
60 1094-7167/03/$17.00 © 2003 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

I n f o r m a t i o n I n t e g r a t i o n

Querying Distributed
Data through
Distributed Ontologies:
A Simple but Scalable
Approach
François Goasdoué and Marie-Christine Rousset, Université Paris-Sud

The Semantic Web1 envisions a worldwide distributed architecture where data and

computational resources will easily interoperate to coordinate complex tasks,

such as query answering and distributed computing. The semantic marking-up of Web

resources using ontologies is expected to provide the necessary glue for making this

vision work. Ontologies are structured vocabularies
shared by communities of users who are not neces-
sarily knowledge engineers or logicians. So, the
ontologies must be simple. This doesn’t mean that
they lack a well-defined formal semantics: because
they are simple, their formal semantics can fit nicely
with their intuitive meaning. Indeed, the ontologies
that type Web data must have a formal semantics to
enable precise and rigorous characterization of oper-
ations on those data. For example, we can rigorously
define (and thus prove) a query-answering algo-
rithm’s soundness and completeness only with
respect to a given formal semantics of the data
queried and the language used to do so.

Because of the Web’s decentralized nature, com-
munities of users will inevitably use their own
ontologies to describe their data or services. In this
vision of the Semantic Web, mediation among data,
services, and users is key. Query answering in peer
data management systems is in general undecidable
(not feasible) unless you impose restrictions on the
mappings and on the PDMS’s resulting topology.2

This article defines a simple framework appropri-
ate for practical applications, in which the problem
of answering queries over a network of semantically
related peers is always decidable. Although our
framework is based on (propositional) logic, it’s sim-
ple enough for nonlogicians (which most application
developers are) to use. Our approach also copes with
many information integration application require-

ments: It offers a class-based language for defining
peer schemas as hierarchies of (possibly disjoint)
atomic classes and mappings as inclusions of logical
combinations of atomic classes. Because our algo-
rithm guarantees both the soundness and complete-
ness of the answers to users’ queries, this approach
suits information integration applications such as
e-commerce where content providers expect PDMSs
to propose all products that match a user’s need.

Example
Suppose we have schemas (ontologies) for three dis-

tinct file servers that store teaching documents. Figure
1 shows the class hierarchies forming these ontologies.

Extensional classes, whose names start with St_,
indicate stored data. For instance, St_Prolog is a subclass
of the Prolog class, indicating that the CS_Courses server
(see Figure 1a) locally stores courses on Prolog: their
identifiers are instances of the class St_Prolog. We struc-
tured the CS_Courses server according to the differ-
ent computer science domains and subdomains. For
example, DM (for data mining) is declared a subclass
of both DB and AI and disjoint from Prolog. The server
stores only courses on Prolog and databases (denoted
by the extensional classes St_Prolog and St_DB) here.

The university central server Univ_Courses (see
Figure 1b) structures the courses that it makes acces-
sible according to their main subjects and then their
levels. This server stores only postgraduate computer
science courses.

This framework for

peer-to-peer data-

sharing systems allows

efficient query

answering over a

network of semantically

related peers. A simple

class-based language

appropriate for

practical applications

defines peer schemas

as hierarchies of atomic

classes and mappings

as inclusions of logical

combinations of

atomic classes.

The Faculty_Courses server (see Figure 1c)
groups the faculty members’ teaching docu-
ments; it hierarchically structures them accord-
ing to the teachers’names and the levels of the
corresponding courses. Teachers YY and XX
have put all their courses on that server.

Figure 2 shows the possible logical map-
pings between the three ontologies shown in
Figure 1. For instance, the first mapping
expresses that the undergraduate courses taught
by XX are either about Java or architecture.

A query is a logical composition of the
classes of a given ontology, expressing which
instances of which classes the user is interested
in. For example, the query QCS_Courses: AI � ¬DM,
posed in terms of the ontology CS_Courses,
states that the user is searching for courses
on artificial intelligence that don’t deal with
data mining. (See the “Symbols” sidebar for
explanations of these symbols as well as oth-
ers used in the article.) The important point is
that we can infer answers from the instances
of the classes stored in the server CS_Courses
or in one of the other two servers. The answers
for QCS_Courses that we can obtain locally (that is,
from CS_Courses) are courses about Prolog
(the instances of St_Prolog). However, other
answers for the query are stored in other
servers and can be inferred from the map-
pings. In particular, the mapping XX_master �
DL � ¬ DM, and the fact that we can infer from
the ontology rooted in CS_Courses that DL is
a subclass of AI, lets us infer that the instances
of St_XX_master are also answers to the query
QCS_Courses.

