
Contact Author Gregory Cobena

Address Gregory.Cobena@inria.fr
INRIA Rocquencourt
Domaine de Voluceau BP105
78153 Le Chesnay
FRANCE

Phone +33 1 3963 5662
Fax +33 1 3963 5674

Paper Number ———

Title Model, Design and Construction of a Service-Oriented Web-Warehouse

Authors Serge Abiteboul, Vikas Bansal, Gregory Cobena, Benjamin Nguyen, Antonella Poggi

Area ——

Model, Design and Construction of a Service-Oriented
Web-Warehouse

Serge Abiteboul Vikas Bansal Grégory Cobéna Benjamin Nguyen Antonella Poggi

INRIA
Domaine de Voluceau - Rocquencourt 78153

Le Chesnay
France

Abstract

We propose a new methodology, a language and tools
for the design and construction of Web data ware-
houses. Our approach is Service Oriented, in that
our framework makes an extensive use of Web Ser-
vices and semi-structured data (XML) to define the
data structures, the services and the connections be-
tween them. We present an experimental version of
the system that has been built using this framework.
It uses external Web Services such as Google’s We-
bAPI, and Web Services we implemented, including a
scalable crawler, a classification and clustering en-
gine based on links semantic, a Pagerank module and
a versioning system. An important aspect in our work
is that our architecture allows the warehouse data to
change in a continuous way, when Web data changes,
or when the users refine their choices.

Introduction

The construction of a Warehouse of Web resources on a spe-
cific topic is a major issue nowadays. This problem has various
aspects: (i) the construction of the warehouse by finding rele-
vant resources on the Web, (ii) the organization of the data and
meta-data about these resources, (iii) the querying of the ware-
house, (iv) its maintenance. Our approach is based on the use
of XML to store the information, and meta information of the
documents, and on Web services that perform various process-
ing operations such as crawling or classification. All this is
integrated in a simple declarative language, by our prototype
system called SPIN.

We will demonstrate the following contributions:

� A declarative specification: We propose a two part lan-
guage to easily specify a dynamic warehouse of docu-
ments: the data model, a language to describe the data,
and the service model, a language to describe the services
and queries that manage the data.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee and/or special
permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

� GUI: We will present a graphical user interface to design
and construct a dynamic warehouse. The GUI gives a
graphical representation of both our data model and ser-
vice model, It provides the logical view of the content of
the warehouse in terms of data and services. It also helps
us define some XML-based dynamic types to describe its
meta-data.

� A system: The SPIN system constructs and maintains the
warehouse based on its declarative specification and user
feedback. The system consists in a Warehouse-Compiler
and an execution platform. The platform is based on stan-
dard tools (e.g. Java runtime) and on more specific tools,
such as ActiveXML [1]. ActiveXML is a system that en-
ables the use of Web service calls inside XML documents,
in the spirit of Sun’s JSP or Microsoft ASP. The compiler
generates an instance of the warehouse (initial content and
XML schemas) and the program that will manage the ware-
house and calls to the Web Services. We provide both a
Java and ActiveXML platform, and we provide a high level
specification of requirements for a platform to support our
system (e.g. the platform needs in terms of storage, query-
ing and update mecanisms).

� User Interaction: An application server based on an XML
query language is used to browse the warehouse, select and
process content. Users may provide feedback by updating
some of the warehouse data. This feeback may be used by
other services.

� Evolution: The warehouse should try to reflect the ac-
tual state of the changing Web. In this spirit, the system
supports change control (versions, query subscription) that
grant evolution capabilities to the warehouse.

� A library of warehouse services: We provide a set of ser-
vices that are frequently used by warehouse designers such
as Web-crawling, classification, Web searching, Pagerank,
version management. We also provide some that are spe-
cific to our application e.dot. The /em e.dot project is spon-
sored by the RNTL program of the French Government [4].

1 Motivations

The context of our work is the e.dot project : the construction
of a warehouse on the topic of food-risk assesment. More pre-
cisely, the goal of our work is to create a warehouse containing
data to be used by biologists to conduct their studies. Some

Warehouse
DATA

Gather Data
from the
WWW

Integration of
validated Data

Gather Data from
Bio-Industry

Partners

edot Services:
-html clean-up
-doc filters
-content analysis

Biologist work:
-Validation of data
-Querying and using data
-Manage Web data sources

Figure 1: e.dot Warehouse

of the data is already structured and comes from a relationnal
database, managed by a partner in the project. The rest of the
data should be discovered and retrieved from the web. The
warehouse is used to:

� retrieve data of interest from the Web.

