
A comparative study for XML change detec-
tion

Grégory Cobéna
�

— Talel Abdessalem
���

— Yassine Hinnach
���

�

INRIA, France
Domaine de Voluceau, Rocquencourt BP105, 78153 Le Chesnay Cedex
Gregory.Cobena@inria.fr

���

ENST, France
46, rue Barrault, 75013 Paris
Talel.Abdessalem@enst.fr
YassineHinnach@yahoo.com

ABSTRACT. Change detection is an important part of version management for databases and
document archives. The success of XML has recently renewed interest in change detection on
trees and semi-structured data, and various algorithms have been proposed. We study here
different algorithms and representations of changes based on their formal definition and on
experiments conducted over XML data from the Web. Our goal is to provide an evaluation of
the quality of the results, the performance of the tools and, based on this, guide the users in
choosing the appropriate solution for their applications.

RÉSUMÉ. Dans le cadre des bases de données temporelles ou celui de l’archivage de documents,
la détection de changements est un aspect essentiel de la gestion de versions. Le succès de
XML a apporté un regain d’intérêt pour les algorithmes de diff s’appliquant à des structures
arborescentes et notamment aux données semi-structurées. Récemment, plusieurs algorithmes
et modèles ont été proposés, et nous avons souhaité mener une étude comparative de ces solu-
tions. Nous étudions ici, à partir de leurs définitions formelles et des expériences conduites sur
les données XML du Web, les différents algorithmes proposés ainsi que les représentations de
changements. Notre objectif est d’évaluer la performance des outils et la qualité des résultats
obtenus afin d’aider au choix d’une solution appropriée qui réponde aux besoins spécifiques de
chaque application.

KEYWORDS: XML, Semi-structured Data, diff, Change Detection, Versions, Tree edit problem,
Tree pattern matching

MOTS-CLÉS : XML, données semi-structurées, détection de changement, versions



1. Introduction

The context for the present work is change control in XML data warehouses. In
such a warehouse, documents are collected periodically, for instance by crawling the
Web. When a new version of an existing document arrives, we want to understand
changes that occured since the previous version. Considering that we have only the
old and the new version for a document, and no other information on what happened
between, a diff needs to be computed. A typical setting for the diff algorithm is as fol-
lows: the input consists in two files representing two versions of the same document,
the output is a delta file representing the changes that occurred.

In this paper, we consider XML input documents and XML delta files to represent
changes. The goal of this survey is to analyze the different existing solutions and,
based on this, assist the users in choosing the appropriate tools for their applications.
We study two dimensions of the problem: (i) the representation of changes (ii) the
detection of changes.

Representing Changes. To understand the important aspects of changes represent-
ation, we point out some possible applications:

– In Version management [CHI 00, MAR 01], the representation should allow for
effective storage strategies and efficient reconstruction of versions of the documents.

– In Temporal Applications [CHA 99b], the support for a persistent identification
of XML tree nodes is mandatory since one would like to identify (i.e. trace) a node
through time.

– In Monitoring Applications [CHE 00, NGU 01], changes are used to detect
events and trigger actions. The trigger mechanism involves queries on changes that
need to be executed in real-time. For instance, in a catalog, finding the product whose
type is ’digital camera’ and whose price has decreased.

As mentioned above, the deltas we consider here are XML documents summariz-
ing the changes. The choice of XML is motivated by the need to exchange, store and
query these changes. XML allows to support better quality services as in [CHE 00]
and [NGU 01], in particular real query languages [W3C b, AGU 00], and facilitates
data integration [W3C a]. Since XML is a flexible format, there are different pos-
sible ways of representing the changes on XML and semi-structured data [CHA 98,
La 01, MAR 01, XML ], and build version management architectures [CHI 00]. In
Section 3, we compare change representation models and we focus on recent pro-
posals that have a formal definition, a framework to query changes and an available
implementation, namely DeltaXML [La 01], XyDelta [MAR 01], XUpdate [XML ]
and Dommitt [Dom ]

