in parentheses) which
express the nature of the relations between concepts.5

The label of a concept vertex is a pair de;ned by the type of the concept and a marker (individual
or generic) of this type. The label of a relation vertex is its relation type.7

The information contained in the conceptual graph knowledge base describes the behaviour of
pathogen germs (increase, reduction or stability of their concentration) in food products during9
diMerent processes. For example, the conceptual graph given in Fig. 3 is a representation of the
information: “the experiment E1 carries out an interaction I1 between Nisin and Listeria Scott A in11
full milk and the result is reduction”.

De�nition 2. The knowledge base KB= {G1; : : : ; Gp} containing the weakly structured knowledge of13
our system is a set of connected, possibly cyclic conceptual graphs.

2.2.3. Specialization relation, projection operation15
The set of conceptual graphs is partially ordered by the specialization relation (noted 6), which

can be computed by the projection operation (a kind of graph morphism allowing a restriction of17
the vertex labels authorized in the support): G′6G if and only if there is a projection of G into G′.
An example is given in Fig. 4.19
Since it allows the search for conceptual graphs which are specializations of (which contain more

precise information than) another conceptual graph, the projection operation is widely used for the21
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querying of conceptual graph knowledge bases. We then call a “query graph” a conceptual graph1
that we try to project into each graph of the knowledge base, called “factual graphs”.

The question of the existence of a projection of a graph into another graph is NP-complete [11].3
However there are polynomial cases, for instance the question of the existence of a projection of an
acyclic graph into a graph. We use the polynomial algorithm of [12], which means that we have to5
use necessarily acyclic query graphs.

3. Representing numerical values and fuzzy values in the conceptual graph model7

3.1. Representing numerical values

The microbiological data stored, as well as the user’s queries, include numerical values, like9
temperatures, concentrations, durations. In the conceptual graph model that we use [13], individual
markers are identi;ers for instances: an individual marker is a symbolic datum that identi;es a given11
instance in a unique way. Two diMerent instances are necessarily noted by two diMerent individual
markers so there is no ambiguity.13

As implied by the de;nition of the model, two incompatible concept types 2 cannot have a common
instance and therefore cannot share a common individual marker. For instance, let us suppose that15
the type Full milk and the type Pasteurized milk have a non-absurd greatest common subtype
Pasteurized full milk. If ‘sample1’ is an individual marker of the concept type Full milk and also17
of the concept type Pasteurized milk, then it is necessarily a marker of Pasteurized full milk. Now
let us consider the types Duration and Temperature. As they have no greatest common subtype19
diMerent from Absurd, they cannot share a common marker. Thus ‘30’ cannot be a marker of both
Duration and Temperature, neither can any numerical value be a marker of several concept types21
if these types do not have a non-absurd greatest common subtype.

We propose to adopt another representation of numerical values, based on a diMerent support. This23
representation is in conformity with the basic conceptual graph model.

Here are two diMerent examples proposed by Sowa [16] to represent numerical values. Sowa deals25
with the representation of measures, where he distinguishes the object on which the measure is made,
the parameter that is measured, the measure itself and its name. For instance the measure of the27
length of a bar of 25:4 cm is represented by
[BAR]→ (CHRC)→ [LENGTH]→ (MEAS)→ [MEASURE]→ (NAME)→ [“25:4 cm”].29
contracted to:
[BAR]→ (CHRC)→ [LENGTH :@25:4 cm].31

The drawback of this representation is that the measure appears as a string in which the value
and the unit are not distinguished. Besides, Sowa [16] deals with the representation of numbers33
in a diMerent way. He proposes to distinguish the number itself and the names assigned to it. For
example the following graph presents two possible names for the number four:35

[“IV”]← (NAME)← [NUMBER: #27018]→ (NAME)→[“4”].
The use of a distinct representation for numbers and measures does not highlight the link between37

a number and a measure, although a measure can contain a number, as in the previous example.

2 With the term “incompatible” we mean two types whose greatest common subtype is Absurd.
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Fig. 5. An example of a conceptual graph representing numerical values.

