Knowledge Representation for Information
Integration

Marie-Christine Rousset, Chantal Reynaud

University of Paris Sud - CNRS (L.R.I) & INRIA (Futurs)
L.R.I, Building 490,
91405, Orsay Cedez, France

Abstract

An information integration system provides a uniform query interface to a col-
lection of distributed and heterogeneous information sources, giving users or other
agents the illusion that they interrogate a centralized and homogeneous information
system. In this paper, we focus on the use of knowledge representation techniques
for building mediators for information integration. A mediator is based on the spec-
ification of a single mediated schema describing a domain of interest, and on a set
of source descriptions expressing how the content of each source available to the
system is related to the domain of interest. These source descriptions, also called
mappings because they model the correspondence between the mediated schema
and the schemas of the data sources, play a central role in the query answering
process. We present two recent information integration systems, namely PICSEL
and Xyleme, which are illustrative of two radically different choices concerning the
expressivity of the mediated schema.

Key words: mediator, mediated schema, rewriting queries using views, description
logics, datalog rules, labelled trees, query trees, mappings

1 Introduction

The emergence of the World-Wide Web has made available a multitude of
autonomous data sources which can as a whole satisfy most of users informa-
tion needs. However, it remains a tedious and long task for users to find the

Email addresses: mer@lri.fr (Marie-Christine Rousset,), cr@lri.fr (Chantal
Reynaud).

URLs: http://www.1lri.fr/people/mcr .html (Marie-Christine Rousset,),
http://www.lri.fr/people/cr.html (Chantal Reynaud).

Preprint submitted to Elsevier Science 9 December 2002

data sources that are relevant to their request, to interact with each of those
sources in order to extract the useful pieces of information which then have
to be combined for building the expected answer to the initial request.

Information integration systems are mediation systems between users and mul-
tiple data sources which can be syntactically or semantically heterogeneous
while being related to a same domain (e.g., tourism, culture). An informa-
tion integration system provides a uniform interface for querying collections
of pre-existing data sources that were created independently. They are based
on a single mediated schema in terms of which users pose queries, and the
data sources to integrate are described. The source descriptions specify se-
mantic relationships between the contents of data sources and the mediated
schema. They are exploited by the query processor of the information inte-
gration system which must reformulate the original query into queries against
the source schemas. Information integration systems must deal with large
and constantly changing collections of data sources. This requires powerful
languages and flexible mechanisms for describing and handling data sources
which may have overlapping or contradictory contents, semantic mismatches,
limited capabilities, etc ...

In this paper, we discuss the advantages and the challenges of using rich
knowledge representation formalisms for modeling the semantic relationships
between source schemas through a mediated schema. We outline the impact of
the choice of the knowledge representation formalism on the query reformula-
tion problem, which is the core algorithmic problem for answering queries in an
information integration system. Clearly, as the languages for describing data
sources, the mediated schema, or the users’ queries become more expressive,
the query reformulation problem becomes harder. The key challenge is then
to identify formalisms offering a reasonable tradeoff between expressive power
and good computational properties for the accompanying reformulation algo-
rithm. In Section 2, after a survey of most of the existing information integra-
tion systems, we focus on two recent systems, PICSEL[18] and Xyleme[33,32],
which are illustrative of two radically different tradeoffs between expressive
power and the computational complexity of the accompanying reformulation
algorithm. Section 3 and 4 summarize the approach underlying each of those
two systems. Finally, in Section 5, we outline the central role of knowledge rep-
resentation techniques that for making the promising vision of the Semantic
Web a reality.

2 Overview of the mediator approach

The general architecture of a mediator-based information integration system
is given in Figure 1.

{ User's query : trip (Paris, London, Price, Date) J

Query W
and answers)

Application domain 1 Application domain n

ANEEE //

Engine
Description Description Description Description Description Description
of source 1. of source 1 f source 13 : f source n1 of sourcen f source n3
Rewritings
and answers
Wrapper 11 ‘ ‘ Wrapper 12 ‘ ‘ Wrapper 1k Wrapper n1 ‘ ‘ Wrapper n2 ‘ ‘ Wrapper nl

Local schema Loca schema Local schema Local schema Loca schema Local schema

HTML files XML files HTML files XML files

Fig. 1. Architecture of a mediator-based information integration agent

The existing mediator-based information integration systems can be distin-
guished according to:

e the type of mappings between the mediated schema and the schemas of the
sources (Global As Views versus Local As Views),

e the languages used for modeling the mediated schema and the source de-
scriptions,

e the expressivity of the mediated schema.

2.1 Global As Views versus Local As Views

Information integration systems can be related to two main approaches for
modelling inter-schemas correspondence: Global As Views (GAV) and Local
As Views (LAV) . The GAV approach has been the first one to be proposed
and comes from the Federated Databases world. The mediated schema is de-
fined in function of the schemas of the sources to integrate, i.e., each relation

of the mediated schema is defined as a view on the relations of the sources
schemas. The advantage of this approach is the simplicity of query reformula-
tion which simply consists of replacing each atom of the query by its definition
in terms of the relations of the sources schemas. Its drawback is its lack of
flexibility with respect to the addition or deletion of sources to the mediator:
adding (or deleting) a source to the mediator may affect the definitions of all
the relations of the mediated schema. The LAV approach is dual and has op-
posite advantages and drawbacks. It consists of describing the contents of the
sources in function of the mediated schema. In such an approach, adding a new
source is quite straighforward because each source is defined independently of
each other. It simply requires to add some formulas to model the content of
the new source as queries over the mediated schema. The price to pay for this
flexiblity is the difficulty of the query answering processing. Since both the
users queries and the views describing the sources contents are expressed in
terms of the mediated schema, the reformulation of the users queries in terms
of the source relations cannot be done as a simple query unfolding as for the
G AV approach. This requires a more complex process of rewriting queries us-
ing views (see [19] and [8] for more details on the problem of answering queries
using extensions of views).

2.2 Relational versus object-oriented mediated schema

The most representative information integration systems of the relational ap-
proach are: Razor ([15]), Internet Softbot ([14]), Infomaster ([16]) et Informa-
tion Manifold ([25]). They all follow a LAV approach. The Razor and Internet
Softbot systems use DATALOG (without recursion) for modeling the mediated
schema, the views describing the sources contents and the users queries. In-
fomaster and Information Manifold are based on extensions of DATALOG.
Infomaster exploits integrity constraints in addition of DATALOG rules. Infor-
mation Manifold extends DATALOG by allowing that some predicates used in
the rules are concepts defined by using description logics constructors. This
hybrid formalism is in fact a precursor of the CARIN language considered in
this paper. The HERMES ([30]) system is a system of federated databases that
can be seen as a mediator following a GAV approach and based on a Prolog-
like query language with annotations for handling uncertainty and time.

The most representative information integration systems of the object-oriented
approach are: TSIMMIS ([28]), SIMS ([4,3]) OBSERVER ([27]) and MOMIS
([5]). TSIMMIS is based on the object-oriented language OEM for describing
the mediated schema and the views, and on the OEM-QL query language.
It follows a GAV approach. The SIMS and OBSERVER systems use a de-
scription logic for modeling the mediated schema, the views and the queries.

They follow a LAV approach since the content of the source is described in
function of the concepts described in the mediated schema. SIMS uses LooM
([26]) while OBSERVER is based on CLASSIC ([7]). In those two systems,
the problem of rewriting queries using views is handled as a planning prob-
lem and the completeness of the rewriting algorithms is not addressed. The
MOMIS ([5]) system is based on the use of a very expressive description logic
(ODL-I3) for describing the schemas of the sources to integrate. It follows a
G AV approach since the mediated schema is inferred from the schemas of the
sources.

