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Abstract. In the context of a microbiological application, our study
proposes to extend the Conceptual Graph Model in order to allow one:
(i) to represent imprecise data and queries that include preferences, by
using fuzzy sets (from fuzzy set theory) in concept vertices, in order to
describe either an imprecise concept type or an imprecise referent; (ii)
to query a conceptual graph that may include imprecise data (factual
graph) using a conceptual graph that may include preferences (query
graph). This is performed in two steps: firstly by extending the pro-
jection operation to fuzzy concepts, secondly by defining a comparison
operation characterised by two matching degrees: the possibility degree
of matching and the necessity degree of matching between two graphs,
and particularly between a query graph and a factual graph.

1 Introduction

Our research project is part of a national program that aims at building a tool
for microbial risk analysis in food products. This tool is based on an information
system which is composed of two parts: a relational database and a conceptual
graph knowledge base. The latter is used to store information that was not ex-
pected when the schema of the database was designed, and is useful nevertheless.
As modifying the schema of the database is quite an expensive operation, the
conceptual graph model [11] appears as a flexible way of representing comple-
mentary information until the relational database is updated. More precisely the
formalization of [9] is used in our application.

Both bases are queried simultaneously by a unified querying system. This part
of our work has already been presented in [2]. Both have to deal with the following
two specificities. (i) Some of the data are imprecise, like data whose precision
is limited by the measuring techniques. For instance, when using a method able
to detect bacteria beyond a given concentration threshold (e.g. 102 cells per
gramme), not detecting any bacterium means that their concentration is below
this threshold, which is an imprecise value denoted “< 10% cells/g”. (ii) The
bases are incomplete, as they will never contain information about all possible
food products and all possible pathogenic germs. Those two characteristics led us
to propose, firstly the handling of imprecise values, and secondly the expression



of different levels of preferences in the user’s selection criteria so as to allow
flexible querying.

In the bibliography concerning databases, the fuzzy set framework has been
shown to be a sound scientific way of modelling both flexible queries [1] and im-
precise values by means of possibility distributions [10]. Besides, the introduction
of the fuzzy set theory into the conceptual graph model has been initially studied
by Morton [8] and then extended by several works such as [14, 4]. Morton distin-
guished different kinds of fuzziness. In particular, linguistic fuzziness concerns
metric attribute concepts, which can have either a precise measure or a label that
stands for a crisp or fuzzy subset of what is called the “universe of discourse”. In
[14], linguistic fuzziness is proposed for non-metric attributes, and fuzzy relation
vertices are introduced, by associating a certainty degree with relations.

In these studies, the notion of fuzzy marker is not clearly introduced: what is
fuzzy is the measure associated with a given concept, and the definition domain
of this measure seems external to the support. The notion of fuzzy concept type
is not handled. Our work introduces the notions of fuzzy marker and fuzzy type.
In both cases, fuzziness is represented homogeneously, by means of a normalized
fuzzy set. The “universe of discourse” is clearly defined as part of the support
of the conceptual graph model, and metric and non-metric concepts are not
distinguished as they are treated in the same way. We do not propose fuzzy
relations, as in our context fuzziness concerns the data and not the way they are
linked. However, our study about fuzzy types could be applied to any hierarchy
and thus to the relation type set.

In [4], the notion of conjunctive fuzzy type is proposed, which is a conjunction
of types associated with the same individual marker (with different fuzzy truth
values). In our approach to fuzzy types, we do not question the unicity of an
individual marker’s type: a fuzzy type represents a disjunction of possible types
(with different possibility degrees).

We presented preliminary studies of our approach in [3,13,12], where basic
principles were formalized, including the treatment of numerical values and the
introduction of fuzzy markers and fuzzy types. In this paper, we focus on different
ways of querying imprecise data using fuzzy queries. A first way is the extension
of the projection operation to fuzzy conceptual graphs, which is an all-or-nothing
process. A second way is the use of comparison degrees of the fuzzy set theory,
which allows one to perform fuzzy querying. In order to introduce these two
comparisons, we went deeper into the notion of fuzzy type, by distinguishing a
fuzzy type in intention (or simply, a fuzzy type) from its associated developed
form called fuzzy type in extension.