Change Detection. In some applications (e.g. an XML document editor) the system
knows exactly which changes have been made to a document, but in our context, the
sequence of changes is unknown. Thus, the most critical component of change control
is the diff module that detects changes between an old version of a document and the
new version. The input of a diff program consists in these two documents, and possibly



their DTD or XMLSchema. Its output is a delta document representing the changes
between the two input documents. Important aspects are as follow:

– Correctness: We suppose that all diffs are “correct”, in that they find a set of
operations that is sufficient to transform the old version into the new version of the
XML document. In other words, they miss no changes.

– Minimality: In some applications, the focus will be on the minimality of the
result (e.g. number of operations, edit cost, file size) generated by the diff . This
notion is explained in Section 2. Minimality of the result is important to save storage
space and network bandwidth. Also, the effectiveness of version management depends
both on minimality and on the representation of changes.

– Semantics: Some algorithms consider more than the tree structure of XML doc-
uments. For instance, they may consider keys (e.g. ID attributes defined in the DTD)
and match with priority two elements with the same tag if they have the same key. In
the world of XML, the semantics of data is becoming extremely important [W3C a]
and some applications may be looking for semantically correct results or impose se-
mantic constraints, e.g. that a product in a catalog is identified by its name and that
only its price might be modified.

– Performance and Complexity: With dynamic services and/or large amounts of
data, good performance and low memory usage become mandatory. For example,
some algorithms find a minimum edit script (given a cost model detailed in Section 2)
in quadratic time and space.

– “Move” Operations: The capability to detect move operations (see Section 2)
is only present in certain diff algorithms. The reason is that it has an impact on the
complexity (and performance) of the diff and also on the minimality and the semantics
of the result.

To explain how the different criteria affect the choice of a diff program, consider
the application of cooperative work on large XML documents. Large XML documents
are replicated over the network. We want to permit concurrent work on these docu-
ments and efficiently update the modified parts. Thus, a diff between XML documents
is computed. The semantic support of ID attributes allows to divide the document into
finer grain structures, and thus to efficiently handle concurrent transactions. Then,
changes can be applied (propagated) to the files replicated over the network. When
the level of replication is low, priority is given to performance when computing the
diff instead of minimality of the result.

Experiment Settings. Our comparative study relies on experiments conducted over
XML documents found on the web. Xyleme [xyl] crawled more than five hundred
millions web pages (HTML and XML) in order to find five hundred thousand XML
documents. Because only part of them changed during the time of the experiment
(several months), our measures are based roughly on hundred thousand XML docu-
ments. Most experiments were run on sixty thousand of them (because of the time it
would take to run them on all the available data). It would also be interesting to run



it on private data (e.g. financial data, press data). Such data is typically more regular.
We intend to conduct such an experiment in the future.

Observe that our work is intended to XML documents. It can also be used for
HTML documents by XML-izing them, a relatively easy task that mostly consists
in properly closing tags. However, change management (detection+representation)
for a “true” XML document is semantically much more informative than for HTML.
It includes pieces of information such as the insertion of particular subtrees with a
precise semantics, e.g. a new product in a catalog.

The paper is organized as follows. First, we first present the data, operations and
cost model in Section 2. Then, we compare change representations in Section 3. The
next section is an in-depth state of the art in which we present change detection al-
gorithms and their implementation programs. In Section 5 we present a performance
analysis (speed and memory). Finally, we study the quality of the results of diff pro-
grams in Section 6. The last section concludes the paper.

2. Preliminaries

In this section, we introduce the notions that will be used along the paper. The data
model we use for XML documents is labeled ordered trees as in [MAR 01]. We will
also briefly consider some algorithms that support unordered trees.