Problem definition
Before we present the query-answering

problem addressed in this article, we must
define the distributed data model of the
PDMSs we are dealing with.

Syntax and semantics
Our ontologies are simple: they model

hierarchies of intentional classes (classes that
only organize knowledge on servers; they do
not store data) in the form of inclusion (A � B)
and disjointness (A � B � ⊥) statements
between names of atomic classes. For exam-
ple, Figure 3 defines the ontology rooted in
CS_Courses in Figure 1.

The semantics is defined in terms of inter-
pretations. An interpretation I is a pair (�I, .I)
where �I is a nonempty set called the domain
of interpretation of I, and .I is an interpretation
function that assigns a subset AI of �I to every
atomic class A. An interpretation I is a model of
an ontology O iff (if and only if)

For every inclusion A � B in O: AI ⊆ BI

(where � is inclusion between classes at
knowledge level and ⊆ is inclusion
between data/individuals of classes)
For every disjointness A � B � ⊥ in O:
AI ∩ BI = ∅.

An ontology O is satisfiable iff it has a
model.

The storage description of a peer whose
local schema is defined by the ontology O is

SEPTEMBER/OCTOBER 2003 computer.org/intelligent 61

CS_Courses

Algo Archi DB

St_DB DM KR

DL

Logic ProgLang

Prolog

St_Prolog

Java

Univ_Courses

CS

undergraduate_CS master_CS postgraduate_CS

St_postgraduate_CS

Maths

· · ·

Physics

· · ·

Faculty_Courses

XX_Courses

XX_undergrad

St_XX_undergrad

XX_master

St_XX_master

YY_Courses

YY_undergrad

St_YY_undergrad

YY_master

St_YY_master

YY_postgrad

St_YY_postgrad

AI

��
(a)

(b)

(c)

XX_undergrad � Java � Archi) � undergraduate_CS

XX_master � DL � ¬ DM

YY_Courses � CS_Courses � ¬ Archi

YY_undergrad � (ProgLang � Algo) � undergraduate_CS

YY_master � YY_postgrad � AI � Logic

Figure 2. Logical mappings between the
ontologies in Figure 1.

ProgLang � CS_Courses Algo � CS_Courses
Logic � CS_Courses AI � CS_Courses
DB � CS_Courses Archi � CS_Courses
Prolog � ProgLang Prolog � AI
Prolog � Logic Java � ProgLang
DM � AI DM � DB
KR � AI DL � KR
DL � Logic Java � Prolog � �
DM � Prolog � �

Figure 3. Statements defining the CS_Courses
ontology.

� : Inclusion between classes at the knowledge level
⊆ : Inclusion between data/individuals of classes
|= : Entails; that is, Os, M, Q |= Q′ means Os, M, Q entails Q′, or Q′ is a logical

consequence of Os, M, Q)
{Q} : A set containing Q
∪ : Union of sets as arguments
∩ : Set intersection
� : Conjunction between classes
¬ : Negation of classes

Symbols

Figure 1. Three class hierarchies of teaching documents: (a) CS_Courses, (b) Univ_Courses, and
(c) Faculty_Courses.

a set of declarations of extensional classes.
The declaration of an extensional class
St_A consists of an inclusion statement relat-
ing St_A to one or more classes of O and an
extension, denoted �(ST_A), which is a set of
distinct constants representing data identi-
fiers that are instances of the St_A. The sim-
plest inclusion statements are of the form St_A
� A, meaning that the corresponding peer
stores a subset of the class A locally. The gen-
eral form of an extensional class’s inclusion
statement is St_A � Q, where Q can be a logi-
cal combination of class literals. A class lit-
eral is either a class name of O or the nega-
tion of a class name of O.