2.8 FExpressivity of the mediated schema

Orthogonally to the LAV versus GAV and relational versus object-oriented
distinctions, another criteria for distinguishing the information integration
systems is the expressive power chosen for modeling the mediated schema. In
this paper, we summarize two recent information integration systems, namely
PicseL and Xyleme, which are illustrative of two radically different choices
concerning the expressivity of the mediated schema.

In P1CSEL[18], it has been chosen to offer a formalism combining the expressive
power of rules and classes for designing a rich mediated schema, thus enabling
a fine-grained description of the contents of the sources. Our aim was to build
information integration agents related to application domains for which there
exists many information sources containing closely related data. In such a set-
ting, it is of primary importance to model the fine-grained differences between
contents of sources if we want to be able to answer precise queries in an effi-
cient way. PICSEL has been used for building a mediator in the tourism domain
in collaboration with France Telecom R&D and the web travel agent Degrif-
tour !. This travel agent makes available on-line three databases that contain
different types of touristic products (flights, tours, stays in different places),
each of them having its own specificities. For example, the BonjourFrance
database offers a large variety of touristic products but all of them are located
in France. The so-called Degriftour database offers flights, stays and tours for
a lot of destinations all over the world. Its specificity however is that all its
offers correspond to a departure date which is within the next two weeks. As a
counterpart, the corresponding prices are specially interesting. The Reductour
database provides rather similar products but with a less strong constraint
on the departure date: it just has to be within the next eight months. Other
differences exist between the contents of those three databases. For instance,
we might know that BonjourFrance can provide rooms in Bed&Breakfast in

! see http://www.degriftour.fr/

addition to hotel rooms, while the only housing places that are proposed in the
two other sources are hotels, located exclusively out of France for Degriftour,
and located exclusively in Europe for Reductour.

In Xyleme [32,33,1], the choice of a simple tree structure for mediated schemas
has been guided by the goal of providing a very wide-area integration of XML
sources that could scale up to the Web. The system architecture and the de-
sign choices have been motivated by “web search engine”-like performance re-
quirements, i.e. supporting many simultaneous queries over a Web-scale XML
repository. Xyleme is based on a simple data model with data trees and tree
types, and a simple query language based on tree queries with boolean condi-
tions. The main components of the data model are a mediated schema modeled
by an abstract tree type, as a view of a set of tree types associated with actual
data trees, called concrete tree types, and a mapping expressing the connec-
tion between the mediated schema and the concrete tree types. The simplicity
of the mapping relation (correspondences between tree paths) eases automatic
mapping generation and distributed storage. The query language is intended
to enable end-users to express simple Query-by-Example tree queries over the
mediated schema.

In section 3, we describe the way the expressive power of the CARIN [21] lan-
guage is exploited in the PICSEL information integration system, while main-
taining the decidability of query rewriting using views and the tractability of
query answering. In section 4, after describing the tree-based data model of
Xyleme, we present a method for semi-automatically generating the mapping
relation. For setting up semantic integration in Xyleme, the main difficulty
comes from the very large number of data sources handled by Xyleme. As a
consequence, the number of concrete data trees that have to be mapped to
the abstract tree type makes impossible that the mapping relation is manu-
ally defined by some database administrator. We have therefore studied how
to generate the mapping relation as automatically as possible, by combining
syntactic, semantic and structural criteria. A prototype has been implemented
and evaluated in the cultural domain

3 Overview of PICSEL

In PicseL, CARIN is used to represent both the mediated schema modeling a
given domain of application, and the contents of information sources that are
available and relevant to that domain.

3.1 Syntaz and semantics of CARIN

A CARIN knowledge base (KB) contains two components: a set R of rules,
and a set T of Description Logics statements. Description logics statements
are definition or inclusion statements about concepts and roles in the domain.
Concepts and roles are unary and binary relations that can also appear in
the antecedents of the rules. Relations that do not appear in the description
logics statements are called ordinary relations. Ordinary relations can be of
any arity.

3.1.1 Description Logics component in CARIN:

The DL component of a CARIN knowledge base in PICSEL contains con-
cept definitions and some kinds of concept inclusions, using the ALN DL.
ALN contains the DL constructors of conjunction (C; 1 C;), value restriction
(VR.C), number restrictions ((> n R), (< n R)), and negation (—A) restricted
to basic concepts only.

e Concept definitions are of the form C'N := Concept Expression, where CN
is a concept name and ConceptExpression is a concept expression. We
assume that a concept name appears in the left hand side of at most one
concept definition. Atomic concepts are those which do not appear in any left
hand side of a definition. A concept name C'N depends on a concept name
CN' if CN' appears in the definition of CN. A set of concept definitions is
said acyclic if there is no cycle in the concept names dependency relation. In
the setting of PI1CSEL, we consider only acyclic concept definitions. We can
unfold an acyclic set of definitions by iteratively substituting every concept
name with its definition.

e The concept inclusions that are allowed in the PICSEL setting are of the
form:

- A C ConceptEzxpression, where A is a atomic concept,
-or A; M Ay C 1, where A; and A, are atomic concepts.

3.1.2 Rule component in CARIN:

The rule component R of a CARIN knowledge base contains a set of rules that
are logical sentences of the form:

VX [po(X1) Ao Apn(Xn) = q(Y)]

where X1,...,X,,Y are tuples of variables (included in X) or constants. We
require that the rules are safe, i.e., a variable that appears in Y must also
appear in X; U...UX,. As a shortcut, in the following, the variable quantifi-

cation will be omitted. The relations py, ..., p, may be either concept names
or expressions, role names, or ordinary relations that do not appear in 7. The
relation ¢ must be an ordinary relation.

The base relations are those which do not appear in any consequent of rules.
In particular, any concept or role appearing in the rules are base relations. We
call a base atom an atom p(X) where p is a base relation. We call concept-
atom an atom p(X) where p is a concept name or expression, and role-atom
an atom 7(X,Y) where r is a role name.

An ordinary relation p is said to depend on an ordinary relation q if ¢ appears
in the antecedent of a Horn rule whose consequent is p. A set of rules is said
to be recursive if there is a cycle in the dependency relation among ordinary
relations. In the setting of PICSEL, we consider non recursive rules.

Since the rules are safe, without loss of generality, we can assume that in
every rule, we have the disequality X # Y for every pair of distinct variables
appearing in the rule. For clarity, we omit these atoms in our examples and
algorithms.

In addition, we allow constraints of the form:

pl(Xl) AR /\pn(Xn) = L.

3.1.3 Semantics of CARIN KBs:

The semantics of CARIN KBs is the standard model-based semantics of first-
order logic. An interpretation I contains a non-empty domain O’. It assigns
to every constant a an object of(a) € Of, and a relation of arity n over
the domain O to every relation of arity n. In particular, it assigns a unary
relation C! to every concept in T, and a binary relation R over O x O! to
every role R in T. The extensions of concept and role descriptions are given
by the following equations: (§{S} denotes the cardinality of a set S):

(cnD)Y=c'nDi,

(~A) =07\ AT,

(VR.C)Y! ={de€ O |Ve:(d,e) e Rf - eecC'}
(>nR)Y={decO"|4{e]| (d,e) € R"} > n}
(< nR)Y={decO"|4{e]| (d,e) € R"} <n}

An interpretation I is a model of a knowledge base (7, R) if it is a model
of each of its components 7" and R . An interpretation I is a model of T
if AT C D! for every inclusion A T D in T, CN! = D for every concept
definition CN := D. If CE and DE are two concept expressions, we say that

CE is subsumed by DE (modulo T), denoted CE <X DE (CE =<r DE). if
CE" C DE' in every interpretation I (model of 7'). A concept expression
CE is satisfiable (modulo 7") iff there exists an interpretation I (model of T
) such that CE! is not empty.

