
Ontology-Based Integration
of XML Web Resources�

Bernd Amann1, Catriel Beeri2, Irini Fundulaki1, and Michel Scholl1

1 Cedric-CNAM and INRIA-Rocquencourt
{amann|fundulak|scholl}@cnam.fr

2 The Hebrew University, Israel
beeri@cs.huji.ac.il

Abstract. This paper deals with some modeling aspects that have to
be addressed in the context of the integration of heterogeneous and au-
tonomous XML resources. We propose an integration system, but the
emphasis of this paper is neither on its algorithmic aspects nor on its
technical details. Instead, we focus on the significance of offering ap-
propriate high-level primitives and mechanisms for representing the se-
mantics of XML data. We posit that support for such primitives and
mechanisms is a pre-requisite for realizing the goals of the semantic Web.

1 Introduction

The last decade has seen the emergence of the Web as the central forum for
data storage and exchange, and as the infrastructure for a large part of human
communications and information-based activities in many domains, from art and
medicine to business. The utility of the Web depends, however, on the develop-
ment of models and paradigms for the representation and the manipulation of
data, that enable the development of flexible and expressive applications.

Towards this end, XML [1] has been proposed as a standard for data ex-
change, possibly also for storage. Compared to the relational model, the de-
facto standard for database systems, its structural primitives for building trees
of elements with attributes offer much more flexibility in data organization and
format.

Clearly, such standardization efforts must be accompanied by formal and
experimental studies of XML and its associated mechanisms : formal studies,
to understand their expressive power and the computational complexity of the
algorithms they require, and experimental studies, to better understand the re-
quirement of potential application domains, and the support they require for
conceptual modeling and manipulation of data. For example, the shortcomings
of DTD’s as the mechanism for specifying schematic properties of XML have
been identified, and an effort to overcome those limitations has lead to the defi-
nition of XML Schema [16].
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In this paper we report on XML data integration issues, encountered during
the C-Web project [13]. One of our goals was to design and implement a portal
architecture or mediator [27] which can be considered as an experimental study
on the use of XML for data integration. The resulting prototype [17], follows the
local as view approach (LAV) [18] and offers to its users a virtual data repository
in a given domain. The repository is virtual in that the actual data resides in
some external sources. However, the users of the repository are not concerned
with source location and source data organization which are taken care of by
the integration portal. We posit XML-enabled data sources, with some support
for XML querying, either by using XPath [10], or possibly (in the near future)
by using XQuery [7].

Our emphasis in this paper is neither on the algorithmic details nor on
the technical details of the system, which are thoroughly presented in [5,3,17].
Rather, we concentrate on the data model of the mediator and the mechanism
for describing XML sources at the mediator. We also discuss at length conceptual
modeling issues that need to be addressed in the context of a data integration
project, and our approach to tackling them. Our study emphasizes the signif-
icance of offering appropriate high-level primitives and mechanisms for repre-
senting semantics of XML data. We posit that support for such primitives and
mechanisms is a pre-requisite for realizing the goals of the semantic Web.

The outline of the paper is as follows. Section 2 is an overview of the approach
to data integration using cultural XML resources. In Section 3 we present the
integration model and discuss the studied problems and justify the decisions we
have made. We conclude in Section 4 and present the future work.

2 System Overview

We present in this section a general overview of our system architecture, its main
ideas, and main components. Detailed discussion of technical concepts and algo-
rithms can be found in [3]. Our goal here is to provide sufficient understanding
of the system and its underlying ideas, as a basis for the discussion of issues in
subsequent sections.