Moreover it does not allow one to handle typed data (strings, numerical values, etc.), which we1
wish to introduce in our application so as to be able to perform numerical processing, in particular
numerical comparisons and calculations.3

Therefore in order to represent numerical values, we propose to introduce the concept type Numer-
icalValue into the support. It is a subtype of the more general type Value. We introduce the relation5
type NumVal(Datum, NumericalValue), subtype of the more general relation type Val(Datum,
Value).7

De�nition 3. A numerical value is a marker of a speci;c concept type. The set of markers associated
with this type may be uncountable. 39

This concept type is called NumericalValue in our application. Such a marker is represented by
an integer or a real number in a conceptual graph. In the following, the set of markers associated11
with the type NumericalValue is assumed to be R.
The designation of these types, as well as the signatures of the relation types introduced, are given13

as an example and can be modi;ed and adapted to other applications. Other subtypes of the concept
type Value and the relation type Val may also be considered and organized into a hierarchy, such15
as strings, real numbers, integers and so on.

The conceptual graph of Fig. 5 extends Fig. 3 with additional information, including numerical17
values represented on the basis of the new support. It can be interpreted as “the experiment E1
carries out an interaction I1 between Nisin at a concentration of 50 U=ml and Listeria Scott A in19
skimmed milk during 2 h at a temperature of 37◦ and the result is reduction” [9].

Let us note that the specialization relation remains unchanged by the introduction of numerical21
markers: * is more general than all the individual markers—including numerical ones—which are
not comparable.23

3 This is an exception to the de;nition of the support as established by the de;nition of Mugnier and Chein [13].
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3.2. Representing fuzzy values1

We propose to introduce the representation of fuzzy values concerning both concept types and
markers.3

Information of the application stored in conceptual graphs (factual graphs or query graphs) may be
represented in two ways: (i) as individual markers; for instance this is the case for numerical values5
(30, 50, etc.); (ii) as concept types; for instance this is the case for substrates (Milk, Beef, etc.).
In both cases, we must be able to represent them as fuzzy information, as explained in Section 2.7
It is thus necessary to de;ne both fuzzy types and fuzzy markers.

Morton [10] ;rstly introduced fuzziness in the conceptual graph model. He distinguished per-9
ceptual, propositional and linguistic fuzziness, respectively concerning entity, information, and at-
tribute concepts. Perceptual fuzziness represents the compatibility between an individual marker and11
its type within an entity concept vertex. It is materialized by a compatibility degree, for instance
[GIRL : Sue | 0:6] expresses a doubt about Sue being a girl. Propositional fuzziness is represented by13
a truth degree or a fuzzy truth value associated with one or several conceptual graphs de;ning a
statement. Linguistic fuzziness concerns metric attributes, which can have either a precise measure15
or a label that stands for a crisp or fuzzy subset of what is called the “universe of discourse”.

In [17], linguistic fuzziness is proposed for non-metric attributes, and fuzzy relation concepts are17
introduced, by associating a certainty degree with relations. For example: [GIRL:Sue | 0:6]←(AGNT
|0.5)←[EAT:#80]→(OBJ)→(PIE) means, according to the authors, that it is not certain whether it is19
a girl (probably called Sue) who performs the eating. The interpretation of such fuzzy propositions
seems unclear and diMerent cases are hard to distinguish, for instance “it is not certain that Sue is21
a girl” should be diMerent from “it is not certain that the considered girl is Sue”, from “it is not
certain that it is a girl”, from “it is not certain that she is eating”, from “it is not certain that she is23
doing something” and so on.

In our work, the semantics of fuzzy markers is that of Morton’s linguistic fuzziness. Metric and25
non-metric concepts are not distinguished as they are treated homogeneously, and the “universe of
discourse” is clearly de;ned as part of the set of individual markers de;ned in the support of the27
conceptual graph model. We do not handle fuzzy relations, as in our context fuzziness concerns the
data and not the way they are linked. We focus on a homogeneous approach of both concept types29
and markers. In both cases, fuzziness is represented in the same way, by means of a normalized
fuzzy set.31

In [3], the notion of conjunctive fuzzy type is proposed, which is a conjunction of types asso-
ciated with the same individual marker with diMerent fuzzy truth values), e.g. {(Tall man, true),33
(Young man, very false)}.

In our approach, using fuzzy types, we do not question the unicity of an individual marker’s35
type: a fuzzy type represents a disjunction of possible types (with diMerent possibility degrees), e.g.
(1/Full milk + 0.5/Half-skimmed milk), associated with the generic marker.37

De�nition 4. The reference domain Ref (t) associated with the concept type t is the set of individual
markers that conform to t.39

∀t ∈ TC; Ref (t) = {m ∈ I | �(m)6 t};



UNCORRECTED P
ROOF

FSS4104

ARTICLE IN PRESS
R. Thomopoulos et al. / Fuzzy Sets and Systems ( ) – 9

1

NumericalValue :

45 60 70 85
0

1

Temperature : *

ValNum

2

Fig. 6. An example of a concept with a fuzzy marker.

where TC is the set of concept types de;ned in the support, I is the set of individual markers and1
� an application from I to TC that associates a minimum concept type with each individual marker.