An interpretation I is a model of a rule 7 : p;(X1) A ... A p.(X,) = ¢(Y) if,
whenever « is a mapping from the variables 2 of r to the domain Of, such
that a(X;) € p} for every atom of the antecedent of r, then a(Y) € ¢’.

An interpretation I is a model of a constraint ¢ : p; (X)) A ... Apa(X,) = L
if there does not exist a mapping « from the variables of ¢ to the domain o!
such that a(X;) € p! for every atom of the antecedent of c.

3.2 Modelling the mediated schema in PICSEL

Given a basic vocabulary denoting names of base relations that are meaningful
for the application domain (e.g., tourism), CARIN is used for defining new
relations that are significant for that domain and which can be defined over
the base relations. In the setting of CARIN, there are two ways of defining
complex relations: by rules, or by concept expressions. It is illustrated by the
following example.

Example 1 Let us suppose that our basic vocabulary contains atomic con-
cepts such as HousingPlace, Break fast, Collective Building, Private Building,
which respectively denote the set of housing places and varied sets of services
or buildings, and roles such as AssRoom, AssMeal and AssBuilding, which
denote binary relations between housing places and their associated build-

ings, room and meal services. We can define the two new concepts Hotel and
Bed& Break fast by the following DL definitions:

Hotel := HousingPlace (> 5 AssRoom) N (VAssBuilding.Collective Building)

Bed&Break fast := HousingPlace (> 1 AssRoom) M (> 1 AssMeal)
M (VAssMeal.Break fast) M (VAssBuilding.Private Building)

Rules can be used to define new n-ary relations. For instance, the follow-
ing rule defines the notion of flights combined with stays as a 4-ary relation
FlightStay. A stay combined with a flight is characterized by a departure city
(denoted by the first variable Dcity in the consequent of the rule), an arrival
city (denoted by the variable Acity), a departure date (Ddate), a return date
(Rdate). The possible combinations of a flight to and back a given destination

2 Distinct variables are mapped to distinct elements

with a stay at that place obey some constraints that are expressed by the
conditions in the antecedent of the rule.

Stay(S) A Flight(V)) A Assoc(S, H) A Located(H, AC'ity)
A ArrivalCity(V, Acity) A DepartureCity(V, Dcity) A DepartureDate(V, Ddate)
A ReturnDate(V, Rdate) A BeginningDate(S, Ddate) A EndDate(S, Rdate)

= FlightStay(Dcity, Acity, Ddate, Rdate)

3.8 Modelling the contents of the information sources in PICSEL

Our approach for describing the information sources has been guided by the
necessity of trading off expressive power against decidadibility of query an-
swering. More precisely, each information source § is characterized by a set of
source relations Vg (also called views), and described by a CARIN knowledge
base which contains:

(1) aset Zg of rules v(X) = p(X) that indicates which kind of data can be
found in the source 8. The p’s are domain relations and there are as many
source relations v’s in Vs (and as many implications in Zg) as domain
relations whose instances can be found in the source S,

(2) a set Cs of constraints on the instances of the source relations. We allow
two types of constraints. Terminological constraints are of the form v C C,
where C' is a concept expression. Integrity constraints are of the form
L(X)A...Aly(X,) = L where the I;’s are source relations or negation of
source relations, such that there is atmost one negation in each constraint.

A source atom (also called view atom) is an atom of the form v(X) where v is
a source relation.

We encapsulate the terminological constraints within the definition of views
associated with such constraints.

Definition 1 (View definition) Let v be a view in V appearing in the de-
scription Is U Cs of a source S, and such that v(X) = p(X) € Zs. The
definition of the view v, denoted def(v), is:

e def(v)=pnC ifv C C €Cs,
e def(v) = p if v is not associated to any terminological constraint.

As an example, we can have the following (partial, for this illustration) de-
scriptions of the three information sources that we have previously mentioned
(i.e., Bonjour France, Degriftour and Reductour).

Example 2 The rules in the description of the three sources say that we

10

can find instances of housing places and flights in all of them (together with
instances of associated properties like their location, their departure cities and
dates ...). The constraints contained in each description enable distinguishing
between them: for instance, the housing places and flights that can be found
in BonjourFrance are restricted to be located in France; the housing places
that can be found in Reductour are necessarily hotels. Some constraints serve
to express that instances of some binary relations that can be found in a
given source are exclusively related to some unary relations that can be found
in the same source: for instance, the constraint v%4,(X,Y) A ~vgp(X) = L
in Descr(Bonjour France) expresses that the locations that can be found
in the source BonjourFrance (denoted by the source relation v%, and the
implication v45(X,Y) = Located(X,Y)) are only locations that are related
to the housing places that can be found in the same source (denoted by the
source relation vy and the implication vgp(X) = HousingPlace(X)).

Descr(BonjourFrance) : vgp, ..., Vg
mappings: Zponjour France constraints: CgonjourFrance
vpp(X) = HousingPlace(X) vgp C (VLocated.France)
v4(X,Y) = Located(X,Y) vp(X,Y)A whp(X) = L
vyp(X) = Flight(X) vy C (VArrivalCity.France)
vp(X,Y) = ArrivalCity(X,Y) | vp(X,Y) A ¥, (X) = L

Descr(Degriftour) : v, ..., v}
mappings: Zp constraints: Cp
vhH(X) = Hotel(X) v} C (VLocated.—~France)

v3(X,Y) = Located(X,Y)
v (X) = Flight(X) v}, C (VDepartureDate.NextTwoW eeks)
v (X,Y) = ArrivalCity(X,Y) | vH(X,Y) A —0d(X) = L

11

Descr(Reductour) : vk, ..., v%

mappings: Zg constraints: Cg

vg(X) = Hotel(X) vk C (VLocated.Europe)

vy C (VDepartureDate. NextEight Months)
vH(X,Y) = ArrivalCity(X,Y) | vi(X,Y) A —0%(X) = L

Here are some view definitions that we get from this modelling:
def(vhp) = HousingPlace MY Located.France
def(vh) = Hotel NV Located.~France

def(vk) = Hotel IV Located. Europe.

3.4 Query processing in PICSEL

The queries that we consider are conjunctive queries of the form Q(X) :
p1(X1, Y1) A ... A pi(Xm, Vi), where the p,;’s are domain relations, some
of which may be concept expressions or role names. The variables of X =
X1U...UX,, are called the distinguished variables of the query: they represent
the variables of the query which the user is interested in knowing the instances
when he asks the query. The variables that are not distinguished (denoted by
Y =Y, U...UY,,) are called eristential variables of the query: they are ex-
istentially quantlﬁed and their use is to constrain the distinguished variables.
For example, by the query Q(X) : Hotel(X) A Located(X,Y) A France(Y),
the user specifies that the answers he is interested in, are all the possible in-
stances of X that are hotels, and for which there exists instances of Y (their
locations) that are in France.

Answering queries in PICSEL resorts to find conjunctions of source atoms
(called rewritings) which, together with the mediated schema and the descrip-
tions of the sources, entail the initial query.

Definition 2 (Rewriting) Let Q(X) : pi(X1,Y1) A ... A pm(Xm, Vi) be a
query expressed in term of domain relations, let Qy(X, Z) be a conjunction of

view atoms. Qy(X, Z) is a rewriting of Q(X) iff :

-{Qv(X,2)} URU T UZy UCy is satisfiable, and

12

- {QV(XaZ)} URU TUIV U CV): E|Yp1(a’1,Y1) ARES Apm(a’maYm)
Example 3 Coming back to Example 2, let us consider again the query:
Q(X) : Hotel(X) A Located(X,Y) A France(Y).

