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Abstract: The aim of this paper is to present an approach and automated tools for designing
knowledge bases describing the contents of information sources in PICSEL2 knowledge-
based mediators. We address two problems: the abstraction problem and the representation
problem, when information sources are relational databases. In a first part, we present an
architectural overview of the PICSEL mediator showing its main knowledge components.
Then, we describe our approach and tools that we have implemented (1) to identify, by means
of an abstraction process, the main relevant concepts, called semantic concepts, in an Entity
Relationship model and (2) to help representing these concepts using CARIN, a logical
language combining description logics and Datalog Rules, and using specific terms in the
application domain model.
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Introduction

Our research works are developed in the context of the PICSEL project [Rousset & al., 98].
The aim is to build information servers over existing information sources that are distributed
and possibly heterogeneous. The approach which has been chosen in PICSEL is to define an
information server as a knowledge-based mediator between users and several information
sources relative to a same application domain.

The idea in the knowledge-based mediator approach is to manage multiple heterogeneous
information sources thanks to knowledge bases describing their contents in a logical
formalism and using the same vocabulary. This provides shared access to multiple data and
preserves the autonomy of each information source. The mediator plays the role of an
interface between the user and the sources giving the illusion of querying a centralized and
homogeneous system. The aim of this paper is to present an approach and automated tools for
designing the knowledge bases (KB) describing the contents of information sources in
PICSEL knowledge-based mediators.

Designing such KB refers first to an abstraction problem, second to a representation problem.
The aim of the abstraction problem is to define concepts which capture abstractions in
information sources, usable to describe their contents. The representation problem which
arises is the choice of the representation language and also the problem to represent
knowledge with a formal language which may be difficult to use and with specific terms.
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In the paper, we address these two problems when information sources are relational
databases (DB). Our approach to solve the abstraction problem is based on Entity
Relationship (ER) models used to model the schema of database applications, a technique
which has been proven to be very effective for database design. ER models are interesting
because they are abstract representations of data. Yet, they are flat models with all concepts
at the same level. Moreover,  ER models are built according to modeling rules and don’t
necessarily represent concepts relevant for users of databases. We need abstraction
mechanisms to make sets of objects really perceptible and relevant to users emerge. In our
approach, we propose automated techniques to identify the main relevant concepts, called
semantic concepts, in ER models. These techniques are based on the mechanism of
aggregation to create higher level concepts from primitive ones.

Once the concepts to be described in the knowledge base of the mediator are identified, the
problem is then to write their description. Statements in the PICSEL mediator knowledge
bases must be represented in CARIN [Levy & al, 98], a logical language combining
description logics and Datalog rules. Moreover, the descriptions of the contents of all
databases must be represented using the same vocabulary. Only terms of the application
domain represented in the domain model of the PICSEL mediator are usable. So, we must
obtain descriptions of the contents of a database, represented in CARIN and using terms in
the domain model, from descriptions represented with the ER modeling language and using
terms particular to a database. The problem is therefore to obtain a matching between
semantically equivalent concepts represented with different terms and different formalisms.
The idea to solve the representation problem is to exploit capabilities of database
administrators (DBA). Administrators know the contents of the databases they manage, they
exactly know the meaning of their conceptual schema. In our approach, each administrator
will have to design the knowledge base referring to its own database. The identification of
semantic concepts allows to organize the description of a whole conceptual schema of a
database, such a schema being sometimes enormous. We guide then the DBA in the
description of each semantic concept i.e. we have implemented automated tools to help them
(1) to understand the meaning of the vocabulary of the domain model, (2) to write CARIN
sentences, (3) to characterize concepts represented in a database in comparison with those
represented in the domain model and using terms in the domain model.

The paper is organized as follows. In a first part, we present an architectural overview of the
PICSEL mediator showing its main knowledge components. In a second part, we present the
notion of semantic concept. Section 3 deals with their identification in an ER model and
section 4 describes automated techniques to help DBA to describe semantic concepts in
CARIN.