Operations. The change model is based on editing operations as in [MAR 01],
namely insert , delete , update and move . There are various possible interpretations
for these operations. For instance, in Kuo-Chung Tai’s model [TAI 79], deleting a
node means making its children become children of the node’s parent. But this model
may not be appropriate for XML documents, since deleting a node changes its depth
in the tree and may also invalidate the document structure according to its DTD.

Thus, for XML data, we use Selkow’s model [SEL 77] in which operations are
only applied to leaves or subtrees. For instance, when a node is deleted, the entire
subtree rooted at the node is deleted. This captures the XML semantic better, for in-
stance removing a product from a catalog by deleting the corresponding subtree. Im-
portant aspects presented in [MAR 01] include (i) management of positions in XML
documents (e.g. the position of sibling nodes changes when some are deleted), and
(ii) consistency of the sequence of operations depending on their order (e.g. a node
can not be updated after one of its ancestors has been deleted).

Edit Cost. The edit cost of a sequence of edit operations is defined by assigning
a cost to each operation. Usually, this cost is

�
per node touched (inserted, deleted,

updated or moved). If a subtree with � nodes is deleted (or inserted), for instance
using a single delete operation applied to the subtree root, then the edit cost for this
operation is � . Since most diff algorithms are based on this cost model, we use it in
this study. The edit distance between document � and document � is defined by the



minimal edit cost over all edit sequences transforming � in � . A delta is minimal if
its edit cost is no more than the edit distance between the two documents.

One may want to consider different cost models. For instance, assigning the cost�
for each edit operation, e.g. deleting or inserting an entire subtree. But in this case,

a minimal edit script would often consist in the two following operations: (i) delete
the first document with a single operation applied to the document’s root (ii) insert
the second document with a single operation. We briefly mention in Section 6 some
results based on a cost model where the cost for insert , delete and update is

�
per

node but the cost for moving an entire subtree is only
�
.

The move operation. The semantics of move is to identify nodes (or subtrees) even
when their context (e.g. ancestor nodes) has changed. Some of the proposed al-
gorithms are able to detect move operations between two documents, whereas others
do not. We recall that most formulations of the change detection problem with move
operations are NP-hard [ZHA 95]. So the drawback of detecting moves is that such
algorithms will only approximate the minimum edit script. The improvement when
using a move operation is that, in some applications, users will consider that a move
operation is less costly than a delete and insert of the subtree. In temporal databases,
move operations are important to detect from a semantic viewpoint because they allow
to identify (i.e. trace) nodes through time better than delete and insert operations.

Mapping/Matching. In this paper, we will also use the notion of “mapping” between
the two trees. Each node in � (or � ) that is not deleted (or inserted) is “matched” to
the corresponding node in � (or � ). A mapping between two documents represents all
matchings between nodes from the first and second documents. In some cases, a delta
is said “minimal” if its edit cost is minimal for the restriction of editing sequences
compatible with a given “mapping”1.

The definition of the mapping and the creation of a corresponding edit sequence
are part of the “change detection”. The “change representation” consists in a data
model for representing the edit sequence.

3. Comparison of the Change Representation models

XML has been widely adopted both in academia and in industry to store and ex-
change data. [CHA 99b] underlines the necessity for querying semistructured tem-
poral data. Recent works [CHA 99b, La 01, CHI 00, MAR 01] study version man-
agement and temporal queries over XML documents. Although an important aspect
of version management is the representation of changes, a standard is still missing.

In this section we recall the problematic of change representation for XML docu-
ments, and we present main recent proposals on the topic, namely DeltaXML [La 01]
and XyDelta [MAR 01]. Then we present some experiments conducted over Web data.

�
. a sequence based on another mapping between nodes may have a lower edit cost



As previously mentioned, the main motivations for representing changes are: ver-
sion management, temporal databases and monitoring data. Here, we analyse these
applications in terms of (i) versions storage strategies and (ii) querying changes.