� analyse its content, and extract the numerical values of bio-
experiments.

� enable validation of Web data by technicians by providing
context information: the data source (e.g. web site), the
topic-category of the documents...

� integrate the web data and the relationnal DB.

Figure 1 shows a warehouse that is constructed using the
system. It stores Web data and DB data. Several Web Ser-
vices are used to clean, filter, and enrich the Web data. Users
(bio-technicians) are also involved in the dynamics of the ware-
house since they (in)validate some of the Web data. For in-
stance, they may approve a well known reliable source of data
(http://www.pasteur.fr/. Or they may annotate specific key-
words (e.g. a list of bacteria) that are used by the crawler to
query search engines. Automatic tools are also used to vali-
date the Web data against the relationnal DB. Finally,we pro-
vide querying tools to exploit the data.

Previous work is abundant on the topic of data warehous-
ing, mediation and integration of data. Our work does not ad-
dress the technical aspects of data warehousing, but provides a
higher-level method that defines how to use these as services.
Some of the technologies (e.g. XML storage and querying)
used as an underlying tool. For space reasons, we do not detail
these contributions here.

Our work is in the spirit of conceptual modelling languages.
Users define their conceptual model according to the data and
service specification language. It specifies how to use web ser-
vices to find, enrich and update the data. The novelty lies in the
combination of an XML data model and Web-Service model.
For space reasons, we do not detail previous work in this area.

2 SPIN Architecture

In this section, we present the architecture of the system.
The system consists in a language specification that can cap-

ture the description of dynamic warehouses. Data in the ware-
house is stored in XML. It is dynamic in that the language en-

SPIN
Warehouse
Declarative

Specification

SPIN
Compiler

Formal Description

Supported target
platforms are:

Java and ActiveXML

Executable
Program

Warehouse
instance

Figure 2: SPIN Architecture

ables the use of queries and Web service calls to modify and
update the content of the warehouse.

As was just mentioned, a number of technologies are
needed to construct and maintain such a warehouse. The ap-
proach we follow is based on: (i) XML to store and exchange
data, (ii) an extensive use of Web services [6, 7], (iii) XML
query languages (XQuery and XOQL [2]) and update lan-
guages (XUpdate).

The compiler supports two target platforms. One is Java:
it creates in the XOQL XML repository a first instance of
the warehouse and Java programs that run the queries and
call the Web Services. The prefered target platform is Ac-
tiveXML. ActiveXML enables simple integration of XML data
and Web Services described in WSDL: it is an extension of
XML with embedded services calls. The compiler constructs
an ActiveXML document that is very similar to the data model
specified using the SPIN language. It simply adds service calls
to the ActiveXML document according to the specification of
our language.

An overview of the architecture is presented in Figure 2.

3 Data and Service Model

In this section, we present the data model that we use to de-
scribe warehouse data. Then, we present the service model that
organises Web Services to dynamically enrich the warehouse.

3.1 Data Model

The Data Model consists of a warehouse model and a type
model. The type model defines DataTypes, i.e. semi-structured
data fragments, which will be used to represent pieces of infor-
mation. The warehouse model defines a tree-hierarchy of data
entities (each entities being an instance of a DataType) and col-
lections of some entity. The relation between an entity and its
children is enriched by. The relation between a collection and
its unique child entity is collection of.

An important aspect in the model is that each piece of infor-
mation in the warehouse can be uniquely identified. To do so,
one aspect is careful naming of DataTypes and entities (details
omitted). The other aspect is that for each collection, a key (on
the child entity) is specified that identifies each of the items of
the collection. This is in the spirit of [3] (details are omitted).