2.1 XML Resources

We illustrate our approach using an example concerning the integration of two
Web-accessible XML-based cultural information sources. The first source, lo-
cated at URL http://www.paintings.com, contains information about painters
and their paintings. The DTD of this source defines two element types (Painter
and Painting) where each of them contains one XML attribute :

<!ELEMENT Painter (Painting+)>
<!ATTLIST Painter name CDATA #REQUIRED>
<!ELEMENT Painting EMPTY>
<!ATTLIST Painting title ID #REQUIRED>
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The second source, located at URL http://www.all-about-art.com, is more
complete than the first source and describes paintings, artists and museums. Its
DTD is the following :

<!ELEMENT Art (Painting|Artist|Museum)*>
<!ELEMENT Painting Title>
<!ATTLIST Painting painter #IDREF #REQUIRED

museum #IDREF #IMPLIED>
<!ELEMENT Artist EMPTY>
<!ATTLIST Artist name #CDATA #REQUIRED

id #ID #REQUIRED>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Museum (Name,City)>
<!ATTLIST Museum id #ID #REQUIRED>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT City (#PCDATA)>

Although the two sources deal with the same subject, they differ in terms
of both contents and terminology. The first source contains information about
painters and their paintings and the data is organized by painter. The locations
of the paintings in museums are deemed irrelevant and are not described. In
the second source, painters, artists and museums are described. It organizes its
data differently from the first source in that paintings and artists are described
independently. To designate the painter and the museum of a painting the XML
ID/IDREF mechanism is used.

As is common in integration scenarios, each of the sources may supply only
part of the information sought by a user. For the information about painters,
the sources use different terminologies (the first one uses the term Painter,
the second Artist to designate a painter). Observe that information concerning
the same entity types might be structured differently in different sources. For
example, while in the first, paintings are arranged “below” the painters, the
second source prefers to organize the same data by painting, with painters below
their respective paintings.

2.2 The Global Schema

We base our integration project on the local as view approach [18]. That is,
we assume a hypothetical global repository that contains all the information of
interest to the user in a given subject area described by a global schema.

Each of the sources is a local view of this global repository. Being a view
means that it contains only part of the relevant data. It may contain only infor-
mation about some entity types, but not about others. Even concerning entity
types that it contains, it may not contain information about all the entities of
that type that are present in the global repository; or, it may not contain all
information about an entity. And, its structure may differ from that of the global
repository.

In our case, the local views (sources) are represented in XML. However, the
data model used for the global schema is not XML, but rather an ontology. For
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us, an ontology is essentially a simple object-oriented schema describing concepts
with typed multi-valued attributes and connected by binary, symmetric, many-
to-many roles. Attributes and roles can be inherited through inheritance (isa)
links between classes [4].

An example of an ontology for cultural artifacts, inspired by the ICOM/
CIDOC Reference Model [14] is shown in Figure 1 as a labeled directed graph.
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Fig. 1. An Ontology for Cultural Artifacts

Nodes of the graph represent the concepts of the ontology and their attributes.
Each concept has a unique name represented in bold-face followed by a possibly
empty list of attributes (name and type). The ontology describes six concepts
for the representation of cultural data : Actor, Person, Activity, Man Made Object,
Image and Museum. An example of an attribute is has name of type String in
concept Person.

Concepts are related to each other by binary roles depicted by solid arcs.
Inheritance (isa) links between concepts are depicted by dashed arcs. The fact
that an actor performs an activity (instance of concept Activity) to produce a
man made object is represented by roles carried out and produced. We postulate
that each role has an inverse which is depicted in the figure in parentheses (e.g.
for role carried out its inverse is carried out by).

The high level of detail in this ontology is due to the desire to enable the
modeling of as many sources as possible in the art domain. We defer to Section 3
the detailed discussion of why we use ontologies, rather than XML, for the global
data model. Additional assumptions about ontologies and their components, as
well as additional explanations are presented in Section 3.

2.3 Derived Ontologies

Each role has a source and a target. Roles rl, r2 can be concatenated, provided
the target of r1 and the source of r2 are compatible, taking into account the isa
relationships. For example, the source of role carried out is concept Actor and its
target is concept Activity. A role r can also be concatenated with an attribute a,
under similar conditions. Concatenations of role/attribute sequences are referred
to as role paths, and can be viewed as derived roles (or derived attributes, if the
last member is an attribute). For example, role path carried out.produced defines
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a derived role from concept Actor to concept Man Made Object. Each derived role
has a source and target, and an inverse. For example, the inverse role path of
carried out.produced is produced by.carried out by.