Given an interpretation I, we extend its
interpretation function to the extensional
classes and to the constants appearing in
their extensions: each constant a is inter-
preted as an element aI of the domain of
interpretation �I. The interpretation of a
logical combination of class literals is induc-
tively defined as follows:

(¬A)I = �I \ AI

(C � D)I = CI ∩ DI

(C � D)I = CI ∪ DI

An interpretation I is a model of a storage
description iff for each assertional class
defined by its extension (that is, for each
a ∈ �(St_A), aI ∈ St_AI) and by the inclusion
St_A � Q, St_AI ⊆ QI. Storage descriptions cor-
respond to sound views in the general setting
of information integration.3

A mapping has the form of an inclusion
statement Q1 � Q2, where Q1 and Q2 are logical
combinations of class literals involving inten-
tional classes only, coming from at least two
different ontologies.

An interpretation I is a model of a set of
mappings M iff for every mapping Q1 � Q2 in
M, Q1

I ⊆ Q2
I.

PDMS schema and extensions
We denote by O (or Os) the union of the

definitions of intentional classes (or the union
of the definitions of intentional and exten-
sional classes, respectively) of the distributed
ontologies of a PDMS P. Without loss of gen-
erality, we assume that class names are unique
to each peer and that the names of extensional
classes are distinct from those of intentional
classes. Os and a set M of mappings define
the schema of a PDMS. It is said to be satis-
fiable iff there exists a model of Os and M.

Given a description representing the dis-
tributed data stored in P, the extension of

P is the union � of the extensions of the
extensional classes in Os. We use the notation
P = 〈Os, M, �〉 to denote the three compo-
nents of a PDMS P.

The neighborhood graph shows the con-
nection between the different peers within a
given PDMS induced by the mappings.

Definition 1. Neighborhood graph: Let P be a
PDMS. Its neighborhood graph is a graph (V, E),
where V is the set of peers of P, and (Pi, Pj) is an
edge of E if a mapping exists involving classes of
the ontologies of Pi and Pj.

The peer distance between two peers P and
P′ of a PDMS P is the length of the shortest
path between P and P′ in the neighborhood
graph of P.

Query answering
The queries that we consider are logical

combinations of intentional class literals of a
given peer ontology. The following defini-
tion is the logical counterpart of the database
definition of certain answers.3–5

Definition 2. Answers: Let Q be a query over
a PDMS P = 〈Os, M, �〉. Let a be in �. a is
an answer of Q iff aI ∈ QI for every model I of
Os ∪ M ∪ �.

Our query-answering problem
Given a PDMS P and a query Q, our

query-answering problem is to find all the
answers of Q. Finding all answers is gener-
ally a critical issue.2

Query answering using rewriting
The notion of the (maximal) conjunctive

rewriting of a query relies on query general-
ization and specialization.

Definition 3. Query generalization and spe-
cialization: Given a PDMS P = 〈Os, M, �〉,
let Q and Q′ be two logical combinations of class
literals of Os. Q′ is a generalization of Q (and
Q is a specialization of Q′) iff Os ∪ M ∪ {Q}
is satisfiable and Os, M, Q |= Q′.

Definition 4. Conjunctive rewriting of a query:
Let Q be a query and Qe be a conjunction of
extensional classes. Qe is a conjunctive rewrit-
ing of Q iff Qe is a specialization of Q. It is max-
imal iff there does not exist a strict generaliza-
tion of Qe that is a rewriting of Q.

Evaluating conjunctive rewritings of Q pro-
vides answers to Q. The evaluation of con-
junctive rewriting Qe: St_A1 � … � St_An is direct:

Eval Qe = �(St_A1) ∩ … ∩ �(St_An).