In Section 2, we recall our choices for representing fuzzy values in the con-
ceptual graph model, that is, fuzzy markers and fuzzy types, and we introduce
the notion of fuzzy type in extension. In Section 3, we propose an extension
of the projection operation to handle fuzzy values. In Section 4, we introduce
a more flexible way of comparing fuzzy conceptual graphs, using two compari-
son degrees of the fuzzy set theory, the possibility degree of matching and the
necessity degree of matching.



2 Fuzzy Values in the Conceptual Graph Model

Information of the application stored in conceptual graphs (factual graphs or
query graphs) may be represented in two ways: (i) as individual markers, as
it is the case for numerical values (30, 50, etc.) or for bacterial strains (E-3,
A-86, etc.); (ii) as concept types, as it is the case for substrates (Milk, Beef,
etc.). In both cases, we must be able to represent them as fuzzy information, as
explained in Part 2.1. We thus have introduced the representation of fuzzy values
concerning both markers, presented in Part 2.2, and concept types, presented
in Part 2.3. As mentioned in the introduction, in this paper we propose a more
thorough definition of fuzzy types, compared to [3,13,12].

2.1 Preliminary Notions: Fuzzy Sets

In our application we need firstly to be able to represent imprecise data, secondly
to express preferences in queries. To perform this we use the fuzzy set theory
[15].

Definition 1 afuzzy set A on a domain X is defined by a membership function
pwa from X to [0, 1] that associates the degree to which z belongs to A with each
element x of X .

The domain X may be continuous or discrete. These two cases are illustrated
by the examples given in Figure 1. The fuzzy set MyMilkProductPreferences is
also denoted : 1/Whole milk + 0.5/Half skim milk, which indicates the degree
associated with each element.

HighDuration MyMilkProductPreferences
1 1 ([
05 ([
0 0 } t
20 50 70 100 seconds Wholemilk  Half skim milk

Fig. 1. Fuzzy sets HighDuration and MyMilkProductPreferences

A fuzzy set may be interpreted in two ways:

1. in a query, it expresses preferences on the domain of a selection criterion.
For example, the fuzzy set HighDuration in Figure 1 may be interpreted
as a preference concerning the required value of the criterion Duration: a
duration between 50 and 70 seconds is fully satisfactory; values outside this
interval may also be acceptable, but with smaller preference degrees;

2. in a datum, it describes an imprecise datum represented by a possibility
distribution. For example, the fuzzy set MyMilkProductPreferences may be
interpreted as an imprecise datum if the kind of milk that was used in the
experiment is not clearly known: it is very likely to be whole milk, but half
skim milk is not excluded.



In the following we recall the definitions of fuzzy markers and fuzzy types
and we introduce the new notion of fuzzy type in extension. We refer to the
conceptual graph model of [11], and more precisely to the formalisation of [9].

2.2 Fuzzy markers

Definition 2 A fuzzy marker my of concept typet is a fuzzy set defined on the
set of individual markers I. It takes values between 0 and 1 for every individual
marker that conforms' to t, and 0 elsewhere.

A fuzzy marker represents a disjunction of individual markers that conform
to type t, weighted by a coefficient between 0 and 1.

Remark 1 A “classic” individual marker m of type t can be considered as a
particular fuzzy marker: its membership function associates the value 1 with m,
and the value 0 with the rest of I.

The generic marker * can be considered as a particular fuzzy marker of type
t: its membership function associates the value 1 with any element that conforms
to t, and 0 with the rest of I.

Definition 3 A concept with a fuzzy marker is a concept vertex whose label
is a pair (t,my), where my is a fuzzy marker of concept type t.