I. Architectural Overview

I.1. General presentation

In PICSEL, a mediator has been designed according to a knowledge-based approach. It has
two main parts: a generic query engine and knowledge bases specific to information servers.
The knowledge bases contain both the model of the application domain of a server and
abstract descriptions of the contents of the information sources accessible from this server.
Given an information server, there are one KB to model the domain and one KB per
information source to describe its contents as shown on figure 1. The domain model contains
all the basic vocabulary used to ask queries. The query engine takes in charge the access to
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the sources in order to obtain the answers to user queries. Abstract descriptions of the
contents of the information sources help it to localize relevant sources. They are represented
in the same logical formalism as the user queries and as the sentences in the domain model.
Wrappers are specialized modules in respect to data models. When the source is a relational
DB, wrappers take in charge the translation of a query expressed in terms of source relations
to relational form.

We give a description of the main knowledge components in a PICSEL mediator in the
following figure.

Figure 1: The knowledge base part of the PICSEL mediator in an information server dedicated to the application
domain D

I.2. The main knowledge components in a PICSEL mediator

I.2.1. The domain model

The domain model contains all the vocabulary of an application domain used to ask queries.
All the categories of objects that may be considered by users of the information server have
to be represented. The domain model can be seen as a categorization of domain objects from
a user-oriented point of view.

The domain model is represented in CARIN [Levy & al., 98], a logical language combining
description logics3 and Datalog rules. It is a formal language. Its semantics ensures that its

                                                
3 The DL language that we consider in the PICSEL project is referred to as core-CLASSIC. It contains the
constructors ∧(conjunction), ∀(concept restriction), (≥ n R), (≤ n R)(number restrictions) and ¬(negation on
basic concepts only).
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exploitation at the symbol level by the engine conforms to its meaning at the knowledge
level.

A domain model is built as follows. First, a basic vocabulary in terms of base predicates is
acquired. New domain relations, significant for the application domain, can then be defined
over the base relations using CARIN, either by rules or by concept expressions. Basic and
complex relations constitute a taxinomic hierarchy that can be automatically constructed.

For example, the hierarchy represented in figure 2 is computed from the following
expressions:
Product ⊆ (= 1 DepartureDate4) and (= 1 ArrivalDate),
Journey := Product ∧ (= 1 DeparturePlace) ∧ (= 1 ArrivalPlace) ∧ (= 1 MeansTransport),
Stay := Product ∧ (= 1 AssBuilding),
Flight := Journey ∧ (∀MeansTransport.Plane),
TourismFlight := Flight and (∀MeansTransport.(¬SupersonicPlane)),
VIPFlight := Flight and (∀MeansTransport.(¬TourismPlane)) and (≥  1  AssociatedMeal).

These sentences define the concepts Journey, Stay, Flight, TourismFlight and VIPFlight from
the primitive concept Product (base predicate, unary relation) and from the primitive roles
(binary relations) DeparturePlace, ArrivalPlace, MeansTransport. The concept Product is at
least characterized by a single departure date and a single arrival date. The concept Journey is
defined as a set of products that have exactly one departure place, one arrival place and one
means of transport. The concept Stay is defined as a set of products that have exactly one
associated building. The concept Flight is defined as a set of journeys which means of
transport are necessarily planes. The concept TourismFlight is defined as a set of flights
which means of transport are not supersonic planes whereas the concept VIPFlight is a set of
flights which means of transport are not tourism planes and which have at least one
associated meal.

Product

Journey Stay

Flight

TourismFlight VIPFlifht
Figure 2: A taxinomic hierarchy

Our work doesn’t focus on the design of the domain model. We have considered that the
domain model was already built.

I.2.2. Abstract descriptions of the contents of a source

The abstract descriptions of a source consists of a set of source relations Vs1, Vs2, ..., Vsn for
which it is specified: (1) a one-to-one mapping with domain relations, (2) a set of constraints
that are used to characterize the instances of the domain relations that can be found in a
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source S. For example, for a given source S, the descriptions may say that we can find
instances of housing places and the constraints may indicate that the housing places that we
can find in S are all located in France.

More precisely, each abstract description of a relational database is a knowledge base that
contains two sets of assertions: Is and Cs. Is represents mappings with domain relations by
logical implications.

Example:
vS1(x) ⇒ HousingPlace(x), vS2(x,y) ⇒ Located(x,y) are two elements of Is if the source S
contains instances of housing places with their location, HousingPlace and Located being
two relations in the domain model.

Cs indicates the constraints that are known to hold on the database relations. They are
represented with core-CLASSIC inclusions or incompatibility rules.