Most importantly, when a query has a finite
number of maximal conjunctive rewritings,
we can obtain the complete set of its answers
(in polynomial data complexity) as the union
of the answer sets of its rewritings.6,7

Propositional encoding
The following propositional encoding of a

PDMS is the first step in showing that in our
setting, every query has a finite number of
maximal conjunctive rewritings. The propo-
sitional encoding Prop(Q) of a query Q is a
propositional formula using the names of
atomic classes as propositional variables. We
define it inductively as follows:

Prop(A) = A if A is an atomic class
Prop(¬A) = ¬A if A is an atomic class
Prop(Q1 � Q2) = Prop(Q1) ∧ Prop(Q2)
Prop(Q1 � Q2) = Prop(Q1) ∨ Prop(Q2)

The propositional encoding of a PDMS P =
〈Os, M, �〉 is the set of propositional for-
mulas Prop(s) obtained as follows from each
statement s in Os and M:

Prop(A � Q) = A ⇒ Prop(Q)
Prop(A � B � ⊥) = ¬A ∨ ¬B
Prop(Q1 � Q2) = Prop(Q1) ⇒ Prop(Q2)

Propositional transfer
The following proposition shows that

propositional encoding transfers the logical
definitions and properties previously intro-
duced for classes to the propositional logic
setting. It also provides a propositional char-
acterization of maximal conjunctive rewrit-
ings of a query as prime implicants with
regard to a theory.8 (A prime implicant PI of
a formula F wrt (with regard to) a theory T
is such that PI |= F wrt T (PI is an implicant
of F wrt T), and for every implicant I of F wrt
T such that PI |= I, then I |= PI (PI is one of
the most general implicants of F wrt T).8)

Proposition 1. Propositional transfer: Let P be
a PDMS. Let Oprop ∪ Mprop be the proposi-
tional encoding of its schema. Let Ve be the set
of names of its extensional classes. P’s schema
is satisfiable iff Oprop ∪ Mprop is satisfiable. Qe is
a maximal conjunctive rewriting of Q iff
Prop(Qe) is a prime implicant of Prop(Qe) with
regard to the theory Oprop ∪ Mprop among the
implicants that are conjunctions of proposi-
tional variables of Ve.

As a result, we can use any satisfiability
checking algorithm for propositional theories
for checking the satisfiability (also known as
consistency) of PDMS schemas.

62 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n f o r m a t i o n I n t e g r a t i o n

From now on, for simplicity’s sake, we use
the propositional notation for queries, ontolo-
gies, mappings, and rewritings. We presume
that all the propositional formulas we con-
sider are in clausal form and that PDMS sat-
isfiability has been checked. We focus here
on computing the maximal rewritings of an
atomic query. (You can obtain those of a con-
junctive query by combining the maximal
rewritings of its atomic conjuncts.)

Our rewriting algorithm
Our “anytime” and incremental method fol-

lows an order induced by the neighborhood
graph such that we obtain the maximal rewrit-
ings (and thus the answers) involving peers
close to the interrogated peer first. (“Anytime”
means that if you decide to stop the algorithm
before the computation ends, you will obtain
some answers—the ones that have been com-
puted to that point. Usually, you have to wait
until your algorithm stops to get the output.)

Proposition 1 characterizes maximal re-
writings as conjunctive prime implicants of the
(propositional encoding of the) query with
regard to the propositional theory encoding the
PDMS’s ontologies and mappings. The fol-
lowing property, in Proposition 2, shows that
you can reduce the problem of finding prime
implicants to that of finding prime implicates.
(A prime implicate PI of a formula F wrt a the-
ory T is such that F |= PI wrt T (PI is an impli-
cate of F wrt T), and for every implicate I of F
wrt T such that I |= PI, then PI |= I (PI is one of
the most specific implicates of F wrt T).8)

Proposition 2. Conjunctive prime implicants and
implicates: Let Q be a query and T a propositional
theory. The conjunctive prime implicants of Q
wrt T are the negation of the clausal prime impli-
cates of ¬Q wrt T.

It follows from Proposition 2 that query
answering is decidable in our setting, since
finding clausal prime implicates of a propo-
sitional theory is decidable.

We reuse a graph-based technique9,10 for
computing prime implicates within proposi-
tional theories partitioned into subtheories.
A partitioned theory induces an intersection
graph, in which each node represents a sub-
theory of the partitioning, two nodes are
linked with an edge if they share proposi-
tional variables, and an edge is labeled with
these shared variables.