The query Qp(X) : vi(X) A vgp(X) A vE(X,Y) is a rewriting of Q(X) be-
cause, according to the definitions of v and of vhp, vL(X) entails (Hotel 1

V Located.Europe)(X) and v (X) entails (HousingPlacelV Located. France)(X).
Then, vL(X)Avk,(X) entails in particular Hotel(X)A(VLocated.France)(X).
Therefore, according to the semantics of the V constructor, vy (X) Avge(X) A
v4(X,Y) entails that there exists Y such that Hotel(X) A Located(X,Y) A
France(Y) is true, and thus @y is a rewriting of Q.

Note that this rewriting shows that answering the query @) using the available
sources requires to integrate the information of the two sources Reductour and
BonjourFrance: hotels and their location are found in the Reductour source,
but we have to intersect those data with housing places stored in the Bon-
jourFrance source to be sure to obtain hotels that are located in France.

On the other hand, Q},(X) : v, (X) Avgp(X)Avh(X,Y) is not a rewriting be-
cause it is insatisfiable. It is due to the fact that from the definitions of v}, (i.e.,
HotelMV Located.—~France) and vgp (i.e., HousingPlaceMV Located.France),
it can be entailed that the location of X is on the one hand necessarily out
of France, and on the other hand in France. Therefore, vh(X) A vhp(X) A
v4(X,Y) entails the two contradictory facts France(Y) and —France(Y),
and thus @)}, is insatisfiable.

A rewriting of a query Q(X) can then be viewed as a specialized query that
can be directly executed on the sources, and which provides relevant answers
to the initial query.

Query processing in PICSEL can be summarized as follows.

(1) Normalization of the query. We exhaustively apply to the body of
the query the normalization rule: C(o) A D(o) — (C N D)(o), where
C(o) and D(o) are concept-atoms. Then, the resulting concept expres-
sions are themselves normalized. Every concept expression is put in a
normal form of a conjunction of concept expressions of the (simple) form:
A (atomic concept), =4, (> nR), (< nR), or of the (complezx) form:
VR\VR,...VR;.D, where D is simple.

(2) Verification of the satisfiability of the query. This consists of (a)
checking the satisfiability modulo the terminology of each concept ex-
pression appearing in the query, and (b) applying a forward-chaining
algorithm to the rules until L is obtained or no new atom can be ob-
tained. If the query is insatisfiable, the query processing stops and the

13

(5)

query is transmitted to a module of query relaxation described in [6].
Query unfolding. This is an iterative process based on successive steps
of unfolding using the rules. Let p(X) be an ordinary atom. Let r :
pi (XL, YA ADp(X, YY) = p(X') be a rule of R. Let o be the most
general unifier of p(X) and p(X'), extended such that every variable Y;
is assigned to a fresh variable that appears nowhere else. An unfolding of
the query using the rule r is a conjunctive query obtained by replacing
in the query the atom p(X) by the conjunction: p; (a(X]),x(Y{)) A ... A
pe(a(X}), alT}).

The process is iterated on each satisfiable unfolding until getting con-

junctive queries in which all the ordinary atoms are base predicates. Since
the rules are non recursive, the process terminates.
Computation of terminological approximations. Depending on the
variable binding within the body of each conjunctive query, it is possi-
ble that conjunctions of concept-atoms and role-atoms are entailed by a
single concept-atom. It is important to determine such situations when
they exist because they may lead to rewritings that could not be found
otherwise.

In [17], the conjunctions of concept-atoms and atom-roles that can be
entailed by a single concept-atom are characterized by the structure of
the binding graph of their variables. The binding graph of a conjunction
of unary and binary atoms is defined as follows: its nodes are the variables
appearing in the conjunction ; there is an edge from U; to U, iff there
exists a binary atom r(Uy, Us) in the conjunction. In particular, it is shown
that if a conjunction cj(X,Y’) has a binding graph which is a tree rooted
in X, we can build its ALN concept approrimation which is the most
general ALN concept description C' such that C(X) | 3Y ¢j(X,Y).
Example 4 Consider again the query Q(X) : Hotel(X)ALocated(X,Y)A
France(Y). Its body has a binding graph which is a tree rooted in X. Its
concept approximation is: Hotel M (> 1 Located) 1 (¥ Located.France).
The query) can then itself be approximated by the atomic query @’
obtained by replacing the body of Q by:

(Hotel M (> 1 Located) M (VLocated.France))(X).

Q'(X) : (Hotel 11 (> 1 Located) M (VLocated.France))(X). is called a
terminological approximation of Q).

Fo every satisfiable conjunctive query resulting from rule unfolding, we
build their terminological approrimations. They are obtained by replacing
a conjunction cj(X,Y) of concept-atoms and role-atoms whose binding
graph is a tree rooted in X by the single-concept atom C(X) where C' is
the concept approximation of cj(X,Y).

For every resulting conjunctive query, we then proceed to the rewriting
of each atom of its body separately, and we conjunct the results to get
the final rewritings.

Rewriting of each query, atom by atom.
Rewriting an ordinary atom or of a role-atom is trivial: the rewritings

14

of a role-atom r(Uy, Us) (or of an ordinary atom p(U)) are the view-atoms

v(Uy1, Uz) (ou v(U)) such that v € V and def(v) = r (or def(v) = p).
Rewriting concept-atom is much more complex. It is done by iterating

the application of rewriting rules according to a strategy which guarantees

termination of the rewriting process. Those rewriting rules are founded

the following rules of entailment.

e Rewriting of a concept-atom of the form ([7];_; C;)(Up) : the rewritings
of this type of atom are obtained by conjuncting the rewritings of the
concept-atoms C;(Up) .

) A Cw) £ (1),

e Rewriting of a concept-atom of the form C(Uj) (where C is simple i.e.,
not a conjunction) is based on the following entailment rule where D <+

C:
(2) (V11 <+ (¥tn D)) A A\ Ui 4, Un) = C(T0),
i=1
This is a termination case for the rewriting algorithm.
e Rewriting of a concept-atom of the form (> n r)(Up) is based on the
following entailment rule:

(3) Z\lr U, U, /\/\1 /\ Ui #U; = (> nr)(lh).

iFg

The rewriting process is iterated on the role-atoms of the left hand
side of the rule.
e Rewriting of a concept-atom of the form (Vr C)(Up) is based on the
following entailment rule:

n

(4) (< 0 OUIA N (Uo, UIACONAN A Us # Uy = (9 O)(To).

=1 = 1]._1_|_1

i7j

The rewriting process is iterated on the role-atoms and on the concept-
atoms of the left hand side of the rule.
Example 5 Consider the atomic query:
Q'(X) : (Hotel M (> 1 Located) 11 (VLocated.France))(X)
which is the terminological approximation of the conjunctive query:
Q(X) : Hotel(X) A Located(X,Y) A France(Y).
Consider the views described in Example 2. Based on Rule (1), rewriting
(HotelM(> 1 Located) (VY Located.France))(X) results in the rewritings
of Hotel(X), (> 1 Located)(X) and (VLocated.France)(X).
Based on Rule (2), the rewriting of Hotel(X) is terminal and we get:

15

Rewritings(Hotel(X)) = {vp(X), vx(X)}-

Based on Rule (3), we obtain the following rewritings of (> 1 Located)(X):
Rewritings((> 1 Located)(X)) = {v4z(X,Y),v4(X,Y),v4(X,Y)}.
Finally, Rule (2) is used for getting the rewriting of (VLocated.France)(X):

Rewritings((VLocated.France)(X)) = {vgr(X)}.
There are 6 ways of conjunctively combining the rewritings of the three
atoms Hotel(X), (> 1 Located)(X) and (VLocated.France)(X):
- vD(X) AvER(X,Y) A vgp(X): not satisfiable.
X)Ava(X,Y) Avgp(X): not satisfiable.
YA vH(X,Y) Avgp(X): not satisfiable.
YA VER(X,Y) A vk p(X): satisfiable.
) AvE(X,Y) Avgp(X): not satisfiable.
- vR(X) AvE(X,Y) A vgp(X): satisfiable.
The rewritings of @'(X), and thus of Q(X), are those which are satisfi-
able:
Qy(X) : vp(X) Avgp(X,Y) Avpp(X)
QH(X) : vp(X) Avh(X,Y) Avgp(X).