Example:
Let us consider that all housing places in S are located in Europe, but not in Germany.  This
can be described thanks to (1) the inclusion statement: vS1 ⊆ (∀vS2.Europe) and (2) the
incompatibility rule: vS1(x) ∧ vS2(x,y) ∧ Germany(y) ⇒ ⊥.

I.3. The information sources (relational databases) accessible from an information server

Relational DB applications play an important role today. So, in this paper, we focus on
information sources which are relational DB. Relational DB developments are usually
decomposed in several steps. One main step is the construction of a conceptual model. The
aim is to facilitate the communication between designers and end users by providing them
with a conceptual representation of an application that does not include many of the details of
how the data is physically stored. One of the most popular and prominent conceptual model is
the Entity Relationship (ER) model introduced by Chen [Chen 76]. An ER model indicates
the classes which objects can be found in the database. They are abstract representations of
data. Instances useful in an application are grouped into classes or concepts and ER models
represent classes rather than actual instances.

The approach that we propose to model databases relies on the analysis of ER models. It does
not exploit the data of the database at all. Given a query, the aim is to identify relevant
information sources which may give an answer. It is not to identify the sources which, at the
moment, given their data, are able to give an answer to the query. Yet, an ER model doesn’t
provide a conceptualization adequate to the description of the contents of a database in
PICSEL mediator.  ER models are quite flat. All concepts are represented at the same level.
Moreover the construction of an ER model is guided by modelisation rules and the concepts
that are represented are not necessarily relevant for a user of the database application. We
need abstraction mechanisms to make concepts really perceptible and relevant to users
emerge. (cf. section III)

The basic primitives of an ER model are: entities, relationships, attributes. The classes of
objects that are contained in the database are called entities and the objects within an entity
are called instances. The language allows relationships between instances of differents
entities to be represented. Each relationship has a name which is used to describe, in a litteral
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form, links between instances. Attributes describe characteristics of instances of an entity or
characteristics of related instances.

Multiplicity constraints on the relationships are given. A multiplicity constraint describes a
restriction on the minimum and maximum number of instances from an entity that may be
associated with any one instance from the other entity. In an ER Model, multiplicity
constraints on the relationships define an application from the cardinal product ExR (E being
the set of entities and R the set of relationships) to a set of cardinalities. This gives rise to
different forms of binary relationships: one-to-one, one-to-many or many-to-many depending
on whether the maximum number of the two pairs of cardinality corresponding to a binary
relationship is 1, or only one of them, or none of them.

Furthermore, our approach needs to characterize the relationships of an ER Model according
to the minimum number of the cardinalities. We will speak abouk a weak  (resp. strong)
relationship according to a given entity e if the minimum number of the pair of cardinality of
(e,r) is 0 (resp. 1).

II. The notion of semantic concepts

In order to model relevant concepts, we defined the notion of semantic concept. This notion
has been adapted from the natural object model used in the Dialog module of the CASE
TRAMIS [Brès, 93]. One of the aim of this model is to aggregate entities and relationships of
an ER model to allow objects really perceptible to the users to emerge.

A semantic concept (SC) can be seen as a grouping of entities and relationships. Such a
grouping brings to the fore one particular entity, called the root entity of the SC, while the
other ones only characterize it.

For example, in the ER model in figure 3, only two objects are perceptible to users: Regions
(including data on their departments and data on the towns of these departments) and
Regional settings (including guided tours). That means that, in the context of the database,
regions are not meaningful for a user without information on their departments and on their
towns. A department is not perceptible to users apart from regions. Any department always
belongs to only one region (the pair of cardinalities of (department, belongs-1) is (1,1)). Data
on a department can then be seen as a characterization of the region to which it belongs.
Furthermore, in the database (always according to the ER model below), some towns are not
close to any setting and conversely, some setting are not close to any town. That means that
the concept of town and setting are not dependent of each other.

We shall say that an entity e’, related to another entity e by the relationship r, characterizes e
if the maximum number of the pair of cardinalities of (e’,r) is 1. Given such a definition, we
studied, in our work, all the ways an entity  e’ may be related to another one e depending on
the numbers of the cardinalities of (e’, r) and (e, r), r being a relationship relating e and e’.
This led us to define several degrees of characterization of a relationship: none < weak <
strong < pairable. In the following, relationships are similar to weak, strong or pairable
characterization links.
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Figure 3: An ER Model split into two semantic concepts

To define a SC, the ER model is seen as a connected graph, where entities are vertices and
relationships (characterization links) are edges or directed edges. An edge is directed only if
it is a strong or weak characterization link.