Versions Storage Strategies. In [CHI ], a comparative study of version manage-
ment schemes for XML documents is conducted. For instance, two simple strategies
are as follow : (i) storing only the latest version of the document and all the deltas
for previous versions (ii) storing all versions of the documents, and computing deltas
only when necessary. When only deltas are stored, their size (and edit cost) must be
reduced. For instance, the delta is in some cases larger than the versioned document.
We have analyzed the performance for reconstructing a document’s version based on
the delta. The time complexity is in all cases linear in the edit cost of the delta. The
computation cost for such programs is close to the cost of manipulating the XML
structure (reading, parsing and writing).

One may want to consider a flat text representation of changes that can be obtained
for instance with the Unix diff tools. In most applications, it is efficient in terms of
storage space and performance to reconstruct the documents. Its drawback are: (i)
that it is not XML and can not be used for queries (ii) files must be serialized into flat
text and this can not be used in native (or relational) XML repositories.

Querying Changes. We recall here that support for both indexing and persistent
identification is useful. On one hand, labeling nodes with both their prefix and post-
fix position in the tree allows to quickly compute ancestor/descendant tests and thus
significantly improves querying [AGU 00]. On the other hand, labeling nodes with a
persistent identifier accelerates temporal queries and reduces the cost of updating an
index. In principle, it would be nice to have one labeling scheme that contains both
structure and persistence information. However, [COH 02] shows that this requires
longer labels and uses more space.

Also note that using move operations is often important to maintain persistent iden-
tifiers since using delete and insert does not lead to a persistent identification. Thus,
the support of move operations improves the effectiveness of temporal queries.

3.1. Change Representation models

We now present change representation models, and in particular DeltaXML [La 01]
and XyDelta [MAR 01]. In terms of features, the main difference between them is that
only XyDelta supports move operations. Except for move operations, it is important to
note that both representations are formally equivalent, in that simple algorithms can
transform a XyDelta delta into a DeltaXML delta, and conversely.

DeltaXML: In [La 01] (or similarly in [CHA 99b]), the delta information is stored
in a “summary” of the original document by adding “change” attributes. It is easy to
present and query changes on a single delta, but slightly more difficult to aggregate
deltas or issue temporal queries on several deltas. The delta has the same look and feel



as the original document, but it is not strictly validated by the DTD. The reason is that
while most operations are described using attributes (with a DeltaXML namespace),
a new type of tag is introduced to describe text nodes updates. More precisely, for
obvious parsing reasons, the old and new values of a text node cannot be put side by
side, and the tags <deltaxml:oldtext> and <deltaxml:newtext> are used
to distinguish them.

There is some storage overhead when the change rate is low because: (i) position
management is achieved by storing the root of unchanged subtrees (ii) change status
is propagated to ancestor nodes. A typical example would be:

<catalog deltaxml:delta=’modified’>
<product deltaxml:delta=’unchanged’ />
<product deltaxml:delta=’modified’>
<status deltaxml:delta=’deleted’>Unavailable</status>
<name>Digital Camera</name>
<description>...</description>
<price deltaxml:delta=’inserted’>$399</price>

</product>
</catalog>

Note that it is also possible to store the whole document, including unchanged parts,
along with changed data.

XyDelta: In [MAR 01], every node in the original XML document is given a unique
identifier, namely XID, according to some identification technique called XidMap.
The XidMap gives the list of all persistent identifiers in the XML document in the
prefix order of nodes. Then, the delta represents the corresponding operations: identi-
fiers that are not found in the new (old) version of the document correspond to nodes
that have been deleted (inserted)2. The previous example would generate a delta as
follows. In this delta, nodes 15-17 (i.e. from 15 to 17) that have been deleted are
removed from the XidMap of the second version �

�
. In a similar way, the persistent

identifiers 31-33 of inserted nodes are now found between node
���

and node
���

.