4 Overview of Xyleme

Xyleme is an integration system dealing with data sources that are XML docu-
ments. All XML documents are stored in a repository. In this way, the system
is efficient even when several data issued from distributed sources must be
combined to answer queries. A semantic module plays the role of interface
between end-users and XML documents which, by definition, come from sev-
eral sources and are semantically heterogeneous. Figure 2 presents the overall
architecture of the system.

XML
sources < Web > < Users >

Subscription Abstract Internet
L CranH & Monitoring queries
documents XML documents
| Acquisition ” Change Control | Concrete Semantic
queries|

l l Tempora¢

XML stream queries

Query_

L oader Query Processor [<Trensation

laore Execute query}

Repository and Index M anager

Fig. 2. Xyleme architecture

e The Repository and Index Manager module is the lowest level in Xyleme.

16

It enables to store and index XML documents.

e The Acquisition and Crawler module inspects the Web and collects all the
XML documents, which are loaded in the repository by the Loader module.

e The Change Control module is responsible of specific functionalities, such
as monitoring of document changes, version management and subscription
of temporal queries.

e The Semantic module provides a homogeneous integrated and mediated
schema on the heterogeneous XML documents stored in the repository.

e The Query Processor module enables to query the XML repository as a
database. In particular, it translates a query in terms of the semantic layer
into another one computable on the stored documents.

A general presentation of Xyleme is given in [33]. In this paper, we focus on
the semantic module and the translation of abstract queries. A presentation
of the other modules can be found in [20,22,24].

4.1 A uniform tree-based data model

The XML documents that are stored in the repository are instances of a
DTD that defines their structure. From a data integration viewpoint, the data
coming from differents sources are the XML documents, and the DTDs are
the schemas of the data sources. For example, here is the partial definition of
the DTD MyDTD:

<!ELEMENT MyDTD (Film*, Painting*)>
<!ELEMENT Film (Casting, Character*,Title)>
<!ELEMENT Casting (Actorx)>

<!ELEMENT Painting (Title, Author, Museum?)>
<!ELEMENT Actor (#PCDATA)>

In our model, we abstract XML documents as being data trees. Our modelling
simplifies real XML documents in several ways. For example, the model does
not distinguish between attributes and elements. We consider unordered trees.
We use also a simplified version of DTDs, which we call tree type, where the
multiplicity of an element is not considered.

Data trees and tree types are labelled unordered trees, where the labels corre-
spond to the names of the elements and the attributes of the XML documents.

A data tree d is an instance of a tree type t if there exists an homomorphism

from d onto t. For example, Figure 3 gives an example of a data tree. It is an
instance of the tree type given in Figure 4.

17

MyDTD

W Character Title Title Author Title Author

I;:oar;te:zﬁjn%tjlge "Lacourse” "Picasso" "Guernica’ "Picasso”
Actor Name

ACO w5 Copnery” 1. Jones’
"H.For

Fig. 3. A data tree

MyDTD
Film Painting

Casting Chlacter Title Title Author Museum
Actor Name

Fig. 4. Example of a concrete tree type

The aim of the semantic module is twofold: (i) to provide an homogeneous
mediated schema over the data trees, in order to allow a natural expression of
queries for the user without having to be aware of actual tree types that can
have heterogeneous structures and labels; (ii) to define the connection between
this semantic module and the tree types describing the actual data trees, in
order to make possible query processing.

The semantic module provides a simple description of domains (e.g. culture,
tourism) in the form of an abstract tree type. An abstract tree type can be
considered as an abstract merger of the DTDs associated with the set of XML
documents of some domain. Figure 5 shows a fragment of an abstract tree type
in the cultural domain. The label of the root is the domain name (Culture).
The internal nodes are labelled with terms that represent either concepts of
the domain (Art, Architecture, Cinema) or properties of those concepts
(Name, Title).

Culture

\\ Cinema
Architecture
Monument

Architect Movi

ArtStyle \ m
ject
Author Name Location MaterialTitle Genre

Actor-Actress Eiimography

WorkOfArt

Actor-Actress

Name

Fig. 5. Fragment of an abstract tree type on culture

There are two main reasons for the choice of representing a mediated schema
as a tree. First, it must be compatible with a real XML DTD, because it is

18

intended to be the schema of all the XML documents of the domain. Next, the
mediated schema must be simple enough, because it is the support of the visual
query interface tool, intended to be used by non-programmer users. The links
between a node and its sons in the abstract tree type have no strict semantics.
They may correspond to a relation of specialisation between concepts, or to a
relation of composition, or simply express different viewpoints on a concept. A
link also exists between a concept and a property of it. We do not distinguish
between those different types of links. In other words, a node labelled with
a term FE5 being a son of a node labelled with E; just means that the term
E, has to be interpreted in the scope of meaning of E;. Thus, the different
occurrences of a same term do not have the same meaning. This is obvious
for terms that represent properties (e.g. Name can appear different times, and
may represent the name of different entities), but it is also the case for terms
representing concepts (e.g. Author under Movie means director, while Author
under Painting means painter).

Such representations are very simple and structured. They enable end-users to
build semantic queries from different viewpoints in an easy and natural way,
using both the vocabulary and the structure of the abstract tree type. This
provides a homogeneous and simple user interface for querying a very large
amount of heterogeneous XML documents stored in the repository. Using this
interface, end-users must be able to obtain relevant answers for queries.

For this, Xyleme has to identify the XML documents concerning each query
issued against the semantic module. This requires the creation and mainte-
nance of a correspondence between the labels of the abstract tree type and the
elements of the concrete tree type that describe the structure of the XML doc-
uments. This way, each abstract query can be translated into a set of concrete
queries over real documents, by simply replacing the abstract labels of the
query with the corresponding concrete labels. In Xyleme, the correspondence
is stated by a mapping relation between paths of the abstract tree type and
paths of the tree types modeling the DTDs of the data stored in the repository.

Example 6 Here are some examples of meaningful mapping elements be-
tween the abstract tree type given in Figure 5 and the tree type given in
Figure 4:

Culture/Cinema/Movie <-> MyDTD/Film
Culture/Cinema/Movie/ActorActress <-> MyDTD/Film/Casting/Actor

Because of the number of concrete data trees that have to be mapped to the
abstract tree type, the mapping relation cannot be manually defined by some
database administrator. Some automatic help must be provided. In Section
4.3, we describe a semi-automatic method for generating the mapping relation

19

that has been implemented in Xyleme and experimented. By accessing the
abstract tree type through a user-friendly interface, end-users query a single

tree structure summarizing many DTDs. The query language is also tree-
based.

The query tree on the left in Figure 6 models a query in the cultural domain
asking the titles of all the films in which the actor Sean Connery is acting. The
query tree on the right in Figure 6 asks the description of all impressionist
works of art. These examples illustrate the basic method for building abstract
queries: the user marks in the abstract tree type the nodes to be included in
the result (selected nodes are marked with a S, e.g. Title, WorkOfArt) and
the nodes constrained with conditions (conditional nodes are marked with a
C, e.g. Actor-Actress, ArtStyle). The query itself is given by a tree query
pattern built from the abstract tree type.