Definition of a Semantic Concept: Given a connected subgraph G of an ER model, G is a
Semantic Concept if the graph S obtained further to two operations applied on G (a grouping
operation and an elimination operation) is a skeleton.

Definition of a semantic concept’ Skeleton: Given a semantic concept G, S is its skeleton if:
- S is a connected directed graph.
- S has a single source vertex V0 that represents the root entity of the G.
- All the vertices of S are reachable from V0 by following directed edges

(characterization links). Reachable vertices represent entities that characterize
the root entity of G (V0).

- Any entity of G appears in one of the skeleton’s vertices. This implies that all
entities of G are either the root entity, either characterizations of the root entity in
S.

For example, in figure 4, S is obtained in two stages. First, vertices of G linked by edges that
are pairable characterization links (i.e. linking indissociable entities) are grouped: that’s the
grouping operation. Second, all the edges that are not directed are eliminated: that’s the
elimination operation. The aim is to keep only edges which represent characterization links
between well distinguishable entities.

In [Goasdoué, 98], we have shown that any ER model can always be split into a partition of
semantic concepts (proposition 1). This first proposition led us to find an automated method
to construct semantic concepts of an ER model. The method that we propose is based on the
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notion of skeleton. In section III , we explain how the notion of skeleton is used and we detail
the process of construction.

Figure 4: The construction process of the skeleton of the SC “A/E”

III. Identifying semantic concepts

To split an ER model into SCs, we use a method based on the research of SCs’ skeletons. We
have shown in [Goasdoué, 98] that, given a SC’ skeleton, we can find the corresponding SC
on the ER model (proposition 2). Furthermore, an ER model may be enormous and complex.
In such cases, it might be hard to find relevant groupings of entities and relationships directly
on the ER model. It might also be difficult to work directly on the graph representing the
whole model. On the opposite, skeletons are simpler graphs than those representing an ER
model or even than SCs thanks to the grouping and elimination operations.

So, to identify SCs of an ER model represented by a graph G, we have three stages. In a first
preliminary step, we build the skeleton SG of G. Second, we split SG into different skeletons
in an incremental way. Finally, according to proposition 2, we build the SCs corresponding to
each different skeleton of SG. The first two steps are described in the next sections.

In our approach, we are always interested in discovering the biggest semantic concepts. We
would like to describe an ER model by means of a minimum number of concepts.
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III.1. The preliminary step: building the skeleton of a graph representing a whole ER
model

The aim of this step is to compute the ER model skeleton. To do this, both operations
previously introduced (grouping and elimination) are performed on the whole ER model. By
analysing the ER model skeleton, we determine which vertices will be sources of skeletons
(cf. figure 6). We have shown in [Goasdoué, 98] that given an ER model skeleton’s vertex, it
can belong to one and only one biggest skeleton (proposition 3). We showed also that, given
an ER model skeleton, we can decide for each of its vertices if it will be or not a source of a
biggest skeleton (proposition 4). For illustration, figure 6 represents a skeleton corresponding
to the ER model in figure 5.

Figure 5: An ER model represented as a graph

Figure 6: The ER skeleton corresponding to the graph in figure 5 (black vertices are sources of biggest
skeletons)
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III.2. The identification of skeletons of semantic concepts

Our aim is to automate as much as possible this identification process. Yet, an ER model may
often be split into different ways. The administrator of the database (DBA) corresponding to
an ER model is the only person who can decide on the best partition. So, we propose to build
at the beginning a first one in a fully-automated way. This first partition only proposes
groupings which are sure in respect to our construction rules and thus, which don’t need the
intervention of the DBA. Then, it is shown to the DBA who can decide on further groupings.

The identification of the most relevant concepts of a database is obviously a process which
can’t be performed without the contribution of a human being, the DBA. The approach that
we propose is interesting because it clearly separates the process in two parts, one which can
totally be automated and another more little one which needs the DBA to make choices.

To build a partition of SCs in a deterministic way, we showed that, given an ER model
skeleton, there is only one partition of it into biggest skeletons (proposition 5). So, we
developed algorithms to split an ER model skeleton into the partition of its biggest skeletons.
The process which is performed is incremental. (Small) skeletons are built and afterwards one
can decide to merge several of them.