The forward message-passing algorithm9

known as MP exploits this partitioning to
provide an efficient consequence-finding
algorithm. MP finds logical consequences

in parallel in each individual subtheory using
any complete resolution strategy. MP con-
trols the transfer of formulas between sub-
theories using the labels of the intersection
graph’s edges: it sends the logical conse-
quences found in an individual subtheory as
messages to another individual subtheory
(and adds them to the set of its formulas) if
they only involve propositional variables that
are shared between those two subtheories.
Figure 4 illustrates the algorithm’s message-
passing behavior on an intersection graph.

Suppose you are interested in finding all
the clausal prime implicates using the vari-
ables St_i—that is, the prime implicates that
you can obtain in the subtheory A1. The
algorithm starts sending messages from the
most distant subtheory from A1: A3 (this
means that MP starts to send messages from
A3, which is the most distant theory from
A1). The formula ¬B1 ∨ ¬B2 is transmitted
from A3 to A2. Within A2, the consequence-
finding algorithm performed by MP infers
new formulas by applying the resolution
rules: ¬A1 ∨ ¬B2, ¬A2 ∨ ¬B1, ¬A1 ∨ ¬A2. Now, only
¬A1 ∨ ¬A2 is transmitted to the subtheory A1,
and we finally obtain the prime implicate:
¬St1 ∨ ¬St2.

To be complete, the MP algorithm must
apply to an acyclic intersection graph. The
point is that you can polynomially transform
any intersection graph into a cycle-free graph
such that applying MP to this acyclic graph

is guaranteed to be complete. The Break-
Cycles algorithm performs the appropriate
transformation.9

Partitioning
We partition the propositional encoding of

the PDMS following its natural distribution.
The formulas defining an ontology’s inten-
tional classes are in a subtheory, and the map-
ping formulas involving the same peers are in
a subtheory. (In general, a mapping might
involve classes of more than two distinct
ontologies.) The subtle point here is that the
formulas defining the extensional classes in
all ontologies are in a single subtheory called
the warehouse.

Consider the PDMS

such that

O1
s: A � O1, St_A� A

Os: B � O2, St_B� B, B’ �O2

Os: C � O3, St_C�C
M: B �B’ �A, C�B’

Figure 5 shows the intersection graph result-
ing from this partitioning.

Breaking cycles
We apply the following algorithm at com-

pile time for each peer P of the PDMS.

O s
1 ∪Os

2 ∪Os
3,M ,�

SEPTEMBER/OCTOBER 2003 computer.org/intelligent 63

¬ St_1 v A1

¬ St_2 v A2

¬ A1 v B1

¬ A2 v B2

1 2

A1, A2 ¬B1 v ¬ B2 B1, B2

3

Figure 4. A partitioning and its intersection graph.

¬ St_A v A

¬ St_B v B

¬ St_C v C

¬ A v O1

¬ C v B′

¬ B v ¬ B′ v A

A

¬ B v O2, ¬ B ′v O2

B, B′B′

A

A, B

B
C

B′

C

¬ C v O3 C

Figure 5. Intersection graph resulting from the partitioning.

• Let n be the distance between P and the
most distant peer from P within the
PDMS.

• Let Gk be the intersection graph restricted to

the warehouse and the subtheories encod-
ing the ontology of P and the ontologies
(and associated mappings) of the peers
whose peer distance from P is less than k.

• For k = 0 to n, apply Break-Cycles to Gk.

The results G0, … , Gn computed by this
algorithm are the acyclic intersection graphs
to which MP will be iteratively applied at
query time if P is the interrogated peer. Fig-
ures 6a and 6b show the successive results G1

and G2 obtained for the peer corresponding
to in the PDMS (dotted lines indicate the
removed edges for breaking cycles).

Ordered computing of implicates
The following algorithm computes the

clausal implicates of the negation of an
atomic query Q posed to a given peer P (we
assume that the implicates of the theory alone
have been computed at compile time).

Let G0, G1, … , Gn be the successive acyclic
intersection graphs computed for P at com-
pile time. For k = 0 to n,

• Add ¬Q to the subtheory of Gk encoding the
ontology of P.

• Apply the MP algorithm to Gk to compute
the implicates of distance ≤ k.

For example, consider that query A is
posed to the peer corresponding to the ontol-
ogy in the PDMS. Figure 7 shows the
result of our algorithm at step k = 0.