The conceptual graph represented in Figure 2 includes a concept with a fuzzy
marker, of type Numerical Value.

‘ HoldingTemperature : * umericavaue: 1

! 0 16 202428
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Fig. 2. An example of a concept with a fuzzy marker

2.3 Fuzzy types

Definition 4 A fuzzy type t; is a fuzzy set defined on a subset Dy, of elements
of the concept type set T¢.

For example, the fuzzy set MyMilkProductPreferences represented in Figure 1
is a fuzzy type defined on a subset of the concept type set.

Remark 2 A “classic” concept type t can be considered as a particular fuzzy
type: its membership function is defined on one element {t} and takes the value
1 for this element.

! The set of individual markers that conform to t is {m € I | 7(m) < t}, where 7
is the application from I to T¢, defined in the support, that associates a minimum
concept type with each individual marker.



We can note that no restriction has been imposed concerning the concept
types that compose the definition domain of a fuzzy type. In particular, the user
may associate a given degree d with a type t and another degree d’ with a subtype
t' of this type. d’ < d represents a semantic of restriction for ¢ compared to t,
whereas d' > d represents a semantic of reinforcement for ¢’ compared to ¢. For
instance, if the user is particularly interested in skim milk because he studies
the properties of low fat products, but also wants to retrieve complementary
information about other kinds of milk, he will be able to express his preferences
using e.g. the following fuzzy type: 1/Skim milk + 0.5/Milk.

However the information 1/Skim milk and 0.5/Milk may sound contradictory.
Indeed, the criterion 0.5/Milk seems to include skim milk, which is a kind of milk,
though skim milk has the degree 1. In fact, a fuzzy type defined on a subset of
T¢ implicitly gives information about the rest of T¢. In our example, if the user’s
preferences are those expressed by the fuzzy type 1/Skim milk + 0.5/Milk, we
can deduce in addition that he is not interested in vegetable.

This observation led us to introduce the notion of fuzzy type in extension,
which is the developed form of the fuzzy type defined in Definition 4, which we
now call fuzzy type in intention. A fuzzy type in extension is defined on the
whole concept type set T¢.

Definition 5 Let ty; be a fuzzy type in intention defined on a subset D; of
Tc. Its membership function is denoted ;. The fuzzy type in extension t¢,
associated with ty; is defined as follows.

The membership function of ty. is denoted p.. For each elementt € T:

— if there exists, at least, one element u € D; such that u > t, then we distin-
guish two cases:

o if there exists one single smallest® element u € D; such that u > t, then
pe(t) = pi(u)

The interpretation is the following:

x if the fuzzy set expresses preferences, then being interested in a given
type u with a degree d implies being interested in all the types t more
specific than u with the same degree of preference.

x if the fuzzy set expresses an imprecise datum, then declaring that a
given type u has a degree of possibility d implies that, for all t which
are more specific than u, their degree of possibility is d.

e otherwise, we call ui,us,...,u, the smallest elements of D; such that
Vk € {1,2,...,n} ur > t. These elements are not comparable’. We
distinguish two cases:

x if the fuzzy set expresses preferences, then the degree of preference
associated with t must be at least equal to the degree of preference
associated with each element of the list uy,us,...,u,, and we define

He (t) = MaTrec{1,2,...,n} Mi (Uk)

2 with the meaning of the relation a kind of that partially orders T
3 using the partial order induced by the relation a kind of



x if the fuzzy set expresses an imprecise datum, then t cannot have
a degree of possibility greater than each of those associated with
U1, U2,y - -5 Un, and we deﬁne Me (t) = minke{lz,...,n}ﬂi(uk)

— otherwise p.(t) =0

Figure 3 shows the fuzzy type in extension associated with the fuzzy type
in intention 0.8/Milk + 1/Whole milk + 0.3/Evaporated milk on a part of the
concept type set. We assume that the fuzzy set expresses an imprecise datum.