A variant of the depth-first search algorithm is performed to build the first partition. It allows
all vertices that are reachable from a source vertex and that are not sources to be grouped. A
source vertex and the vertices reachable from it compose a skeleton (cf. figure 7).

Figure 7: A first partition of SCs obtained in an automated way (black vertices are sources of skeletons)

Then a merging process is performed. We illustrate it on the example below. The final
partition which is obtained from figure 7 is represented on figure 8.
- Let SA and SE be the two skeletons which source vertex is respectively A and E. We can
notice that (1) E characterizes D (because of the strong characterization link “de”), (2) E
characterizes F (because of the strong characterization link “fe”), (3) D and F are both
characterizations of A (because of the strong characterization links “ad” and “af”). So, E and
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its characterizations are also characterizations of A. Since we want to build the biggest
skeletons, we merge SA and SE.
- Let SA, SB, SG and SH be the skeletons which source vertex is respectively A, E, G and H.
We can notice that (1) B, G and H characterize themselves, (2) G is a characterization of F,
(3) F is a characterization of A. So, we can deduce that B, G and H characterize A. Since we
want to build the biggest skeletons, we merge  SA, SB, SG and SH.

Figure 8: The final partition of SCs obtained in an automated way (black vertices are sources of skeletons)

Figure 9: A SCs partition of the ER model of figure 5 (black vertices are roots of produced SCs)

At the end of the identification step, we have a partition of an ER model into SCs (cf. figure 9
for example). Each one represents a semantic concept which significant entity is the root
entity of the SC. Now, to build the knowledge base that will reflect the semantic contents of
an ER model, expressed in CARIN, we have to describe each of the identified SCs, in the
terms of the domain model.
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IV. Describing semantic concepts in CARIN

To build the knowledge base that describes the semantic contents of a database, we have
developped three tools: a semantic concepts explorer, a domain model explorer and a CARIN
sentences composer. All of them are automated supports in the description of a whole
relational DB. The idea behind the approach is that the space of choices of concepts to
describe can, to some extend, be controlled by the introduction of the notion of semantic
concepts. That way, a DBA will have to describe its DB only part by part, each part
corresponding to a SC, an abstraction representation of semantically related and indissociable
data.

IV.1. The semantic concepts explorer

This tool allows the administrator of a given database to browse the previously identified
semantic concepts of his ER model. It is a way to recall to him the significant notions to
describe.

IV.2. The domain model explorer

This tool displays all the hierarchies that can be computed from concept inclusions and
concept declaration statements in the domain model (cf. the hierarchy presented in I.2.1)

For each node of a hierarchy that is a base concept, a description in natural language is
available. Moreover, for each node, we can retrieve all the roles that have the node type as
type of one of their arguments. So, the DBA can browse the different hirarchies to learn the
vocabulary defined by the domain model, or find the concept that represents the best a notion
he wants to put in the knowledge base.

We can also list all the roles of the terminology, with, for each of them, their meaning in
natural language. Moreover, if information is also available from domain model, we can
display for each role the type of concepts that it links.
For example, we can deduce that the role DepartureDate needs a concept of type Date as its
second argument from the following expression: DepartureDate(X,Y) ∧ ¬Date(Y) ⇒ ⊥.

IV.3. A CARIN sentences composer

When a DBA decides to describe a significant notion encountered in a semantic concept of
his ER model (thanks to the semantic concepts explorer), he can choose the concept of a
hierarchy that represents the best that notion (thanks to the domain model explorer). The
result of such an action is to produce automatically a new source relation declaration: vi(x) ⇒
Cj(x), were Cj is the concept that has just been selected in the domain model. The purpose of
our tool is to help the DBA to characterize that source relation.

First, we try to characterize vi using roles Rk (1≤k≤n) that are associated with objects of Cj. For
example, the roles DepartureDate, ArrivalDate, DeparturePlace, ArrivalPlace and
MeansTransport can be used to characterize the concept Flight, according to the piece of
domain model presented in I.2.1.
Possible characterizations of vi are expressed thanks to source relation inclusions like: vi ⊆ C1

and C2 and … and Cm, where each Cl (1≤l≤m) is of the form (≤ n Rk), (≥ n Rk) or (∀Rk.Caccepted).