The reference domain associated with a concept type is thus a subset of I . It may be ;nite3
or in;nite, continuous or discrete. For example, if the markers that conform to the concept type
NumericalValue are the real numbers, then Ref (NumericalValue)=R is continuous and in;nite. If5
there are two individual markers T1 and T2 that conform to the concept type Temperature, then
Ref (Temperature)= {T1; T2} is discontinuous and discrete.7

De�nition 5. A fuzzy marker mf of concept type t is a fuzzy set de;ned on Ref (t).

It represents a disjunction of individual markers of type t modi;ed by a coe>cient between 09
and 1.

Remark 1. A “classic” individual marker m of type t can be considered as a particular fuzzy marker:11
its membership function associates the value 1 with m, and the value 0 with the rest of the do-
main Ref (t). The generic marker * can be considered as a particular fuzzy marker of type t: its13
membership function associates the value 1 with any element of Ref (t).

De�nition 6. A concept with a fuzzy marker is a concept vertex whose label is a pair (t; mf ), where15
t is an element of TC and mf is a fuzzy marker of the concept type t.

The conceptual graph represented in Fig. 6 includes a concept with a fuzzy marker, of type17
NumericalValue.

De�nition 7. A fuzzy type tf is a fuzzy set de;ned on a subset Dtf of incomparable 4 concept types19
of TC.

For example the fuzzy set MyMilkProductPreferences represented in Fig. 1 is a fuzzy type21
de;ned on a subset of the concept types given in Fig. 2.

4 Within the meaning of the specialization relation.
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Fig. 7. An example of a concept with a fuzzy type.

Remark 2. A “classic” concept type t can be considered as a particular fuzzy type. Its membership1
function is de;ned on one element {t} and takes the value 1 for this element.

De�nition 8. Let tf be a fuzzy type de;ned on Dtf . The reference domain Ref (tf ) associated with3
the fuzzy type tf is the union of the reference domains of the elements of Dtf :

Ref (tf ) =
⋃

t∈Dtf
Ref (t):

5

For example the reference domain of the fuzzy type MyMilkProductPreferences is the set of
markers that conform to the type Full milk or to the type Half-skimmed milk.7

De�nition 9. A concept with a fuzzy type is a concept vertex whose label is a pair (tf ; m), where tf
is a fuzzy type and m is the generic marker *.9

Remark 3. The generic marker * can once again be considered as the fuzzy marker de;ned on
Ref (tf ) whose membership function associates the value 1 with any element of Ref (tf ).11

For instance, let us suppose that the user’s preferences concerning the substrate are MyMilkPro-
ductPreferences represented in Fig. 1. In conceptual graph terms, this substrate is the concept13
[Full milk :∗] with the degree 1, or the concept [Half − skimmed milk :∗] with the degree 0.5,
which is represented by the concept with a fuzzy type of Fig. 7.15

4. Comparison of fuzzy concepts, the specialization relation

The specialization relation of the conceptual graph model, presented in Section 2, allows one17
to perform comparisons of conceptual graphs. After having extended the model to represent fuzzy
concepts (concepts with a fuzzy marker or with a fuzzy type), the next step is to be able to order19
conceptual graphs that include fuzzy concepts (called “fuzzy graphs”), and in particular to be able
to compare a fuzzy query graph with fuzzy factual graphs. To perform this comparison, we extend21
the specialization relation to fuzzy concepts, then we propose to relax this comparison, which is an
all-or-nothing process, by introducing a more 1exible comparison that eMects fuzzy querying.23
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Fig. 8. Example of specialization for fuzzy sets.

4.1. The notion of specialization for fuzzy sets1

The notion of specialization for fuzzy sets is based on the inclusion relation: A is a specialization
of B if and only if A is included in B. An example is given in Fig. 8 on a continuous domain. This3
de;nition applies to both discrete and continuous domains.