A concept path p is either of the form c, or of the form c.r, where c is a
concept and r is a role path, where the source of r is c or a subconcept of c.
A concept path c.r defines a derived concept, standing for “the instances of the
target of r that can be reached from instances of its source by following r”. For
example, Person.carried out.produced defines a subconcept of Man Made Object
and stands for all the instances of concept Man Made Object that are reached
from an instance of concept Person, following the role path carried out.produced.
Adding the derived concepts and derived roles to an ontology defines a derived
ontology that properly contains the given one.

Reasoning about subset relationships between derived concepts, one can also
derive isa relationships between them. For example, the derived concept Per-
son.carried out.produced is a subconcept of Activity.produced (in general, suffixes
of derived concepts define more general derived concepts). Given a repository
that conforms to a given ontology, extents of derived roles/attributes/concepts
are uniquely defined, so a repository for the derived ontology is well-defined.

Our interest in the derived ontology is motivated by the fact that some
sources may provide data only for derived concepts. The isa relationships in the
derived ontology enable us to use these sources to provide answers in terms of
the original concepts. For example, even if a source provides only information
about Person.carried out.produced, this allows us to obtain some instances of
Man Made Object, although not necessarily all. Note that answers obtained from
sources in the LAV approach are partial answers in any case.

2.4 Source Descriptions

To evaluate a user query expressed in terms of the ontology, we have to translate
it into one or more queries on the XML sources. For this, we need to establish
a correspondence between each source and the global ontology. This correspon-
dence is described by a mapping, which is a collection of mapping rules. Map-
ping rules for XML are considered in [11], where several options of granularity for
mapping rules between trees are mentioned (node-to-node, path-to-path, tree-to-
tree, etc.). We have chosen the path-to-path approach. Specifically, the rules we
use map a restricted sublanguage of XPath [10] (XPath patterns without pred-
icates) to schema paths in the ontology. For example, the following rules map
XML fragments of source http://www.paintings.com to the ontology of Figure 1 :

R1: http://www.paintings.com/Painter as u1 ← Person
R2: u1/@name as u2 ← has name
R3: u1/Painting as u3 ← carried out.produced
R4: u3/@title as u4 ← has title

A rule has the form r : u/q as v ← p, where r is the rule’s label, u is either
a URL or a variable, v is a variable, q is an XPath pattern and p is an ontology
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schema path. The variable v is bound (or defined) in the rule; if u is a variable,
then it is a use of the variable, and we assume it is bound in some rule. The path
q is called the source path of the rule and is an XPath pattern using only the
child and descendant axis. The path p is a concept or role path in the ontology,
called the schema path of the rule.

Rules define instances of derived concepts : XML fragments obtained by the
rules are viewed as object instances of concepts. For example, mapping rule R1
states that the elements of type Painter (bound in variable u1), root elements
of the XML documents in http://www.paintings.com, are instances of concept
Person. Rules also define instances of (possibly derived) attributes and roles.
For example rule R2 specifies that the XML attribute name corresponds to the
concept attribute has name. More precisely, it tells that for any instance x of
concept Person, we can obtain a value for concept attribute has name by fol-
lowing path @name from the root of x (remind that x is an XML fragment). In
the same way, rule R3 defines instances of the derived role carried out.produced
connecting each instance of concept Person obtained by rule R1 to all fragments,
instances of concept Man Made Object, obtained by R3 when evaluating location
path Painting (which is an abbreviation of child::Painting).