Example: We define the following DataTypes for our e.dot
warehouse: textcontent (the content of some web page), au-
thor, authors, URL, document in the following way:

<typeModel:define datatype="textcontent">
<typeModel:child type="string"

name="value"/>
</tyeModel:define>
<typeModel:define datatype="URL">

<typeModel:child type="string"
name="value"/>

</tyeModel:define>
<typeModel:define datatype="document">

<typeModel:child type="URL" name="URL"/>
<typeModel:child type="textcontent"

name="content"/>
</typeModel:define>

<typeModel:define datatype="author">
<typeModel:child type="string"/>

</tyeModel:define>
<typeModel:define datatype="authors>

<typeModel:child type="collection"
of="author" key="author.value"/>

</typeModel:define>

Then, we define the warehouse model as follows: the
warehouse is a collection of documents. The key of the
collection has to be specified. We choose to use: docu-
ment.URL.value. Each document may be enriched by an
authors entity. It may also be enriched by other entities using
datatypes that we did not present here: experiment, measure,
bacteria. The warehouse model is as follows. Note that we
omit the name of some entities: it is by default identical to the
name of the datatype.

<collection name="TheWarehouse"
key="document.URL.value">

<entity datatype="document" >
<entity datatype="authors" />
<entity datatype="experiment">

<entity datatype="bacteria"/>
<collection name="measures"

key="measure.item">
<entity datatype="measure" />

</collection>
</entity>

</entity>
</collection>

Based on this data model, the compiler does three things:
it merges the type model and warehouse model into a sin-
gle XML tree, it generates the corresponding DTD and
XMLSchema based on type names and entities names, and
it transforms the abstract queries on the service model into
queries that run on the warehouse schema.

Note that there is a possible overlap between the type model
and the warehouse model. More precisely, the relations be-
tween pieces of information can be described using the type
model or using the warehouse model. In other words, using
some basic types such as string, the warehouse model may
be sufficient to build all possible warehouses. However, the
type model is useful for engineering reasons, it enables reuse
of software components in different warehouse and of specific
queries and tools. Intuitively, the warehouse model consists
in the conceptual model of the warehouse, whereas the type
model represents the low-level implementation design.

3.2 Service Model

Using a Web Service is like a function call. The service takes
input parameters, and returns some output. In order to use Web

WSDL Compliant
Input

Additional Information
(e.g. location of data)

Warehouse

Web Service
(WSDL Definition)

WSDL Compliant
Output

Copy of
Additional Information

Update
Script

1. create input data
2. use the service

3. apply results to the warehouse

Figure 3: Service Model

Services, there are three important questions: when to call the
service, what is the input, where should the output be placed.

Here is our answer to the first two questions: In order to
call a service, the input parameter is defined as a query (in the
spirit of XQuery) over the warehouse data. The system is in
charge of calling the Web Service when needed, e.g. when the
input data has changed. If the query returns a list of results,
the service may be called several times to process each input
item. Obviously, this query is specified by the designer of the
warehouse since he knows how he wants to use the services.
However, our GUI helps simplify the use of services so that
the user need not explicit the query. We will demonstrate how
this is easily achieved.

It is also up to the warehouse designer to specify where
output results should be placed. To do so, for each Web ser-
vice, the user must specify a list of update queries that describe
where the data returned by the serviceshould be placed. More
precisely, we apply an update script that is described in the
XUpdate (XML Update) language. This update script is itself
obtained by the evaluation of a query (XQuery) over the service
output. Note that when XQuery will fully support updates, we
plan to use this feature.

It is often the case that the output of some service call should
be placed close to the input. For instance, if a service call finds
the list of bacteria in some document, we want to place that list
as a child of the document URL node. This can be done as fol-
lows: The query that defines the input of the Web Service may
also generate information about the location of the input data.
This location information is provided as an identifier using a
path descriptor.

The process in shown in Figure 3.
Note that these queries are written based on the warhouse

and type model. Thus, we call them abstract queries. The com-
piler translates them into XQuery (or XOQL [2]) queries. In a
similar way, the path identifier of some element (obtained by
the PathIdentifier() function in a query) is translated
by the compiler into a call to a similar function that returns an
XPath expression. This XPath expression has to use specific
techniques of our model, e.g. keys, instead of position num-
bers. Thus, we use our own implementation of this function in
XOQL [2].