<xydelta
v1_XidMap="(1-30)"
v2_XidMap="(1-14;18-23;31-33;24-30)">
<delete xid=(15-17) parent=6 position=1>
<status>Not Available</status>

</delete>
<insert xid=(31-33) parent=6 position=4>
<price>$399</price>

</insert>
</xydelta>

�
. move and update operations are described in [MAR 01]



XyDeltas have nice mathematical properties, e.g. they can be aggregated, inver-
ted and stored without knowledge about the original document. Also the persistent
identifiers and move operations are useful in temporal applications. The drawback
is that the delta does not contains contexts (e.g. ancestor nodes or siblings of nodes
that changed) which are sometimes necessary to understand the meaning of changes
or present query results to the users. Therefore, the context has to be obtained by
processing the document.

XUpdate [XML ] provides means to update XML data, but it misses a more precise
framework for version management or to query changes.

Dommitt [Dom ] representation of changes is in the spirit of DeltaXML. However,
surprisingly, instead of using change attributes, new node types are created. For in-
stance, when a book node is deleted, a xmlDiffDeletebook node is used. A drawback
is that the delta DTD is significantly different from the document’s DTD.

Remark. No existing change representation can be valitaded by (i) either a generic
DTD (because of document’s specific tags) (ii) or the versioned document’s DTD
(because of text nodes updates as mentioned previously). These issues will have to be
considered in order to define a standard for representing changes of XML documents
in XML.

3.2. Change Representation Experiments

Figure 1 (page 9) shows the size of a delta represented using DeltaXML or XyDelta
as function of the edit cost of the delta. The delta cost is defined according to the “

�

per node” cost model presented in Section 2. Each dot represents the average3 delta
file size for deltas with a given edit cost. It confirms clearly that DeltaXML is slightly
larger for lower edit costs because it describes many unchanged elements. On the
other hand, when the edit cost becomes larger, its size is comparable to XyDelta. The
deltas in this figure are the results of more than twenty thousand XML diffs, roughly
twenty percent of the changing XML that we found on the web.

4. State of the art in Change Detection

In this section, we present an overview of the abundant previous work in this do-
main. The algorithms we describe are summarized in Figure 2 (page 14).

A diff algorithm consists in two parts: first it matches nodes between the two
(versions of the same) document(s). Second it generates a document, namely a delta,
representing a sequence of changes compatible with the matching.

�
. although fewer dots appear in the left part of the graph, they represent each the average over

several hundred measures



100 bytes

1 KB

10 KB

100 KB

1 MB

10 100 1000 10000

A
ve

ra
ge

 D
el

ta
 F

ile
 S

iz
e 

(i
n 

by
te

s)

Delta Editing Cost (in units)

XyDelta
DeltaXML

Figure 1. Size of the delta files

For most XML diff tools, no complete formal description of their algorithms is
available. Thus, our performance analysis is not based on formal proofs. We compared
the formal upper bounds of the algorithms and we conducted experiments to test the
average computation time. Also we give a formal analysis of the minimality of the
delta results.

Following subsections are organized as follows. First, we introduce the String Edit
Problem. Then, we consider optimal tree pattern matching algorithms that rely on the
string edit problem to find the best matching. Finally we consider other approaches
that first find a meaningful mapping between the two documents, and then generate a
compatible representation of changes.

4.1. Introduction: The String Edit Problem

Longest Common Subsequence (LCS). In a standard way, the diff tries to find a
minimum edit script between two strings. It is based on edit distances and the string
edit problem [APO 97, LEV 66, SAN 83, WAG 74]. Insertion and deletion corres-
pond to inserting and deleting a (single) symbol in a string. A cost (e.g.