Rule concatenation : Variables serve as a glue, that allows us to concatenate
mapping rules. They are also convenient in the formulation and implementation
of query processing. Finally, they can be used to express a semantic relationship
between different XML elements. For example, the following mapping contains
four rules from the source http://www.all-about-art.com to our ontology :

S1: http://www.all-about-art.com/Painting as v1 ← Man Made Object
S2: v1/id(@painter) as v2 ← produced by.carried out by
S3: http://www.all-about-art.com/Painter as v2 ← Person
S4: v2/@name as v3 ← has name
S5: http://www.all-about-art.com/Sculpture as v1 ← Man Made Object

We see that one can reach v2 (that binds instances of concept Person) by
two different routes, and then continue one step down @name to obtain the value
for attribute has name for a person. In this example, the two routes, namely
the rule concatenation S1 ◦ S2 and the rule S3 lead to the same element type.
Observe also that S1, and S5 bind the same variable v1, allowing us to relate
different element types (Painting and Sculpture) that are semantically related,
and have a similar structure.

2.5 Query Rewriting and Evaluation

The description of the global schema in terms of the ontology allows users to for-
mulate structured queries, without being aware of the source specific structure.
We illustrate querying with a simple sub-language of OQL defining tree queries.
These queries allow no explicit joins and aggregate operators, but are sufficiently
powerful to illustrate the issues of answering queries from source data, using the
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mapping rules. Given a user query q and a set of sources S, we need to get all
possible answers that satisfy q. Since each source s may provide a subset of the
possible answers for q, we need to evaluate query q over all (applicable) sources
s ∈ S. Consider the query Q1 below that requests “the title of the objects created
by Van Gogh” :

Q1: select c
from Person a,

a.name b,
a.carried out.produced.has title c,

where b = “Van Gogh”
In query Q1, the variables and the paths that connect them form a tree.

To evaluate this query over a source we need to rewrite it into a query that the
source can answer. For that, we consider the binding paths of the query variables,
and compare them to the schema paths of the mapping rules for a given source.
For example, if we consider the mapping for source http://www.paintings.com,
we can bind the variable a (associated with Person) with rule R1, the variable b
with rule R2 , and the variable c with the path obtained by the concatenation
of rule R3 with rule R4 ; we obtain a variable to rule binding (in this example
there is exactly one; in the general case there may exist a set of such bindings,
even for one source.)

The variable to rule binding is now used to replace the variable binding paths
in the query from clause by the location paths of the mapping rules to which
they have been associated. For the example query Q1, this replacement produces
the query Q1(a) illustrated below.

Q1(a): select c
from http://www.paintings.com/Painter a,

a./@name b,
a./Painting/@title c,

where b = “Van Gogh”

If the source supports some general XML query language such as XQuery [7],
then this query can be rewritten to the XQuery expression Q1(b) illustrated
below, and sent to the source for evaluation.

Q1(b): FOR $a IN document(“http://www.paintings.com”)/Painter,
$b IN $a/@name,
$c IN $a/Painting/@title

WHERE $b = “Van Gogh”
RETURN $c

If the source supports only restricted query facilities such as XPath 1.0 [10],
then the query needs to be rewritten into XPath. This is rather easy for this
example, since we are requesting only the value of title elements, with some con-
ditions on the paths leading to them. In the general case, an XQuery expression
may need to be decomposed into several XPath queries, or the XPath query may
return a larger tree that needs to be further filtered at the integration site to
obtain the answer XML fragments (see [5] for more details).
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Of course, such a rewriting of a user query to a source query should be at-
tempted for each source. Some problems that arise when attempting to discover
such rewritings are described later. However, assuming we have performed sev-
eral rewritings, and obtained several answer sets, these have to be merged and
presented to the user. The merge may be just a simple union, but often we can
and should do better. If we obtain (possibly partial) information about the same
entity from two sources, a join rather than union is called for.

To decide on, and to perform join, one needs to ensure that the entities
represented by two elements, from different sources, are identical. This requires
the use of keys, both in the global schema and in the sources. We will discuss
keys in more detail in Section 3.