The clause corresponding to the negation
of the query, ¬A, which has been added to the
subtheory encoding , is sent to the ware-
house. A resolution is then possible in the
warehouse, which produces the implicate
¬St_A: its negation corresponds to the only
rewriting that can be produced within the
interrogated peer (peer distance of 0).

Applying MP to G1 (Figure 6a) infers no
new formula.

Figure 8 gives the result obtained at the
last step (k = 2) of our algorithm. It corre-
sponds to the application of MP to G2 (Fig-
ure 6b): the clauses ¬B ∨ ¬B’ ∨ A and ¬C ∨ B’
are transmitted to the warehouse, thus lead-
ing to computation in the warehouse of the
new implicate ¬St_B ∨ ¬St_C for ¬A. Its nega-
tion is the conjunctive rewriting St_B ∧ St_C,
whose evaluation will produce the answers
obtainable within a peer distance of 2.

Existing information integration systems
are centralized systems of mediation

between users and distributed data, which
exploit mappings between a single mediated

A€

O s
1

O s
1

O s
1

64 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n f o r m a t i o n I n t e g r a t i o n

¬ St_A v A

¬ St_B v B

¬ St_C v C

¬ A v O1

¬ B v ¬ B′ v A

A

¬ B v O2, ¬ B′v O2

B, B′

A

A, B

B

¬ St_A v A

¬ St_B v B

¬ St_C v C

¬ A v O1

¬ C v B′

¬ B v ¬ B′ v A

A

¬ B v O2, ¬ B′v O2

B, B′B′

A

A, B, B′

B
C

B′

B′, C

¬ C v O3 C

(a)

(b)

Figure 6. Cycle-free intersection graphs for : (a) G1 and (b) G2.O s
1

A ¬ A v O1, ¬ A¬ St_A v A, ¬ St_B v B, ¬ St_C v C, ¬ A, ¬ St_A,

Figure 7. Local implicates (within a peer distance of 0).

¬ A v O1, ¬ A

¬ B v ¬ B′ v A

A

¬ B v O2, ¬ B′ v O2

B, B′

A

A, B, B′

¬ C v B′

C B′, C

¬ C v O3

¬ St_A v A, ¬ St_B v B, ¬ St_C v C

¬ A, ¬ St_A, ¬ B v ¬ B′ v A,

¬ C v B′, ... , ¬ St_B v ¬ B′,
¬ St_C v B′, ¬ St_B v ¬ St_C , ...

Figure 8. Implicates within a peer distance of 2.

schema and schemas of data sources. For
scaling up to the Web, this centralized
approach of mediation is not flexible enough,
and distributed systems of mediation are
more appropriate. The approach presented
here is an instance of the general PDMS
architecture,2,7 for which we guarantee the
decidability of query answering independent
of the PDMS’s topology.

We plan to extend this work in two direc-
tions. First, our method imposes that each
peer knows the whole PDMS schema. Such
PDMSs suit applications in which the
servers participating in the PDMS are well
circumscribed and their ontologies are
rather frozen over time (for example, e-
commerce or information systems of mul-
tisite companies). However, for applications
that don’t meet those requirements (such as
one-time file sharing between individuals),
the approach does not hold. We are work-
ing on a method that lets us compute all the
answers to a query in which a peer only
knows the peers of the PDMS with which it
shares mappings. We also plan to investi-
gate use of the W3C metadata standard RDF
(Resource Description Framework) to
describe peer contents and mappings.
Because RDF is part of the Semantic Web
specifications, using such a standard will
simplify the deployment of PDMSs dedi-
cated to the Semantic Web.1

References

1. T. Berners-Lee, J. Hendler, and O. Lassila,
“The Semantic Web,” Scientific American,
vol. 279, May 2001; www.sciam.com/article.
cfm?articleID=00048144-10D2-1C70-
84A9809EC588EF21.

2. A. Halevy et al., “Schema Mediation in Peer
Data Management Systems,” Proc. 19th IEEE
Int’l Conf. Data Engineering (ICDE), IEEE
CS Press, 2003; www.cs.washington.edu/
homes/igor/research/icde2003.pdf.