�
) is assigned

to each operation. The string edit problem corresponds to finding an edit script of
minimum cost that transforms a string � into a string � . A solution is obtained by
considering the cost for transforming prefix substrings of � (up to the i-th symbol)
into prefix subtrings of � (up to the j-th symbol). On a matrix � ������� � � �
	 � ������� � � �

, a direc-



ted acyclic graph (DAG) representing all operations and their edit cost is constructed.
Each path ending on ��������� represents an edit script to transform � � � � � � � into � � � � � � � .
The minimum edit cost 	�

����� � � ����� � ��� � � � � � � � � is then given by the minimal cost of
these three possibilities:

�����������
���������! #"%$
&('*)
+-,.������/10 24365�5879����������/10 ��:;: 2=< � 3�>?)@0 ��:;: A 3�5����������24B=����&��C #"%$
&�'1)
+D,����E��)@0 A 365�5@79����������/10 ��:;: 2�3@>?)@0 ��:;: A < � 365����������FHG%�H$H���! #"%$
&�'*)I+D,����E��/10 2�34J�)@0 A 3�5�5@7K����������/10 ��:;: 2=< � 38>L)@0 ��:;: A < � 3�5

The edit distance between � and � is given by 	�

����� � � � � ��� � � �M� � � ������� � � � � , and the
minimum edit script by the corresponding path. Note that for example the cost forN%OQPSR �CTHUWV R%XIY �[ZK\�

]�� � � � � � � � � � � is zero when the two symbols are identical.

The sequence of nodes that are not modified by the edit script (nodes on diagonal
edges of the path) is a common subsequence of � and � . Thus, it is equivalant to find-
ing the “Longest Common Subsequence” (LCS) between � and � . Note that each node
in the common subsequence defines a matching pair between the two corresponding
symbols in � and � .

The space and time complexity are ^-� � � � 	 � � � � . This algorithm has been improved
by Masek and Paterson using the “four-russians” technique [MAS 80] in ^-� � � � 	
� � � _ ]4
�` � � � � and ^-� � � � 	 � � � 	 ]4
�`*�E]a
�` � � � � _ ]4
�` � � � � worst-case running time for finite
and arbitrary alphabet sets respectively.

D-Band Algorithms. In [MYE 86], a ^-� � � ��	cb � algorithm is exhibited, where
b

is the size of the minimum edit script. Such algorithms, namely D-Band algorithms,
consist is computing cost values only close to the diagonal of the matrix. A diagonald

is defined by �a���E��� couples with the same difference �feg�ih d
, e.g. for

d hkj
the diagonal contains �Ej8�.j[����� � � � ���!� � � � ��� ����� . When using the usual “

�
per node” cost

model, diagonal areas of the matrix, e.g. all diagonals from eml to l , contain all
edit scripts of cost lower than a given value l . Obviously, if a valid edit script of
cost lower than l is found to be minimum inside the diagonal area, then it must be
the minimum edit script. When

d
is zero, the area consists solely in the diagonal

starting at ��j8��j%� . By increasing
d

, it is then possible to find the minimum edit script
in ^-�aZ R �M� � � �=n � � � � 	ob � time. Using a more precise analysis of the number of
deletions, [WU 90] improves significantly this algorithm performance when the two
documents lengths differ substantially. This D-Band technique is used by the famous
GNU diff [FSF ] program for text files.

4.2. Optimal Tree Pattern Matching

Serialized XML documents can be considered as strings, and thus we could use
a “string edit” algorithm to detect changes. This may be used as a raw storage and
raw version management, and can indeed be implemented using GNU diff that only



supports flat text files. However, in order to support better services, it is preferable to
consider specific algorithms for tree data that we describe next. The complexity we
mention for each algorithm is relative to the total number of nodes in both documents.
Note that the the number of nodes is linear in the document’s file size.

Previous Tree Models. Kuo-Chung Tai [TAI 79] gave a definition of the edit dis-
tance between ordered labeled trees and the first non-exponential algorithm to com-
pute it. The time and space complexity is quasi-quadratic.

In Selkow’s variant [SEL 77], which is closer to XML, the LCS algorithm de-
scribed previously is used on trees in a recursive algorithm. Considering two doc-
uments

b �
and

b �
, the time complexity is ^-� � b � � 	 � b � � � . In the same spirit is

Yang’s [YAN 91] algorithm to find the syntactic differences between two programs.