13

On the one hand, for a Cl (1≤l≤m) like (≤ n Rk) or (≥ n Rk),  there is no particular problem. The
DBA has only to select a role Rk (1≤k≤n) and to give the cardinality n. On the other hand, a Cl

(1≤l≤m) of the form (∀Rk.Caccepted) implies that the concept Caccepted is compatible with Rk. To be
sure that Caccepted is compatible with a Rk selected by the DBA, let’s consider the following
process:

Case 1: if Caccepted is a concept name CN, it must appear in the domain model and CN
must have the same type as the one of Rk’ second argument. To do this, our
tool uses the domain model explorer, pointing at the node of the hierarchy in
which CN appears. Then, the DBA has to choose CN or one of its
specializations for Caccepted.

Case 2: if Caccepted is a concept like (≤ n Rl) or (≥ n Rl), Rl must have as first argument’s
type, the same type as the Rk’ second argument. To do this, our tool retrieves
from the domain model all the roles Rl which satisfy this property. Then, the
DBA will have to choose one of them (Rl), and to give the cardinality n.

Case 3: if Caccepted is a concept like (∀Rl.Caccepted’), the choice of Rl is done as Rk’s
choice is. The concept Caccepted’ must be of the same type as the type of Rl’
second argument. Thus, Caccepted’ is chosen like Caccepted was (i.e. case 1,2,3 or
4).

Case 4: if Caccepted is a concept like C1 and C2 and … and Cp, each of the C1…Cp is
defined like Caccepted is (i.e. case 1,2,3 or 4).

This way, if we want to express that we have a source relation vi over flights which arrival
places are located in Europe and which type is Tourism, we can generate the following
expressions, according to the piece of domain model presented in I.2.1.: vi(x) ⇒ Flight(x), vi

⊆ (∀ArrivalPlace.Europe5) ∧ (∀MeansTransport.TourismFlight).

Second, we try to characterize vi using roles Rk’ (1≤k’≤n) that are known not to associate objects
of Cj but objects of classes subsumed by Cj. These roles are those of the domain model that
are different of the Rk above, but that accept the same concept type as the one of Cj as first
argument.
Again, possible characterizations of vi are expressed thanks to source relation inclusions like:
vi ⊆ C1 and C2 and … and Cm, where each Cl (1≤l≤m) is a (≤ n Rk’), (≥ n Rk’) or (∀Rk’.Caccepted).
The same process of characterization as the one describes above is used.

For example, if we want to express that we have the source relation vi over flights that
propose to have diner on board, we can generate the following expression, according to the
piece of domain model presented in I.2.1.: vi ⊆ (≥  1  AssociatedMeal) ∧
(∀AssociatedMeal.Diner6).

Related work and conclusion

Our aim was to obtain descriptions using terms in the domain model from representations
using terms particular to a database schema. The fundamental problem which arises is