Fuzzy type in intention Fuzzy type in extension
Universal
0
1 b Food product
081 ® 0
03 $ Animal
— ' ' Vegetable
food product
Milk Whole Evaporated 000 food Rrodluct
milk milk 3
Milk product
0 \
/ \ Y oghourt
. Cheese 0
i
Evaporated / \ Skim
milk Whol& milk
03 Mk Pasteurized  Haf 08
1 milk skim
Whole N\ /08 r'gllé(
evar;T)]ti)lrl?ted Whole
pasteurized
03 milk

Fig. 3. An example of a fuzzy type in extension

In the fuzzy type in intention of Figure 3, the user has associated the degree
1 with Whole milk but only 0.3 with Evaporated milk. The minimum of these two
degrees is thus associated with their common subtype Whole evaporated milk in
the fuzzy type in extension, because we assume that the fuzzy type expresses
an imprecise datum. If, on the contrary, it expressed preferences, the degree
associated with Whole evaporated milk would be 1 instead of 0.3.

On the other hand, there is no ambiguity about Whole pasteurized milk be-
cause nothing has been specified about Pasteurized milk in the fuzzy type in in-
tention. Therefore, Whole pasteurized milk has the degree associated with Whole
milk, that is 1, and not 0.8 which is associated with the more general type Milk.

Definition 6 A concept with a fuzzy type is a concept vertex whose label
is a pair (ty,m), where t; is a fuzzy type and m is the generic marker *.

For instance, let us suppose that the user’s preferences concerning the sub-
strate are MyMilkProductPreferences represented in Figure 1. In conceptual
graph terms, this substrate corresponds to the concept type Whole milk with
the degree 1, or the concept type Half skim milk with the degree 0.5, which is
represented by the concept with a fuzzy type of Figure 4.
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Fig. 4. An example of a concept with a fuzzy type

Definition 7 In a concept with a fuzzy type ty, the generic marker * has the
following interpretation:

Let ty. be the fuzzy type in extension associated with t; and p. its membership
function. The generic marker * is a fuzzy marker that associates the degree p(t)
with each individual marker m of I, where t = 7(m) and 7 is the application
from I to T, defined in the support, that attributes a minimum concept type to
each indiwidual marker.

In Figure 4, the fuzzy type in extension t¢, associated with ¢¢ is the fuzzy set
that associates the degree 1 with Whole milk and its subtypes Whole evaporated
milk and Whole pasteurized milk, 0.5 with Half skim milk, and 0 with the rest of
Tc. The generic marker thus stands for the fuzzy set that associates the degree
1 with the markers of Whole milk, Whole evaporated milk and Whole pasteurized
milk, 0.5 with the markers of Half skim milk, and 0 with the rest of I.

Remark 3 The information brought by a generic marker, with the interpreta-
tion of Definition 7, is redundant with that given by its associated type ty: the
degree associated with a given individual marker in * is the same as the one
associated with its type in t¢.

Remark 4 In the particular case where ty is a “classic” type t, ty. is the fuzzy
type in extension that associates the value 1 with t and its subtypes, and the value
0 on the rest of Tc. The associated generic marker is thus the fuzzy marker that
associates the value 1 with the markers of t and its subtypes, that is, with the
markers that conform to t, which is in conformity with the Remark 1.

3 The Specialization Relation for Fuzzy Conceptual
Graphs

The specialization relation of the conceptual graph model allows one to perform
comparisons of conceptual graphs. After having extended the model to represent
fuzzy concepts (concepts with a fuzzy marker or with a fuzzy type), the next
step is to preserve the specialization relation for conceptual graphs that include
fuzzy concepts (called “fuzzy conceptual graphs”), in order to be able to compare
fuzzy conceptual graphs, and particularly a fuzzy query graph with fuzzy factual
graphs.



3.1 The notion of specialization for fuzzy sets

The notion of specialization for fuzzy sets is based on the inclusion relation:
given two fuzzy sets A and B, A is a specialization of B if and only if A is
included in B. An example is given in Figure 5 on a continuous domain. This
definition applies to both discrete and continuous domains.