In some cases we cannot obtain a full answer from one source. Then, our
rewriting algorithm [3] tries to find the largest subquery, the main subquery, of
the user query that can be answered by the source. Remainder subqueries that
cannot be answered by the source are identified, and processed against other
sources. Results of the main and remainder subqueries are then joined at the
integration site. Assume the following query Q2 that requests “the title of the
objects created by Van Gogh, as well as the name and the city of the museum
where they are exposed” :

Q2: select d, f , g
from Person a, a.name b,

a.carried out.produced c, c.has title d,
c.located at e, e.museum name f , e.city g

where b = “Van Gogh”

The source http://www.paintings.com does not contain any mapping rule
whose schema path matches variable’s e binding path (located at). Consequently
we can only obtain incomplete answers from this source: for an object created
by Van Gogh, we do not get the museum where it is located, nor its name and
city. To get this information, we identify the remainder subquery asking for ”the
name and city of the museum of man made objects”, that is, the subquery that
involves the variables c, e, f , g, and process it against the other sources. The
variable c is included in the remainder subquery since it is the join variable
between the two queries. We will glue the results of the main and the remainder
subqueries by joining on c. The two queries are:

Q2(a): select d, c Q2(b): select f , g, c
from Person a, a.name b from Man Made Object c,

a.carried out.produced c, c.located at e,
c.has title d e.museum name f ,

where b = “Van Gogh” e.city g

There is one issue that needs to be considered here. The values bound to c
are elements which might be of different type. How do we know which elements
represent the same man made object? Here also the answer is the use of keys. If a
key for man made objects is available in the source http://www.paintings.com, on
which the first subquery was evaluated, and the same key is available in whatever
source against which the remainder subquery was evaluated, then a join can be
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performed. Otherwise, the best we can do is to present to the user only the
partial results from the first source. Note that if such keys are available, then
we can optimize the remainder subquery by first evaluating the first subquery,
then using the values bound to c, and the corresponding keys to generate the
remainder subquery for the other source. Obviously, this specific query may
return a very large set of answers, so optimization is called for. The issue of
optimization is described with other algorithmic issues in [3].

3 The Integration Model

In this section two issues are addressed: (i) we discuss the choice of ontology
as the integration data model : a user is presented with and poses queries on
an ontology that represents a certain domain of interest; (ii) we introduce the
notion of keys as an essential feature for the querying and integration of data
from heterogeneous XML sources.

3.1 XML Integration

Most previous data integration projects and the relevant theory were presented
in the framework of the relational model [26,19,22]. When the sources are re-
lational, using the relational model for integration has some advantages; in par-
ticular the same query language can be used to define the source-global schema
mappings. However, we are concerned with sources that use XML.

Which model to use for the global data model in such a context is not an easy
decision to make. An obvious question is “Why not XML?” Indeed, Xyleme [11],
MIX [20], Nimble [25] and Agora [21] use XML. Nimble and MIX employ the
global as view approach (GAV) and are not directly comparable to our approach.
The major advantage of this approach is that the mediator is defined as a tra-
ditional view (query) on different sources and user queries can be rewritten to
source specific queries by unfolding the view definitions.

However, as in Xyleme and Agora, we use the local as view (LAV) ap-
proach [18] where this advantage does not exist and query rewriting becomes
necessary.

In the Agora system [21] an XML global schema is used for the integration of
relational and XML resources. This schema is represented by a generic relational
schema that faithfully captures the XML document structure. Then resources
are represented as relational views over this generic schema. User queries are
XQuery expressions over the XML global schema, which are then translated to
SQL queries in terms of the generic relational schema; these SQL queries that
are evaluated by the sources. Although XML is used as the global data model, an
extended use of the relational model is made for source-global schema mappings
as well as for query rewriting.

Xyleme [11] defines a global schema as a simple XML DTD (called abstract
DTD). As in our approach, XML resources are described using path-to-path
mappings where absolute source paths (starting from the document root) are
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mapped to absolute paths in the abstract DTD. Source paths and abstract
paths can only follow descendant relationships. In addition, by using XML DTDs
for the global user’s data model, it is not possible to distinguish entities from
relationships, which leads to less precise mappings.