                                                
5 Here, we consider that the concept Europe appears in the domain model.
6 Here, we consider that the concept Diner appears in the domain model.
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semantic heterogeneity – the fact that the same concepts are represented differently in a
database schema and in the domain model.
Some issues raised by semantic heterogeneity have been studied in the database community.
When two or more databases need to work together, in many cases the same data is
replicated. Different database schemas and different conceptualizations are typically used to
represent the replicated data.
So, in the database schema integration field which aim is to construct a global, unified
schema from existing or proposed databases, the semantic heterogeneity problems to be dealt
with are structural and naming conflicts [Batini & al., 96]. Structural conflicts arise as a result
of a different choice of modeling constructs or integrity constraints. In such cases, the same
concepts are represented differently although the same modeling language is generally used.
Some constructs used in the different schemata may be equivalent. Concepts may also be
related among themselves with different dependencies because the contexts of the DB
applications are not similar. Whatever the reason is, the concepts which modelization is
problematic always appear in all schemata which are compared, but not in the same fashion.
Naming conflicts arise because people from different application areas refer to the same data
using their own terminology and names. Thus, to make schemas compatible, one must
replace terms by other ones, the new terms belonging to the same level of discourse. In both
cases, conflict discovery and restructuring are in general aided by a strong interaction
between the different DB designers.
Other works have focused on heterogeneity including different data models (ER, object,
functional, and so on). [Spaccapietra & al., 92] proposes a language to define the
correspondence between constructs of heterogeneous schemata. They allow some kinds of
structural conflicts to be solved automatically.
To summarize, in most research works on the integration DB schema field, techniques to
solve the semantic heterogeneity problem are used prior to the integration step. It is very
often a manual process, except for some kinds of structural conflicts. In any cases, the
preintegration step is considered the responsability of the DB designers. Furthermore, in
much work, mappings between database schemata are assumed to be provided. A solution to
the semantic heterogeneity problem would be to enhance the semantic description of each
schema. For that, Bonjour in [Bonjour & al., 1994] proposes to introduce concept bases on
top of a set of schemes to integrate. These bases could help to compare concepts represented
in different systems.
More recently, other database works have focused on importing and integrating selected
portions of DB schemata as in federated [Sheth & al., 90] or knowledge-based mediator or
data warehouses architectures [Widom, 95]. A lot of problems of semantic heterogeneity
which arise are the same nature as in data integration field. But they have been addressed a
little. Nevertheless, in the knowledge-based mediator approaches, we notice two trends.
Mediator approaches have in common the use of knowledge bases which describe both the
domain model and the contents of information sources. So, they don’t need correspondences
directly between the information sources but, instead, they need correspondences between the
domain model and the descriptions of the contents of each information source. A way to
make such correspondences easier is to capture the intended meaning of DB schemata using
ontologies [Gruber, 93]. It relies on manipulation techniques coming from the fields of
artificial intelligence. In Observer [Mena & al., 96] for example, the objects in the sources are
represented as intensional descriptions by pre-existing ontologies. The query engine rewrites
user queries by using interontology relationships to obtain semantics-preserving translations
across the ontologies. The approach is interesting but new problems arise : how to build the
ontologies ? how to acquire the terminological relationships represented between terms
across the ontologies ? An other approach is to use the same vocabulary to describe both the
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domain model and the contents of the different sources. The problem of different
vocabularies disappears but we must be able (1) to describe each source with the vocabulary
of the domain model, and (2) to link the descriptions of the contents of a DB to the DB itself.
Our paper is relative to the first point of this second approach. As far as we know, no other
research works have proposed solutions in this direction. We have faced to a semantic
heterogeneity problem because concepts in the domain model and in the DB schemata were
not represented at the same level of abstraction and not because of structural or naming
conflicts. Our aim was not to find the good structure or the good name corresponding to each
concept in a DB schema. It was to identify parts of DB schemata which represent concepts
relevant for a user and which will be able to be made in correspondence with concepts in the
domain model, corresponding to a user view point too.

On another hand, our problem is relative to knowledge engineering. We want to build a
knowledge-based mediator. Thus, we need techniques to construct all the knowledge bases
useful to the mediator. Current knowledge engineering works describe the structure of a
knowledge-based system (KBS) through highly structured models [Schreiber & al., 1994].
The domain models which describe the specific knowledge of a domain are one of the
components of such models. Recently, in the knowledge engineering community, research
works have been conducted to characterize domain knowledge and to help building domain
models by means of ontologies [Gruber, 1993]. Building ontologies become then a key issue.
An ontology is based on the definition of a structured and formalized set of concepts. A great
part of it comes from text analysis. So, one trend is to benefit from both knowledge
engineering and linguistics  approaches. Researchers have studied mutual contributions and
this led them to elaborate the concept of Terminological Knowledge Base (TKB), first
defined by Ingrid Meyer [Skuce & al., 91]. In France, the works of the TIA research group is
centered on this notion too [Bourigault & al., 95]. A TKB is an intermediate model which
helps toward the construction of a formal ontology ; it contains conceptual data, represented
in a network of domain concepts, but also linguistic data on the terms used to name the
concepts. A TKB can enhance communication and be a great help to choose the names of
concepts. Such research works address the problem of the identification of concepts. We deal
with the same problem but we have to identify concepts from database schemata, not from
text analysis. So, the techniques that we propose are specific ones,  based on the notion of
semantic concepts.

In conclusion, this paper deals with identifying and modeling relevant concepts. First, we
have presented a way to identify relevant concepts. Our aim was to automate this process as
much as possible although it can’t be entirely performed without the contribution of DB
designers. We have identified two different parts in the process performed sequentially:  one
which can be totally automated and another one performed in cooperation with the DB
designer. Second, we have presented techniques usable by DB designers to be guided in the
description of relevant concepts in CARIN and using terms in the domain model. Much of the
techniques described in the paper have been implemented in Java.
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