Culture Culture

Art

Cinema

WorkOfArt

) (s)
Movie

ArtStyle

(C impressionnist)
. Actor-Actress
itle

(s) (C Sean Connery)

Fig. 6. Example of user queries

The Xyleme query language is a subset of XQuery, the W3C query language
for XML data [31]. Unlike XQuery, the Xyleme query language does not allow
joins or document transformation. Moreover, the language ignores ordering
and random access through an ordinal number to the descendants of a tree
node, features that exist in XPath [10], which is a part of XQuery. On the
other hand, the Xyleme query language is more powerful than XPath, because
it enables to extract any part of a subtree, while XPath can only extract a
full subtree, identified by its access path. Notice that even if the abstract tree
queries do not contain joins, the translation into concrete tree queries may
produce joins based on links between concrete documents (see [11]). Notice
also that the last version of the Xyleme query language, not presented here,
was enriched with additional features such as joins (on values and on links)
and simple document transformation.

4.2 Query processing

The users queries are defined relatively to the mediated schema and not rela-
tively to the actual tree types corresponding to the data stored in the reposi-
tory. Therefore they cannot be directly evaluated against that data. The eval-
uation of an abstract query is then a two step process. First, the abstract tree

20

Movie Film Film

/\ Castin Chayacter
ActorActress Casting Character ﬂ L
/\ A N Actor Actor Name

or
Name Role "Harrison Ford" "Sean Connery" "Indiana Jones'

Abstract tree type Concrete tree type datatree
Fig. 7. An abstract tree type, a concrete tree type and a data tree

query is translated into concrete tree queries by using the mapping relation.
Second, each concrete tree query has to be evaluated on the database. The
translation process is described in detail in [11,13]. It relies on building trees
consistent with the mapping relation. In this paper, we focus on illustrating
by example the semantics of the queries and the query translation process.

Consider the following database schema composed of an abstract tree type and
a concrete tree type as given in Figure 7 with the following mapping relation:

Movie <-> Film Movie/ActorActress <-> Film/Casting
Movie/ActorActress/Name <-> Film/Character
Movie/ActorActress/Name <-> Film/Casting/Actor
Movie/ActorActress/Role <-> Film/Character/Name

An instance of the database is also given in Figure 7 with only one data tree.

Figure 8 gives three examples of abstract tree queries that are conform to the
abstract tree type of Figure 7.

Movie ovie Movie
(SC,"Sean Connery" and “Indiana Jones")

y)ms Ac[rActress Act[rActress Query Q3
Name Role Nafme Role
(SC,"Sean Connery") (SC,"Indiana Jones") (SC,"Sean Connery") (SC,"Indiana Jones")
Query Q1 Query Q2

Fig. 8. Example of tree queries

The interpretation of the first one (Query Q1) is: find all the data trees rooted
at a node labelled by Movie, such that there exists a subtree rooted in a node
labelled by ActorActress which contains two branches, the one rooted in a
node labelled by Name must contain the string “Sean Connery” and the one
rooted in a node labelled by Role must contain the string “Indiana Jones”; for
those data trees returns the identity of subtrees rooted in the nodes labelled
by Name and Role.

21

The second one (Query @) has a slightly different interpretation: find all the
data trees rooted at a node labelled by Movie such that there exists one subtree
rooted in a node labelled by ActorActress having a branch rooted in a node
labelled by Name which contains the string ”Sean Connery” , and there exists
another (possibly distinct) subtree rooted in a node labelled by ActorActress
having a branch rooted in a node labelled by Role which contains the string
”Indiana Jones”.

The last tree query (Query Q)3) is an example where we have a non atomic
boolean condition "Sean Connery" and "Indiana Jones". This boolean con-
dition expresses that the corresponding data subtree must contain the two
strings "Sean Connery" and "Indiana Jones". When talking about the in-
terpretation of an abstract query, we must understand that these data trees
exist only virtually. As explained in the database model, the real data trees
are associated with concrete tree types.

For the translation process, some nodes in the tree query are crucial: they are
nodes with conditions, nodes that are selected, or “join” nodes.

Definition 3 (Necessary nodes in a tree query) A node in a tree query
1s necessary iff it is the root, a selected node, a conditional node or a node
(called a join node) which has, at least, two distinct descendants that are
necessary nodes. For a tree query @), we denote N(Q) the set of its necessary
nodes.

The necessary nodes can be partially ordered by the relation <. Let u and
v be two necessary nodes: u < v, iff u is a descendant of v and there is no
necessary node w such that v < w < v.

The translation of an abstract query () into a concrete query can be sum-
marized as follows. The concrete query has exactly the same tree structure
as the translated abstract query but the nodes of the abstract tree query
must be mapped by a function h onto the nodes of the concrete tree query
such that the labelling of necessary nodes of the abstract tree query and the
concrete tree query is conform to the mapping relation. More precisely: for
two necessary nodes v and v in N(Q) such that v < v, their images by the
translation h must satisfy that path(h(v)) is a prefix of path(h(u)) (denoted

path(h(v)) < path(h(u))).

An abstract query can have more than one translation, depending on the
mapping relation. It may also be possible that an abstract query has no trans-
lation., as it is illustrated in the following example.

Example 7 We are considering the abstract queries given in Figure 8 and
the database composed of a unique data tree instance d as presented in Fig-
ure 7. Each abstract path to any necessary node of the query must be con-

22

verted into a concrete path using the mapping relation. For example, if we
consider the abstract tree query (i, its necessary nodes, uq, us, us, and u4,
respectively labelled by Movie, ActorActress, Name and Role , are such that:
u3 < up and uy4 < uy. The corresponding abstract paths leading to the nec-
essary nodes are: Movie, Movie/ActorActress, Movie/ActorActress/Name,
and Movie/ActorActress/Role. By the mapping relation given in Exam-
ple 7?7, they must be mapped to the concrete paths Film, Film/Casting,
Film/Casting/Actor (or Film/Character) and Film/Character/Name re-
spectively. This suggests a candidate translation based on an homomorphism
h such that: h(u;) is labelled by Film, h(usy) is labelled by Casting, h(us)
is labelled by Actor or by Character, and h(uy) is labelled by Name. How-
ever, in order that candidate translation to be a real translation, since u4 < us,
path(h(uz)), i.e., Film/Casting, should be a prefix of path(h(u4)), which must
be Film/Character/Name. Since Film/Casting is not a prefix of Film/Character/Name,
there is no translation, and thus no answer, for the query Q;.

If we consider now the abstract query ()2, its necessary nodes are w;, v
and vs, respectively labelled by Movie, Name and Role. The abstract paths
leading to those necessary nodes are: Movie, Movie/ActorActress/Name, and
Movie/ActorActress/Role. Based on the mapping relation, they can be con-
verted respectively into Film, Film/Casting/Actor and Film/Character/Name.
This leads to a translation @, corresponding to an homomorphism A’ such
that h'(vy) is labelled by Film, h'(vy) is labelled by Actor and h'(vs) is la-
belled by Name. In this case, h' satisfies the prefix property since: v, < v; and
path(h(vy)) (i.e., Film) is a prefix of path(h(vs)) (i.e., Film/Casting/Actor
), and vz < vy and path(h(v1)) (i-e., Film) is a prefix of path(h(vs)) (i.e.,
Film/Character/Name). The resulting concrete query @) is given in Figure 9.