Another usage of ontologies to access sets of distributed XML documents
on a conceptual level is presented in [15]. The integration is achieved by the
assumption that all documents respect a canonical DTD derived from the on-
tology. The expressive power of XML and DTD grammars is compared to more
powerful ontology models.

3.2 Conceptual Integration Model for XML

In the choice of an integration model, several problems have to be dealt with
when the sources are XML : two entities of the same type can be represented by
two elements with different structure even in a single source; different sources
with the same structure may use different tags; the structure of the same el-
ements may differ between sources; as aforementioned, a piece of data can be
represented by an element in one source, an attribute in another.

We use concepts to represent entity types. Each has a unique name; XML
elements from sources, with different tags, may be mapped to the same concept.
Thus, a user sees one concept name, and does not need to worry about the
diversity of tags used in different sources. These are taken care by the mapping
rules used by source authors to describe their source in the mediator. Each entity
type in the global schema has a well defined structure. Sources may contain, for a
corresponding entity type, only a subset of the entities of that type and also only
a part of the entity’s structure. This is commensurate with the LAV approach.

One might argue that a global data model based on XML could as well
correctly take into account the above features [11]. In the following we briefly
discuss the shortcomings of XML as a user-oriented, conceptual, data model. For
simplicity, the discussion assumes DTD’s are used to describe XML. Although in
the XML Schema proposal [16], some of these shortcomings are partially solved,
we believe that the following arguments merit attention and also help for a better
understanding of XML Schema.

Let us first state some nice properties expected from a conceptual model.
Such models distinguish between entities (or objects) and values, that may be
simple or complex. Entities are related to each other by relationships, that may
be constrained by various cardinality constraints. Often, the relationships are
symmetric. Entities also have attributes that relate them to values. Entities are
identified by keys. Finally, entity types may be related by isa relationships, that
emphasize commonality of structure. All of these provide a user with a simple yet
expressive model of a domain, with support for visual presentation of schemas,
and both declarative and visual query languages.

In contrast, XML is a hierarchical data model, in which most relationships
are directed from parent to child. There is no notion of a symmetric relation-
ship, and unlike the case in the ODMG standard, there is no notion of inverse
relationship to represent symmetry. Not all relationships in XML are hierarchi-
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cal. The ID/IDREF mechanism allows for horizontal relationships, and these may
be one-to-one or one-to-many. Still, these relationships are untyped and there
is no mechanism that allows one to declare a symmetric relationship, that is
represented by a pair of directional links.

Attributes and relationships. Conceptual models usually distinguish be-
tween attributes and relationships. In XML there is a distinction between at-
tributes, for which only a single occurrence is allowed (but an attribute may
be multi-valued!), and elements, for which either one or any number of occur-
rences are allowed. However, there are no clear guidelines when data should
be represented in one of these forms and not the other. As a matter of fact,
it is well-known that XML serves two masters: the document community and
the database community. The distinction between attributes and elements is
straightforward for documents: The sectional units of a book are represented as
elements. Extra information about the book, such as publication data, is repre-
sented as attributes. This distinction, however, is quite meaningless for data. It
is not clear at all that the notions of attributes and elements in XML correspond
to attributes and relationships in conceptual models.

Isa relationships. Type inheritance described by isa relationships - not sup-
ported by DTD’s but introduced in the XML Schema proposal-, conveniently
summarizes similarity of structures. In a database context, these relationships
also represent containments of sets of entities. If Person isa Actor, then if a query
asks for actors with certain properties, and a source offers information about Per-
son, it makes sense, in the LAV approach, to generate a query on this source
to retrieve the persons that have these properties. These form a subset of the
answer to the query.

In addition to its simplicity for representing common structure and its query-
ing power (a query can request information about a concept or a subconcept
there of) this feature also helps to overcome terminological differences between
sources.