De�nition 10. Let A and B be two fuzzy sets de;ned on a domain X . A is included in B (noted5
A⊆B) if and only if their membership functions �A and �B satisfy the condition:

∀x ∈ X; �A(x)6 �B(x):7

Let F(X ) be the set of all possible fuzzy sets on the domain X . Inclusion is a partial order relation
in F(X ).9

4.2. Extension of the specialization relation to fuzzy concepts

De�nition 11. Let t and t′ be two fuzzy types on the domains Dt and Dt′ , respectively. Their11
characteristic functions are noted �t and �t′ . t′ is a specialization of t if and only if:
∀x′ ∈Dt′ (�t′(x′) =0); ∃x∈Dt; x′6x and �t′(x′)6�t(x).13

An example of a projection involving fuzzy types is given in Fig. 9.

Remark 4. If t and t′ are “classic” types, this de;nition is in agreement with the classic specialization15
relation: t (resp. t′) is represented by the fuzzy set de;ned on {t} (resp. {t′}) that associates the
value 1 with t (resp. t′). We still have: t′ is a specialization of t if and only if t′6t.17
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Fig. 9. An example of a projection involving fuzzy types.
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Fig. 10. An example of a projection involving fuzzy markers.

De�nition 12. Let m and m′ be two markers of types t and t′, de;ned on Ref (t) and Ref (t′)1
respectively. m′ is a specialization of m if and only if Ref (t) is included in Ref (t′) and m′⊆m,
where ⊆ is the classic inclusion relation de;ned for fuzzy sets.3

An example of a projection involving fuzzy markers is given in Fig. 10.
Note that in De;nition 12 there are four possible cases for m (resp. m′). m (resp. m′) can be: an5

individual marker of a simple type; a fuzzy marker of a simple type; a generic marker of a simple
type; a generic marker of a fuzzy type.7

If m and m′ are two individual markers (of the simple types t and t′, t′6t), this de;nition is in
agreement with the classic specialization relation: m (resp. m′) is represented by the fuzzy set that9
associates the value 1 with m (resp. m′) and 0 with the rest of Ref (t) (resp. Ref (t′)). Then m′ is
a specialization of m iM m′⊆m, that is iM m′=m.11

If m is the generic marker (of a simple or a fuzzy type t) and m′ an individual marker (of a
simple type t′, t′6t), we also have the classic specialization relation: m is represented by the fuzzy13
set that associates the value 1 with any element of Ref (t); m′ is represented by the fuzzy set that
associates the value 1 with m′ and 0 with the rest of Ref (t′). Then m′ is a specialization of m15
because m′⊆m is always true.
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Let us consider two fuzzy types, t de;ned on a set of n simple types, and t′ de;ned on a set1
of n′ simple types. The checking of the inclusion of a concept with the fuzzy type t′ in a concept
with the fuzzy type t, has a complexity in O(n′× n). Similarly, if we consider two fuzzy markers,3
m de;ned on a discrete domain composed of n individual markers, and m′ de;ned on a discrete
domain composed of n′ individual markers, the checking of the inclusion of a concept with the fuzzy5
marker m′ in a concept with the fuzzy marker m also has a complexity in O(n′× n). In the case
where m and m′ are de;ned on a continuous domain, in order to avoid a signi;cant increase of the7
complexity, we have chosen to limit the fuzzy sets used to “trapezoidal” ones: such a trapezoidal
membership function has ;ve phases, limited by four abscissa values (a, b, c, d). It takes the value9
0 until a, then increases to 1 from a to b, keeps the value 1 from b to c, decreases to 0 from c to
d, and keeps the value 0 from d. Checking the inclusion c n then be done in constant time.11

De�nition 13. Let l=(t; m) and l=(t′; m′) be the labels of two concepts, where t and t′ can be
fuzzy types, m and m′ can be fuzzy markers (we recall that a type and its marker cannot be fuzzy13
simultaneously). Then l′ is a specialization of l if and only if t′ is a specialization of t and m′ is a
specialization of m.15

Property 1. This extended projection operation remains a partial preorder on the set of conceptual
graphs (with possibly fuzzy concepts).17

Proof 1. As mentioned in De;nition 10, the inclusion relation of fuzzy sets is a partial order in the
set of fuzzy sets de;ned on a same domain X . For this reason the specialization relation, extended19
to conceptual graphs that include fuzzy concepts, preserves its re1exivity and transitivity properties.
As all the comparisons of “classic” (non-fuzzy) conceptual graphs remain unchanged, we still do not21
have the antisymmetry property (it is a preorder) and incomparable graphs still cannot be compared
(it is a partial preorder).23