3. D. Calvanese et al., “Answering Regular Path
Queries Using Views,” Proc. 16th IEEE Int’l
Conf. Data Engineering (ICDE 00), IEEE CS
Press, 2000, pp. 389–398.

4. S. Abiteboul and O.M. Duschka, “Complex-
ity of Answering Queries Using Materialized
Views,” Proc. 17th ACM SIGACT-SIGMOD-
SIGART Symp. Principles of Database Sys-
tems (PODS 98), ACM Press, 1998, pp.
254–263.

5. J. Madhavan et al., “Representing and Rea-

soning about Mappings between Domain
Models,” 18th Nat’l Conf. Artificial Intelli-
gence (AAAI),AAAI Press, 2002, pp. 80–86.

6. F. Goasdoué and M.-C. Rousset, “Answering
Queries Using Views: A KRDB Perspective
for the Semantic Web,” to be published in
ACM Trans. Internet Technology, 2003.

7. F. Goasdoué, Réécriture de Requêtes en Ter-
mes de Vues dans CARIN et Intégration d’In-
formations [Rewriting Queries Using Views
in CARIN and Information Integration], doc-
toral dissertation, Université Paris-Sud XI,
Orsay, 2001 (in French).

8. P. Marquis, “Knowledge Compilation Using
Theory Prime Implicates,” 11th Int’l Joint

Conf. Artificial Intelligence (IJCAI), Morgan
Kaufmann, 1995, pp. 837–845.

9. E. Amir and S.A. McIlraith, “Partition-Based
Logical Reasoning,” Proc. 7th Int’l Conf.
Principles of Knowledge Representation and
Reasoning (KR 02), Morgan Kaufmann,
2000, pp. 389–400.

10. S.A. McIlraith and E. Amir, “Theorem Prov-
ing with Structured Theories,” 17th Int’l Joint
Conf. Artificial Intelligence (IJCAI 01), Mor-
gan Kaufmann, 2001, pp. 624–634.

For more information on this or any other com-
puting topic, please visit our Digital Library at
http://computer.org/publications/dlib.

SEPTEMBER/OCTOBER 2003 computer.org/intelligent 65

T h e A u t h o r s
François Goasdoué is an assistant professor of computer science in the
Artificial Intelligence and Inference Systems group of the LRI (Comp. Sci.
Lab.) at the Université Paris-Sud. He is also a member of the Gemo group
(Integration of Data and Knowledge Distributed over the Web) in the Pôle
Commun de Recherche en Informatique, a joint lab between INRIA (French
National Institute for Research in Computer Science and Control), École
Polytechnique, Université Paris-Sud, and CNRS (French National Center for
Scientific Research). His research interests include knowledge representa-
tion and information integration, in particular, description logics, hybrid rep-

resentation languages, query answering using views, and mediation systems. He received a PhD in
computer science from the Université Paris-Sud. Contact him at LRI, Bâtiment 490, Université Paris-
Sud, 91405 Orsay Cedex, France; fg@lri.fr; www.lri.fr/~goasdoue.

Marie-Christine Rousset is a professor of computer science and head of
the Artificial intelligence and Inference Systems group of the LRI (Comp.
Sci. Lab.) at the Université Paris-Sud. She helped initiate and coleads the
Gemo group (Integration of Data and Knowledge Distributed over the Web)
in the Pôle Commun de Recherche en Informatique (PCRI), a joint lab
between INRIA (French National Institute for Research In Computer Sci-
ence and Control), École Polytechnique, Université Paris-Sud, and CNRS
(French National Center for Scientific Research). Her research topics include
knowledge representation and information integration for the Semantic Web,

in particular description logics, hybrid knowledge representation languages, query rewriting using
views, automatic classification of semistructured data, and mediation systems for the Semantic Web.
She received a PhD in computer science from the Université Paris-Sud. She received a best paper
award from the AAAI in 1996. Contact her at LRI, Bâtiment 490, Université Paris-Sud, 91405 Orsay
Cedex, France; mcr@lri.fr; www.lri.fr/~mcr.

on all conferences
sponsored by the

IEEE Computer Society.

Not a member?
Join online today!

computer.org/join/

IEEE
Computer
Society

members
save 25%

IEEE
Computer
Society

members
save 25%