Example: Consider a Web Service that retrieves the list of
authors from the text of a document. The Web Service that
takes the document (a long text string) as input, and returns
a possibly empty list of authors. In our warehouse, we may
define the input-query of this service like this:

SELECT
<query>

<input> $a/textcontent
</input>
<location> PathIdentifier($a/URL)
</location>

</query>
FROM $a in //document

This location information is appended to the output of the
service call. Thus, the output queries can use this information
to place output results in some specific location that is input-
dependant. In our example, the result would be:

<result>
<output>
<author>

John Smith
</author>

</output>
<location>
/documents/document[URL:text()="..."]

</location>
</result>

In our example, the web service is used to detect authors
and institutions appearing in the document content. This infor-
mation is then placed below the document node.

SELECT
<xupdate>

<xupdate:insert path="$a/authors">
$b

</xupdate:insert>
</xupdate>
FROM
$a IN result/location::text(),
$b IN result/output

This generates the following update script:

<xupdate>
<xupdate:insert

path="//document[URL:text()="..."]/authors">
<author>John Smith</author>

</xupdate:insert>
</xupdate>

This script is then used to update the warehouse content.
Remark. In some cases, a Web Service may be called in

different parts of the warehouse. Although it is in theory pos-
sible to handle the various uses with a single input query, it is
more convenient to define several. Each of them corresponds to
some specific use of the Web Service. A list of output queries
is attached to each input query.

4 Experiments
A first prototype of our system has been implemented. It con-
sists of: (i) a language specification, (ii) a graphical editor to
define the data and service model in our, (iii) a compiler that
generates executale warehouse programs in Java and/or Ac-
tiveXML.

The main difference between our prototype and the lan-
guage presented here is the management of the service model.
Indeed, for time reasons, we did not integrate a fully fledged
XQuery processor in our system. Thus, input and output
queries for Web Services are defined using XPath expressions
to retrieve nodes, and predefined XML templates to construct
the query result.

We constructed a warehouse of INRIA... with ... pages
... ... === COMPLETER HERE – METTRE RESULTATS
EDOT/XYLEME??? OK mets les greg === Most of the Web
Services that we describe here have been implemented. In par-
ticular, we have a distributed crawler (Xyleme crawler) that
crawled more than a billion web pages. We also have a cluster-
ing algorithm that has been presented in [5].

We will demosntrate SPIN using the application developed
in the e.dot project. The demonstration will consist in:

� showing how a simple warehouse is specified. This will
illustrate the SPIN model and specification GUI. The con-
struction of a small warehouse will be shown.

� An existing full fledged warehouse will be exhibited. This
will illustrate a real world aplication, and let us demon-
strate the change control aspect of our work.

Conclusion
We presented a model, language and tools to design and con-
struct warehouses of Web data. Our system relies on the use of
Web Services that provide knowledge and processing to enrich
the contents of the warehouse. In our current implementation,
we use services that we implemented (e.g. Crawler), as well
as services already available on the Web (e.g. Google). The
large number of services that are found on the Web nowadays
confirms the importance of our choices.

Our current implementation is based on ActiveXML that in-
tegrates XML data and Web Services described in WSDL. In
the future, we plan to extend our system in different ways. We
plan to show how to design and construct peer-to-peer ware-
houses of Web data. We also plan to improve our current Web
Services and implement new ones.

Acknowledgments:

We want to thank Omar Benjelloun and Beiting Zhu for dis-
cussions of the topic.

References
[1] Serge Abiteboul, Omar Benjelloun, Ioana Manolescu,

Tova Milo, and Roger Weber. Active XML: Peer-to-Peer
Data and Web Services Integration (demo). VLDB, 2002.

[2] Vincent Aguilera and al. X-OQL query language for
XML. http://www-rocq.inria.fr/ aguil-
era/xoql/index.html.

[3] Peter Buneman, Susan Davidson, Wenfei Fan, Carmen
Hara, and Wang-Chiew Tan. Keys for XML. Computer
Networks, Vol. 39, August 2002.

[4] http://www-rocq.inria.fr/verso/edot/.

[5] Maria Halkidi, Benjamin Nguyen, Iraklis Varlamis, and
Michalis Vazirgiannis. THESUS: Organizing Web Doc-
ument Collections Based On Semantics And Clustering.
Technical report, Gemo, July 2002.

[6] W3. Simple Object Access Protocol (SOAP).
www.w3.org/TR/SOAP.

[7] W3. Web Service Description Language (WSDL).
www.w3.org/TR/wsdl.