As we intuitively presented above, comparisons of fuzzy concept vertices can be done in constant
or polynomial time depending on the cases. Searching a projection from an acyclic graph into a25
graph, using the algorithm of Mugnier and Chein [12] extended to fuzzy concepts, thus remains a
problem with polynomial complexity.27

Using this extended projection operation, the comparison of two conceptual graphs leads to a
binary result: a graph G can be projected into a graph G′ or cannot, there is no intermediate solution.29
However a more 1exible comparison of fuzzy sets should allow one to evaluate the compatibility
between a fuzzy query graph and a fuzzy factual graph. Therefore we propose to introduce a relation31
of compatibility with a degree d between two conceptual graphs.

4.3. A more =exible comparison of fuzzy concepts33

Two scalar measures are classically used to evaluate the compatibility between a fuzzy selection
criterium and a correspondent imprecise datum: (i) a degree of possibility of matching [19]; (ii)35
a degree of necessity of matching [5]. Within the framework of this paper, we only deal with the
former.37
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Fig. 11. Flexible comparison of two markers m and m′ of type NumericalValue.

De�nition 14. Let m and m′ be two markers of types t and t′, respectively, de;ned on Ref (t) and1
Ref (t′), with characteristic functions �m and �m′ . Then m′ is compatible with m with the possibility
degree d (noted m′compdm), where d has the following value:

3
• d=0 if Ref (t)∩Ref (t′)= ∅;
• otherwise d=�(m;m′).5

�(m;m′), degree of possibility of matching between m and m′, measures the maximum compatibility
between m and m′ and is de;ned by:7

�(m;m′) = sup
x∈Ref (t)∩Ref (t′)

min(�m(x); �m′(x)):

Note that this measure of the degree of possibility with which m′ is compatible with m is sym-9
metrical.

An example is given in Fig. 11.11

Remark 5. For two “classic” individual markers m and m′, �(m;m′) takes the value 1 if m=m′, 0
if not. If m or m′ is the generic marker, �(m;m′)= 1.13

De�nition 15. Let t and t′ be two fuzzy types, respectively, de;ned on the domains Dt and Dt′ .
Their characteristic functions are noted �t and �t′ . Then t′ is compatible with t with the possibility15
degree d (noted t′compdt), where d is determined as follows:

Let A be the set of all pairs (x; x′) from Dt ×Dt′ satisfying x′6x.
17

• if A= ∅; d=0;
• otherwise d= sup(x;x′)∈A min(�t(x); �t′(x′)).19

For example, the fuzzy type:
t′=1=Full milk + 0:5=Half -skimmed milk21
is compatible with the fuzzy type:
t=0:6=Milk + 1=Beef + 0:3=Poultry23
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with the degree:1

d= sup(min(�t(Milk); �t′(Full milk));
min(�t(Milk); �t′(Half -skimmed milk)))

= sup(min(0:6; 1); min(0:6; 0:5))
= sup(0:6; 0:5) = 0:6:

Note that this measure of the degree of possibility with which t′ is compatible with t is not
symmetrical, because it involves the specialization relation. For instance, in the previous example, t3
is compatible with t′ with the degree 0.

Remark 6. For two “classic” types t and t′, �(t; t′) takes the value 1 if t6t′, 0 if not.5

De�nition 16. Let l=(t; m) and l′=(t′; m′) be the labels of two concepts c and c′, where t and t′
can be fuzzy types, m and m′ can be fuzzy markers (we recall that the type and its marker cannot7
be fuzzy simultaneously). Then c′ is compatible with c with the degree of possibility d (noted
c′compdc), where d is de;ned as follows:9
Let d1 be the degree with which t′ is compatible with t (t′compd1 t). Let d2 be the degree with

which m′ is compatible with m (m′compd1 m). Then d=min(d1; d2).11

The min operator is used for the conjunction of the compatibility degrees, as presented in [6].
For instance, for:13

c= [Full milk: 1=sample32+ 1=sample35] and c′= [0:5=Full milk + 1=Half -
skimmed milk: ∗], we have:15
d1=0:5 (Full milk has the degree 1 in c and 0.5 in c′, Half-skimmed milk is not comparable with
Full milk),17
d2=1 (both ‘sample32’ and ‘sample35’ have the degree 1 in c and also in c′, where the generic
marker ∗ stands for the fuzzy set that associates the degree 1 with every marker of Full milk and19
Half-skimmed milk)
d=min(0:5; 1)=0:5, thus c′comp0:5 c.21