Definition 8 Let A and B be two fuzzy sets defined on a domain X. A is
included in B (denoted A C B) if and only if their membership functions pa
and pp satisfy the condition:

Vo € X, pa(z) < pp(z).

35 50 65 80

Tis more specialized than

45 55 60 70

Fig. 5. Example of specialization for fuzzy sets

3.2 Extension of the specialization relation to fuzzy conceptual
graphs

Definition 9 Let m and m' be two markers of types t and t'. m and m’ are
thus defined on the same domain I. m' is a specialization of m if and only if
m' C m, where C is the classic inclusion relation defined for fuzzy sets.

An example of specialization involving fuzzy markers is given in Figure 6.

NumericaVaue: 1[™""7

0

35 50 65 80

Tis more specialized than
: . i . NumericalValue :
Experiment : E1 1 5| HoldingTemperature: * 12
1
1
2
Degtee - /N

0

455560 70

Fig. 6. An example of specialization involving fuzzy markers



Note that in Definition 9 there are four possible cases for m (resp. m'). m
(resp. m') can be: an individual marker of a simple type; a fuzzy marker of a
simple type; a generic marker of a simple type; a generic marker of a fuzzy type.

Remark 5 In the “classic” conceptual graph model, there are three cases where
m' is a specialization of m: (i) m and m' are individual and m' =m (i) m = *
and m' is individual (iii)) m = x and m' = x. In these cases, Definition 9 is in
agreement with the classic specialization relation:

If m and m' are two individual markers (of the simple typest and t', t' < t):
m (resp. m') is represented by the fuzzy set that associates the value 1 with m
(resp. m') and 0 with the rest of I, as specified in Remark 1. Then m' is a
specialization of m iff m' C m, that is iff m' = m.

If m is the generic marker of a simple type t and m' an individual marker
of a simple type t' (t' < t): m is represented by the fuzzy set that associates the
value 1 with any individual marker that conforms to t (which includes m') and
0 with the rest of I, as specified in Remarks 1 and 4; m' is represented by the
fuzzy set that associates the value 1 with m' and 0 with the rest of I. Then m/
is a specialization of m because m' C m is true.

If m is the generic marker of a simple type t and m' the generic marker of a
simple type t' (t' < t): m is represented by the fuzzy set that associates the value
1 with any individual marker that conforms to t (which includes the individual
markers that conform to t') and 0 with the rest of I; m' is represented by the
fuzzy set that associates the value 1 with any individual marker that conforms to
t' and 0 with the rest of I. Then m' is a specialization of m because m' C m is
true.

Definition 10 Let ¢t and t' be two types, tr. and t'fe their associated types in
extension. tg. and t, are thus defined on the same domain Tc. t' is a special-
ization of t if and only if t;, C ts., where C is the classic inclusion relation
defined for fuzzy sets.

An example of specialization involving fuzzy types is given in Figure 7.

[opmmmen (o) |

Tis more specialized than 1 oe
°
Reference : riv81 Experiment: E1 [ @ - 05 .
1 2 .

0
Whole Half skim
milk milk

Fig. 7. An example of specialization involving fuzzy types

Remark 6 In the ”classic” case where t and t' are simple types, Definition 10
is in agreement with the classic specialization relation: t (resp. t') is represented
by the fuzzy set that associates the value 1 with t (resp. t') and its subtypes, and
0 with the rest of Tc. Then t' is a specialization of t iff t' C t, that is iff the set



of subtypes (including itself) of t' is included in the set of subtypes of t, that is
it <t

Definition 11 Let | = (t,m) and I' = (t',m') be the labels of two concept
vertices, where t and t' can be fuzzy types, m and m' can be fuzzy markers. Then
' is a specialization of 1 if and only if t' is a specialization of t and m' is a
specialization of m.