/Mowe\ /Fllm\
ActorActress ActorActress Cjing Chter
Nle RL Actor Name

(SC,"Sean Connery") (SC,"Indiana Jones") (SC,"Sean Connery") (SC,"Indiana Jones")
Query Q2 Query Q'2

Fig. 9. The abstract query Q2 and its translation Q5

It can then be evaluated against the data tree d: there exists a valuation
o4, where the node labelled with Actor can be associated with the leaf of d
labelled by Actor and valued by "Sean Connery" and the other node labelled
by Name can be associated with the leaf of d labelled by Name and valued by
"Indiana Jones".Therefore, the query @), has at least this answer.

For the abstract query)3 the pattern of the translation ()5 is reduced to one
node labelled with Film. The whole data tree d matches also the query Q%
because it is rooted at a node labelled by Film which contains the strings

23

"Sean Connery" and "Indiana Jones" by application of the closure valua-
tion principle.

4.8 Automatic Generation of Mappings

We have seen previously that the mapping relationship is a crucial element
of the data model for translating abstract queries into concrete ones. In this
section, we address the problem of automatically finding the elements of the
mapping relation which states the correspondence between paths of concrete
tree types and paths of the abstract tree type. We have to handle hetero-
geneous names and structures because concrete tree types come from various
sources designed by different persons who made personal choices on the names
of the labels and on the tree structures. Therefore, automatic mapping gener-
ation have to deal with semantic and structure heterogeneity.

Below, we summarize the method for automatic mapping generation in Xyleme,
which has been implemented in Java and experimented in the cultural do-
main [13]. It is based on two kinds of criteria: syntactic/semantic and struc-
tural.

4.8.1 Syntactic and Semantic Matching of terms

Automatic mappings generation is based on term matching. The idea is that
a mapping is generated only if the abstract and the concrete terms identified
by the mapped paths are semantically related. We check two kinds of relations
between terms: syntactic and semantic matching.

Syntactic matching concerns the syntactic inclusion of a term, or of a part of
a term, into another one. For example, the concrete term Actor is syntacti-
cally similar to the abstract term Actor-Actress. This method also includes
techniques for detecting abbreviations, such as nb for Number, etc. For more
details, see [29].

Semantic matching is based on the use of extra knowledge available through
existing ontologies or thesauri. In our experimentation, we chose the WordNet
thesaurus [23] .

WordNet groups English nouns, verbs, adjectives and adverbs into sets of
synonyms that are linked through semantic relations. Each set of synonyms
(synset) represents a concept. A word may belong to several synsets, each
one representing a particular sense. Our approach only exploits semantic links
between nouns because we chose to use only abstract terms that are nouns.

24

4.3.2 Dealing with Structure

Syntactic / semantic matching between words is not enough to obtain precise
mappings. The real meaning of a term depends on the place it occupies in
the concrete tree type, which defines the interpretation context of the word.
More precisely, a term may occur several times in the same concrete tree type
with different senses. Its meaning may be influenced by the meaning of its
predecessors in the tree (e.g. Name may be the name of an artist, of a museum,
etc.).

Our approach is based on a very simple hypothesis: the terms of a concrete
tree type are either object names (e.g. Painting), or property names (e.g.
Name). We consider that property names have a meaning only in the context
of the object that they characterise. So, an object, which is characterised by
a set of properties, defines the interpretation context of its properties.

In order to decide if a term is an object or a property node, we use heuristics
based on the translation of a concrete tree type into a conceptual database
schema. We use conceptual schemas built according to the Entity-Relationship
formalism, that naturally helps to determine the classes, called entities, in
a domain. An entity is a class of instances that share the same properties
called attributes. In our approach, we consider that object nodes are similar
to entities and that property nodes are similar to attributes. Given a link A -
B in the concrete tree type, one heuristics used in the translation process is
that B may refer to an entity (according to the above definition) only if B has
son nodes, these ones being interpreted as B’s attributes. Such a heuristics
leads to consider that leaves in a concrete tree type always are property nodes
(they can’t refer to entities, so they can’t be object nodes). Other heuristics
are used to qualify internal nodes in a concrete tree type, in order to decide if
they are object or property nodes. The exhaustive translation mechanism is
described in [29]. However, very often, internal nodes are object nodes.

The basic idea underlying our structural constraints is that a mapping of a
property node must be “compatible” with the mapping of the object node it
characterizes. In other words, because the property and the object nodes in the
concrete tree type are related (the object defines the context of the property),
the corresponding abstract terms must be related in the same context-based
manner.

Thus, if a concrete path identifying a property name is mapped to an abstract
path X, this mapping will be valid only if the object characterized by that
property is mapped to a predecessor of X in the abstract tree type. This
introduces a context constraint into the mapping generation process, because
a property name P of an object O may only be mapped to the subset of
abstract terms placed below the abstract terms mapped to O, i.e. the context

25

of the object is transmitted to the property. This also means that mappings
for object names must be computed first.

For instance, in the concrete tree type MyDTD, the terms Title, Author and
Museum are properties of the object Painting. The mappings:

Culture/Art/WorkOfArt/Title <-> MyDTD/Painting/Title
Culture/Art/WorkOfArt/Author <-> MyDTD/Painting/Author

are valid, because there exists a mapping between the object MyDTD/Painting
and the abstract term Culture/Art/WorkOfArt.

Notice that this context-based constraint may seem too strong in some cases.
For instance, the automatic generation algorithm will not find the mapping
Culture/Art/Museum <-> MyDTD/Painting/Museum if there is no mapping
from MyDTD/Painting to a prefix of Culture/Art/Museum. Imagine that the
system does not semantically match Painting with Art, then the “obvi-
ous” mapping Culture/Art/Museum <-> MyDTD/Painting/Museum is missed.
However, a more careful analysis of this case shows that the missed mapping
is not so obvious, because it is not clear if Culture/Art/Museum is a museum
with paintings.

The structural, context-based constraints for automatic mapping generation
significantly improve precision if mappings are correctly found for object nodes.
On the other hand, an error at an object node will propagate to all its property
nodes.

5 Conclusion and perspectives

PicseL and Xyleme are two mediator-based information integration systems
that have been designed in very different settings. As a result, different choices
have been done for designing the mediated schema and the semantic mappings
between the mediated schema and the schemas of the sources.

In PICSEL, a logical formalism combining the expressive powers of (non re-
cursive) DATALOG rules and the ALN description logic has been used for
modeling the semantic relationships between source schemas through a rich
mediated schema. It has proved very useful for expressing fine-grained differ-
ences between sources containing closely related data. This choice is appro-
priate for building specialized information servers over a reasonable number
of data sources.

Xyleme is representative of information integration agents that have to inte-
grate a huge number of sources covering very broad topics. In such a setting,

26

the mediated schema and the mappings must be simple because the challeng-
ing issue is to obtain them as automatically as possible. In particular, the
number of mappings is too huge to build them manually.

We have outlined the impact of the choice of the knowledge representation
formalism on the query reformulation problem, which is the core algorithmic
problem for answering queries in an information integration system. Clearly, as
the languages for describing data sources, the mediated schema, or the users’
queries become more expressive, the query reformulation problem becomes
harder. The key challenge is then to identify formalisms offering a reasonable
tradeoff between expressive power and good computational properties for the
accompanying reformulation algorithm.

Despite their differences, PICSEL and Xyleme both illustrate a centralized
approach of mediation based on a single mediated schema. For scaling up
to the Web, this centralized approach of mediation is probably not flexible
enough, and distributed systems of mediation are more appropriate.