De�nition 17. Let G and G′ be two conceptual graphs that can possibly include fuzzy concepts.
Then the graph G′ is compatible with the graph G with the degree d (noted G′compd G) if there is23
an ordered pair (f; g) of mappings, f (resp. g) from the set of relation types (resp. concept types)
of G to the set of relation types (resp. concept types) of G′, such that:

25
• edges and their numbering are preserved;
• relation vertex labels may be restricted.27

d is then determined as follows:
Let CG be the set of concept vertices of G. For each concept vertex c∈CG, let dc be the degree29

of possibility with which g(c) is compatible with c. Then d=minc∈CG dc.
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Fig. 12. An example of a query graph G.
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Fig. 13. An example of a factual graph G′.

Remark 7. If G can be projected into G′ (G′ is a specialization of G), then G′ is compatible with1
G with the degree 1.

For example let us consider the graph G given in Fig. 12 and the graph G′ given in Fig. 13.3
G′ is compatible with G with the degree of possibility d=0:5, which corresponds to the degree of
possibility with which the concept vertex [Half -skimmed milk: ∗] of the graph G′ is compatible5
with the concept vertex [1=Skimmed milk + 0:5=Half -skimmed milk: ∗] of the graph G, all the
other concept vertices of G being satis;ed with the degree of possibility 1 by their image in G′.7
As explained in Section 4.2, searching a projection from an acyclic graph into a graph, both

possibly including fuzzy concepts, is a problem with polynomial complexity. Calculating the degree9
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of possibility of matching is done in constant time. The algorithm of Mugnier and Chein [12] adapted1
to compute if an acyclic graph is compatible with a graph (both possibly including fuzzy concepts)
with a given possibility degree, thus remains a problem with polynomial complexity, but it supplies3
more solutions.

5. Conclusion and perspectives5

Within the context of the creation of a tool for decision-making aid in the domain of food risk
control, the speci;cities of the data led us to follow the steps presented in this paper: in the conceptual7
graph model, we have presented a choice for the representation of numerical values and a way of
representing fuzzy data. In order to allow comparisons in this extended model, we have proposed9
an extension of the specialization relation. Lastly we have softened this comparison by introducing
a relation of compatibility with a degree d between two graphs, allowing enlarged querying.11
The originality of our approach is the combination of two models that complement each other

to satisfy the purposes of the application. Indeed the data and the queries of the project require a13
1exible data structure and ;t to a hierachical classi;cation, which is brought by the conceptual graph
model. On the other hand they include numerical data and fuzzy data, which the conceptual graph15
model is not designed for [13], but which are handled by the fuzzy set theory [19]. This combined
approach is also original because it integrates fuzzy sets in the conceptual graph model tightly; fuzzy17
sets are built upon the support of the conceptual graph model and provide a homogeneous extension
of the model.19

A prototype of this work has been implemented using the CoGITo platform [8] and a micro-
biological knowledge base is under construction, in cooperation with the group of microbiologist21
experts working on the project. It includes information from three kinds of publications:

• documents that synthesize experimental results of diMerent previous articles on a given subject.23
These publications cannot be stored as recordings in the relational database which is dedicated to
the description of complete and detailed experiments;25
• documents that give qualitative information only. Qualitative data are not exploitable by querying

the relational database, where they can only be stored as plain text; the keywords and the semantics27
of the connections between them are not highlighted.
• documents whose content is not directly related to the relational database theme. There are no29

attributes that ;t to these data in the relational database, but they can be stored as concepts in the
conceptual graph model.31

About 100 graphs, each composed of around 50 vertices, have been registered in the knowledge
base up to now. Nested conceptual graphs [4]—i.e. conceptual graphs that include concept vertices33
whose description itself is represented by a conceptual graph—could be used in order to represent
information at various levels of detail.35

Our very next work will be to study other comparison degrees (in particular the degree of necessity
of matching [5]) in order to re;ne the comparison of fuzzy sets. In a more distant future, we will37
have to adapt our system to enable non-specialists of the conceptual graph model to use it. An
important work on the interfacing of our system has to be done. In particular, during the knowledge39
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acquisition stage, by providing conceptual graph patterns, that biologists could complete in order to1
enter data in the knowledge base.
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