Symmetric relationships. With XML, a symmetric binary relationship is
modeled by an asymmetric parent-child relationship between two elements. A
source can choose either of the two element types as being the parent of the other.
For example, Painting is a child of Painter in the source http://www.paintings.com.
Another source might as well choose to invert this relationship, so Painting be-
comes a parent of Painter. Of course, binary relationships may as well be rep-
resented by the XML ID/IDREF mechanism. However, as of today, there is no
established methodology that directs XML authors to generate XML documents
in some normal form, in which entities are represented as top-level elements, and
relationships between them as horizontal references. A first step in such a direc-
tion has recently been made in [6]. However, currently, in an integration scenario,
we have to accept all possibilities.
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If XML was chosen as the global data model, and element nesting as the
representation of relationships, this problem of inverse hierarchies between a
global schema and a source would force the use of the ancestor axis of XPath in
mapping rules. This would not only render the source description complex but
also significantly complicate query processing. Our symmetric representation of
relationships, where each relationship has an inverse, and either direction can
be used, is much more intuitive. It also allows us to view sources as simple
hierarchies, whose description requires only the child and descendant axis of
XPath.

In summary, the use of a simple conceptual model for the global data model
has the advantages of simplicity and expressive power. While it can possibly
be viewed as some veneer for an XML-based data model, we believe that these
advantages are significant, and should not be given up.

3.3 Semantic Keys for XML

Keys are essential for data integration. In fact they are the only way to decide
whether two XML fragments of two different sources are identical or not when
considered as concept instances.

The XML resources we are dealing with are heterogeneous and au-
tonomous. Consider for example our two sources http://www.paintings.com and
http://www.all-about-art.com. The first source uses the ID attribute title to
identify a painting (there might not exist two paintings of the same title). In the
second source, ID attributes are used to identify museums and painters. Paint-
ings are not identified by their title (there might exist two paintings with the
same title in the second source). So, two distinct sources might provide us with
different local key definitions and, for integration, we have to define keys at the
global schema.

Key paths and identity. We define a key on concept c as a set of role paths
with source c, called key paths. While, in general, a concept may have zero, one
or more keys, we assume for simplicity that each concept has exactly one key,
denoted key(c). Observe that the key of a concept might be empty, which means
that instances of this concept cannot be identified. We also assume for simplicity
that isa-related concepts all share the same key.

For example, persons and actors are identified by their names : key(Actor) =
key(Person) = {has name}. The key of concept Man Made Object is {has title,
produced by.carried out by}, which means that man made objects are identified
by their title and the artist who produced them. Instances of concept Activity
are not identifiable : key(Activity)=∅.

Calculating key values. In order to decide whether two instances α and β of
some concept c are identical, we have to calculate and compare their key values.
These values can be obtained by considering key(c) as a key query evaluated on
α and β. If all key paths key(c) are attribute paths, this query simply follows
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all key paths starting from the corresponding instance. In the case of key paths
ending in some concept, the query is obtained by replacing all target concepts
by their key queries. For example, the following key query returns the key value
for some instance of concept Man Made Object represented by the variable α :

select t, n
from α.has title t,

α.produced by.carried out by p,
p.has name n

A concept c is a joinable concept if and only if it has a non-empty key and
all concepts c′ which are the target of a key path in key(c) are joinable concepts.
It is easy to see that key values can only be calculated for instances of joinable
concepts (our notion of joinable concept is very similar to the notion of value-
representable concept in [23]).

As in [2] and other semi-structured query languages, we assume that all
attributes and roles in the global data model may be multi-valued and optional.
This means that the result of a key query (the key value of an instance) is a set of
tuples and we have the choice of defining the identity of an object by the whole
set of tuples or just one tuple. As in most semi-structured query languages, we
have chosen the second solution and define two fragments to be identical, if their
key values are not disjoint.

Like user queries, key queries have to be rewritten w.r.t. the corresponding
source mapping. This rewriting consists essentially in replacing schema paths
by the rules’ location paths that can be applied to some XML fragment of the
source (similar to XML keys as defined in [9]). There might exist zero, one or
several such rewritings which only return a subset of the “complete” key value
(it is for example possible that our two sources identify the same artist by two
different names). In other words, by the LAV approach, we might miss some
tuples of the real key value of α in order to conclude that α is equal to some
other instance β.