The Semantic Web envisions a world-wide distributed architecture where data
and computational resources will easily interoperate to coordinate complex
tasks such as answering queries or global computing. Semantic marking up
of web resources using ontologies is expected to provide the necessary glue
for making this vision work. The de-centralized nature of the Web makes in-
evitable that communities of users or software developers will use their own
ontologies to describe their data or services. In this vision of the Semantic Web
based on distributed ontologies, the key point is the mediation between data,
services and users, using mappings between ontologies. Complex mappings
and reasoning about those mappings are necessary for comparing and com-
bining ontologies, and for integrating data or services described using different
ontologies. For an easy deployment of de-centralized systems of mediation at
the scale of the Web, it will be essential to use expressive and declarative
languages for describing semantic relationships between ontologies serving as
schemas of distributed data or services. CARIN has the potential to be a use-
ful modeling tool for expressing and reasoning on complex mappings between
ontologies.

Acknowledgments:

We would like to thank the P1CcSEL and Xyleme teams for many fruitful dis-
cussions and particularly Serge Abiteboul, Bernd Aman, Sophie Cluet, Claude
Delobel, Christine Froidevaux, Irini Fundulaki, Francois Goasdoue, Tova Milo,
Brigitte Safar, Jean-Pierre Sirot, Pierangelo Veltri and Dan Vodislav.

27

References

[1] V. Aguiléra, S. Cluet, P. Veltri, D. Vodislav, and F. Wattez. Querying the XML
Documents on the Web. In Proc. of the ACMSIGIR Workshop on XML and I.
R., Athens, July 28, 2000.

[2] B. Amann, I. Fundulaki, and M. Scholl. Integrating Ontologies and Thesauri for
RDF Schema Creation and Medata Querying. International Journal of Digital
Libraries, 2000.

[3] Yigal Arens, Chung-Nan Hsu, and Craig A. Knoblock. Query processing in
the SIMS information mediator. In Austin Tate, editor, Advanced Planning
Technology, pages 61-69. AAAI Press, Menlo Park, California, 1996.

[4] Yigal Arens and Craig A. Knoblock. SIMS: Retrieving and integrating
information from multiple sources. In Peter Buneman and Sushil Jajodia, editors,
Proceedings of the 1993 ACM SIGMOD International Conference on Management
of Data, pages 562-563, Washington, D.C., 26-28 May 1993.

[6] Domenico Beneventano, Sonia Bergamaschi, Silvana Castano, Alberto Corni,
R. Guidetti, G. Malvezzi, Michele Melchiori, and Maurizio Vincini. Information
integration: The MOMIS project demonstration. In VLDB 2000, Proceedings of
26th International Conference on Very Large Data Bases, September 10-14, 2000,
Cairo, Egypt, pages 611-614.

[6] A. Bidault, C. Froidevaux, and B. Safar. Repairing queries in a mediator
approach. In 14th European Conference on Artificial Intelligence, pages 406—410,
Berlin, 2000.

[7] A. Borgida, R. J. Brachman, D. L. McGuinness, and L. Alperin Resnick.
CLASSIC: a structural data model for objects. SIGMOD Record (ACM Special
Interest Group on Management of Data), 18(2):58-67, June 1989.

[8] Diego Calvanese, Giuseppe De Giacomo, G. D., and Maurizio Lenzerini.
Answering queries using views in description logics. In Proceedings of AAAI 2000.

[9] Sudarshan Chawathe, Hector Garcia-Molina, Joachim Hammer, Kelly Ireland,
Yannis Papakonstantinou, Jeffrey D. Ullman, and Jennifer Widom. The TSIMMIS
project: Integration of heterogeneous information sources. In 16th Meeting of the
Information Processing Society of Japan, pages 7-18, Tokyo, Japan, 1994.

[10] J. Clark and S. DeRose (eds). XML Path Language (XPath). W3C
Recommandation, 1999.
http://www.w3c.org/TR/xpath.

[11] Sophie Cluet, Pierangelo Veltri, and Dan Vodislav. Views in Large Scale XML
Repository. In Proc. Int. Conf. on Very Large Data Bases, 2001.

[12] C-web project.
http://cweb.inria.fr.

28

[13] Claude Delobel, M-Christine Rousset, Chantal Reynaud, J-Pierre Sirot and Dan
Vodislav. Semantic Integration in Xyleme: a Uniform Tree-based Approach. In
Journal on Data € Knowledge Engineering, to appear.

[14] Oren Etzioni and Daniel Weld. A Softbot-Based Interface to the Internet.
Communications of the ACM, 37(7):72-76, 1994.

[15] Marc Friedman and Daniel S. Weld. Efficiently executing information-gathering
plans. In 15th International Joint Conference on Artificial Intelligence, pages 785—
791, Nagoya, Japan, 1997.

[16] Michael R. Genesereth, Arthur M. Keller, and Oliver M. Duschka. Infomaster:
an information integration system. In Proceedings of SIGMOD 97 pages 539-542,
New York, May 1997.

[17] Francois Goasdoué and Marie-Christine Rousset. Compilation and
Approximation of Conjunctive Queries by Concept Descriptions. in Proceedings
of ECAI 2002.

[18] Frangois Goasdoué, Véronique Lattes, and Marie-Christine Rousset. The Use of
CARIN Language and Algorithms for Information Integration: The PICSEL System.
International Journal of Cooperative Information Systems, 9(4):383-401, 2000.

[19] Alon Halevy. Answering queries using views: a survey. VLDB Journal, 2001.

[20] Carl-Christian Kanne and Guido Moerkotte. Efficient storage of xml
data. Technical report, University of Mannheim, http://pi3.informatik.uni-
mannheim.de/, 1999.

[21] Alon Levy and Marie-Christine Rousset. = Combining Horn Rules and
Description Logics in CARIN. Artificial Intelligence Journal, 104, pp 165-209,
1998.

[22] Laurent Mignet, Mihai Preda, Serge Abiteboul, Sebastien Ailleret, Bernd
Amann, and Amelie Marian. Acquiring xml pages for a webhouse. In BDA 00,
2000.

[23] G. Miller. Wordnet: A lexical database for english. Communications of the
ACM, 38(11), 1995.

[24] Benjamin Nguyen, Serge Abiteboul, Gregory Cobena, and Mihai Preda.
Monitoring xml data on the web. In VLDB’01, 2001.

[25] J. Ordille, A. Levy, and A. Rajaraman. Querying Heteregeneous Information
Sources Using Source Descriptions. In Proc. Int. Conf. on Very Large Data Bases,
pages 251-262, 1996.

[26] R. MacGregor and R. Bates. The LOOM knowledge representation language.

Technical Report ISI/RS-87-188, Information Science Institute, University of
Southern California, Marina del Rey (CA), USA, 1987.

29

[27] E. Mena, Vipul Kashyap, Amit Sheth, and A. Illarramendi. OBSERVER:
An approach for query processing in global information systems based on
interoperation across pre-existing ontologies. In 4th Int. Conf. on Cooperative
Information Systems, pages 14-25, Bruessels, Belgium, 1996.

[28] Y. Papakonstantinou, H. Garcia-molina, and J. Widom. Object Exchange
Across Heteregeneous Information Sources. In ICDE Conf. on Management of
Data, 1995.

[29] Jean-Pierre Sirot. Documents xml et serveurs d’information: approche,
techniques et outil d’indexation bases sur l'utilisation d’une ontologie. Technical
report, Rapport de stage de DEA 13, University of Paris-Sud, 2000.

[30] V. S. Subrahmanian, Sibel Adali, Anne Brink, Ross Emery, James J. Lu, Adil
Rajput, Timothy J. Rogers, Robert Ross, and Charles Ward. HERMES: A
heterogeneous reasoning and mediator system. Technical report, University of
Maryland, 1995.

[31] XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery/.

[32] Xyleme.
http://www.xyleme. com.

[33] Lucie Xyleme. A dynamic warehouse for xml data of the web. IEEE Data
Engineering Bulletin, 2001.

30