Definition 12 The projection operation remains unchanged as a graph mor-
phism that allows a restriction of the vertices labels [9], except that this restric-
tion is now based on the specialization relation extended to fuzzy concepts as
defined in Definitions 9 to 11.

Using this extended projection operation, the comparison of two conceptual
graphs leads to a binary result: a graph G can be projected into a graph G’ or
cannot, there is no intermediate solution. However, a more flexible comparison
of fuzzy sets should allow one to evaluate the compatibility between two fuzzy
conceptual graphs, and particularly between a fuzzy query graph and a fuzzy
factual graph. Therefore, we propose to introduce a more flexible comparison
that performs fuzzy querying.

4 A More Flexible Comparison of Fuzzy Conceptual
Graphs

Two scalar measures are classically used in fuzzy set theory to evaluate the
compatibility between a fuzzy selection criterion and a corresponding impre-
cise datum: (i) a possibility degree of matching [16]; (ii) a necessity degree of
matching [5].

Definition 13 Let m and m' be two markers of types t and t', with membership
functions py, and pn . Then m' is compatible with m with the possibility degree
II(m ;m') and the necessity degree N(m ;m'):

— II(m ;m'), possibility degree of matching between m and m', is an “opti-
mistic” degree of overlapping that measures the maximum compatibility be-
tween m and m’, and is defined by:

T(m ;m) = supacrmin(iim(z), e (2)).
sup denotes the supremum value of a function.

— N(m ;m'), necessity degree of matching between m and m', is a “pessimistic”
degree of inclusion that estimates the extent to which it is certain that m' is
compatible with m. It is equal to the complement in 1 of the possibility degree
of matching between the complement of m and m':

N(m ;m') =1 = supzermin(l — pm (), pm: ().

Note that the measure of the possibility degree with which m’ is compatible
with m is symmetrical, whereas the necessity degree is not.
An example is given in Figure 8.
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m’ is compatible with m with the possibility degree M(m ; m’) and the necessity
degree N(m ; m’) obtained as follows :

complementof m —m’
N(m:m’) { <

7

N 7z
N .
S -,

Fig. 8. Flexible comparison of two markers m and m’

Remark 7 For the “classic” cases detailed in Remark 5, II(m ;m') and N(m ;m')
take the value 1.

Definition 14 Let ¢t and t' be two types, tr. and t’s, their associated types in
extension with membership functions p. and pl,. Then t' is compatible with t
with the possibility degree II(t ;t') and the necessity degree N(t ;t'):

II(t ;1') = supaeremin(pe(z), p, (2))

N(t ;") =1 = supyeromin(l — pe(z), e (2)).-

Remark 8 For two “classic” types t and t': in the “classic” specialization case
where t' < t, II(t ;t') and N(t ;t') take the value 1. II(t ;t') takes the value 1
iff t and t' have common subtypes (in the broad sense). N(t ;') takes the value
1ifft' <t.

Definition 15 Letl = (t,m) andl' = (t',m’) be the labels of two concepts c and
c', where t and t' can be fuzzy types, m and m' can be fuzzy markers. Then c
is compatible with ¢ with the possibility degree II(c ;') and the necessity degree
N(c;c'), where II(c ;¢') and N(c ;') are defined as follows:

H(c ;) =min(II(t ;t"), I (m ;m')).

N(c;cd)=min(N(t ;t"), N(m ;m')).

The min operator is used for the conjunction of the compatibility degrees,
as presented in [6].
For instance, for two concepts ¢ and ¢':
¢ = [Whole milk : 1/sample32 + 0.5/sample35] and
¢’ =[0.8/Whole milk + 1/Half skim milk : *], we have:
II(t ;t') = 0.8 (given by Whole milk which has the degree 1 in ¢ and 0.8 in ¢),



II(m ;m'") = 0.8 (both ’sample32’ and ’sample35’, which are individual markers
of type Whole milk, have the degree 0.8 in ¢/, where the generic marker * stands
for the fuzzy set that associates the degree 0.8 with every marker that conforms
to Whole milk and 1 with every marker that conforms to Half skim milk; the
result is due to ’sample32’ which has the degree 1 in ¢),

N(t ;t') = 0 (Half skim milk is indeed fully possible in ¢’ whereas it does not
belong to the type of ¢),

N(m ;m') = 0 (for the same reason: the markers that conform to Half skim milk
are fully possible in ¢’ whereas they do not belong to the marker of c),

II(c ;') = min(0.8,0.8) = 0.8,

N(e ;) =min(0,0) =0.