Observe that, unlike user queries, a key query is issued against a single source.
If we do not obtain a complete binding for a source (i.e. some variables are not
bound), key queries are not decomposed. We will end our discussion about keys
with one other issue concerning the rewriting of key queries.

An existing mapping might not allow the system to find the instances of
some concept c but be sufficient to find the key values of these instances. For
example there might be no rule for binding path α.produced by.carried out by p
of the previous key query, but some other rule returning the name of the artist
who has produced the artifact.

In this case, the key query might be unfolded by replacing all key paths p
with target concept c′ by the set of paths p.q where q is a key path in key(c′).
The previous key query would then be rewritten into the following query :

select t, n
from α.has title t,

α.produced by.carried out by.has name n
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Observe that this rewriting is correct since the key of the replaced concept
contains only one key path. If an artist would have been defined by a first name
x and a last name y, unfolding would have relaxed the condition that x and y
correspond to the same person.

4 Conclusions

This paper addressed the problems encountered, and the design choices made
in the context of the integration of heterogeneous XML sources in the C-Web
project. In particular we justified our choice of an ontology instead of XML as
the mediator data model, and discussed the benefits we draw out of it.

In the context of the semantic Web, an applicable data model that could be
used to represent our ontologies is RDF Schema [8] or DAML+OIL [12] which
define all (DAML+OIL) or almost all (RDF Schema lacks the notion of inverse
roles) the properties that we have identified to be necessary in the context of
XML data integration. Authors in [24] advocate the need to develop a unified
model for XML and RDF in order to bridge the gap between the syntax (XML)
and the semantics (RDF) for Web applications. Our approach fits well into their
context.

Another important problem raised by our cultural application example, is the
exploitation of semantic metadata. By this, we denote information concerning
the contents of a source, that is not present in the actual data, and thus cannot
be represented by the source-global schema mappings. As far as we are aware
of, all data integration projects, assume that all the information necessary for
query processing is available in those mappings. The presence of other semantic
metadata can be taken into account in our system in two different ways : first, to
process queries that request information that is not present in the actual data
and, secondly, to filter the sources which do not satisfy the query conditions
before starting the rewriting process. We are working towards the choice of a
language to define such semantic metadata, as well as an algorithm that exploits
the metadata as well as the source-global schema mappings for query rewriting.
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20. B. Ludäscher, Y. Papakonstantinou, and P. Velikhov. A Framework for Navigation-
Driven Lazy Mediators. In Proc. of WebDB. Philadelphia, USA, 1999.

21. I. Manolescu, D. Florescu, and D. Kossmann. Answering XML Queries over Htero-
geneous Data Sources. In Proceedings of VLDB, Rome, Italy, September 2001.

22. R. Pottinger and A. Levy. A Scalable Algorithm for Answering Queries using
Views. In Proc. VLDB, Cairo, Egypt, September 2000.

23. K.-D. Schewe, J. W. Schmidt, and I. Wetzel. Identification, genericity and consis-
tency in object-oriented databases. In Database Theory–ICDT ’92, pages 341–356,
1992.

24. J. Simeon and P. Patel-Schneider. The Ying/Yang Web : XML Syntax and RDF
Semantics. To appear in Proc. of WWW Conference, 2002.

25. Nimble Technology. URL: http://www.nimble.com/.
26. J.D. Ullman. Information integration using logical views. In Proc. ICDT, pages

19–40, Delphi, Greece, 1997.
27. G. Wiederhold. Mediators in the Architecture of Future Information Systems.

IEEE Computer, pages 38–49, March 1992.


	1 Introduction 
	2 System Overview 
	2.1 XML Resources
	2.2 The Global Schema
	2.3 Derived Ontologies 
	2.4 Source Descriptions 
	2.5 Query Rewriting and Evaluation

	3 The Integration Model 
	3.1 XML Integration
	3.2 Conceptual Integration Model for XML
	3.3 Semantic Keys for XML

	4 Conclusions 
	References