Definition 16 Let G and G' be two conceptual graphs that can possibly include
fuzzy concepts. Then the graph G' is compatible with the graph G with the possi-
bility degree I1(G ; G') and the necessity degree N(G ; G') if there is an ordered
pair (f,g) of mappings, f (resp. g) from the set of relation types (resp. concept
types) of G to the set of relation types (resp. concept types) of G', such that:

— the edges and their numbering are preserved;
— the relation vertex labels may be restricted.

II(G ;G") and N(G ;G") are then determined as follows:

Let C¢ be the set of concept vertices of G. For each concept vertex ¢ € Cg,
let I1(c ;g(c)) be the possibility degree and N(c ;g(c)) the necessity degree with
which g(c) is compatible with c. Then II(G ;G') = minccc,(c ;9(c)) and
N(G ;G") = minceceN(c ;9(c))

For example, let us consider the graph G given in Figure 9 and the graph
G’ given in Figure 10: G’ is compatible with G with the possibility degree 0.8.
This value corresponds to the possibility degree with which the concept with a
fuzzy marker of G’ (representing the numerical interval [4;6]) is compatible with
the concept with a fuzzy marker of G (of type NumericalValue). All the other
concept vertices of G’ are compatible with the possibility degree 1 with their
antecedent in G (including the concept vertex [Milk : *]). G’ is compatible with
G with the necessity degree 0, which is obtained for the [Milk : *] vertex.

Remark 9 In the case of a “classic” projection operation (G and G’ are not
fuzzy, and G can be projected into G'), II (G ;G') and N(G ; G') take the value 1.
The opposite is not true. We can also note that the extended projection operation
presented in Definition 12 is more restrictive than a graph compatibility with
the possibility degree 1, but less restrictive than a graph compatibility with the
necessity degree 1.

5 Conclusion and Perspectives

In this paper, the conceptual graph model has been extended in order to be able
to (i) represent imprecise data as well as preferences in queries (ii) propose the



NumericalValue : &
0

023 8

1 [ ]

05 d

.
0
Skim milk Half skim milk
Fig. 9. An example of a query graph G
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Fig. 10. An example of a factual graph G’

extension of the projection operation in order to take into account fuzzy values
(iii) perform a softer comparison using the possibility degree of matching and
the necessity degree of matching between two graphs.

This work is part of a food risk control application which uses two databases:
a relational database that has been well experimented, and the conceptual graph
base mentioned in this article. The latter has been implemented using the CoG-
ITaNT platform [7], including all the mechanisms presented in this paper and
the unified querying system presented in [2]. It has been successfully presented
to our microbiologist partners and is now operational. At the present time, it
contains more than a hundred graphs and appears as an interesting and useful
complement to the relational database. Conceptual graphs are drawn through
the graphic interface of CoGITaNT, and registered as text files.

An important progress in our work has been the definition of the fuzzy type
in extension, presented in this paper. This notion allowed us to deal with fuzzy
types that are defined on the same domain for all of them and thus to be able
to apply results, namely comparison degrees, from the fuzzy set theory.

Our next work will be focused on three different points: (i) the logical inter-
pretation of the conceptual graph model extended to fuzzy values, (ii) the notion
of equivalence classes for fuzzy types in intention that are associated with the
same fuzzy type in extension, (iii) the study of the complexity of the model
extended to fuzzy values, which has already been approached in [12].
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