MMDiff and XMDiff. In [CHA 99a], S. Chawathe presents an external memory
algorithm XMDiff (based on main memory version MMDiff) for ordered trees in the
spirit of Selkow’s variant. Intuitively, the algorithm constructs a matrix in the spirit
of the “string edit problem”, but some edges are removed to enforce that deleting (or
inserting) a node will delete (or insert) the subtree rooted at this node. More precisely,
(i) diagonal edges exists if and only if corresponding nodes have the same depth in
the tree (ii) horizontal (resp. vertical) edges from � �M� �8� to � � n � � �8� exists unless the
depth of node with prefix label � n �

in
b �

is lower than the depth of node � n �
inb �

. For MMDiff, the CPU and memory costs are quadratic ^-� � b � ��	 � b � � � . With
XMDiff, memory usage is reduced but IO costs become quadratic.

Unordered Trees. In XML, we sometimes want to consider the tree as unordered.
The general problem becomes NP-hard [ZHA 92], but by constraining the possible
mappings between the two documents, K. Zhang [ZHA 96] proposed an algorithm in
quasi quadratic time. In the same spirit is X-Diff [WAN ] from NiagaraCQ [CHE 00].
In these algorithms, for each pair of nodes from

b �
and

b �
(e.g. the root nodes),

the distance between their respective subtrees is obtained by finding the minimum-
cost mapping for matching children (by reduction to the minimum cost maximum
flow problem [ZHA 96, WAN ]). More precisely, the complexity is ^-� � b � � 	 � b � � 	
� P T!`*� b � � n P T�`*� b � � � 	 ]4
�`*� P T�`=� b � � n P T�`*� b � � � , where P T�`=� b � is the maximum
outdegree (number of child nodes) of

b
. We do not consider these algorithms since

we did not experiment on unordered XML trees. However, their characteristics are
similar to MMDiff since both find a minimum edit script in quadratic time.

DeltaXML. One of the most featured product on the market is DeltaXML [DEL ].
It uses a similar technique based on longest common subsequence computations, more
precisely it uses Wu [WU 90, MYE 86] D-Band algorithm to run in quasi-linear time.
The complexity is ^-� � � � 	 b � , where

� � �
is the total size of both documents, and

b
the

edit distance between them. Because the algorithm is applied at each level separately,
the result is not strictly minimal. The recent versions of DeltaXML supports the ad-
dition of keys (either in the DTD or as attributes) that can be used to enforce correct
matching (e.g. always match a person by its name attribute). DeltaXML also supports
unordered XML trees.



Others. In a similar way, IBM developed XML treediff [IBM ] based on [CUR 99]
and [SHA 90]. A first phase is added which consists in pruning identical subtrees
based on their hash signature, but it is not clear if the result obtained is still minimal.
Sun also released an XML specific tool named DiffMK [Sun ] that computes the dif-
ference between two XML documents. This tool is based on the Unix standard diff
algorithm, and uses a list description of the XML document, thus losing the benefit of
the tree structure in XML. The tests that we conducted, and other results found on the
web seem to indicate that the current version is not “correct”.

For both programs, we experienced difficulties in running the tools on a large set
of files4. Thus, these two programs were not included in our experiments.

We were surprised by the relatively weak offer in the area of XML diff tools since
we are not aware of more featured XML diff products from important companies. We
think that this may be due to a missing widely accepted XML change protocol. It
may also be the case that some products are not publicly available. Fortunately, the
algorithms we tested represent well the spirit of today’s tools: quadratic minimum-
script finding algorithm (MMDiff), linear-time approximation (DeltaXML), and tree
pattern matching with move operations (see next).

4.3. Tree pattern matching with a move operation

The main reason why few diff algorithms supporting move operations have been
developed earlier is that most formulations of the tree diff problem are NP-hard [ZHA 95,
CHA 97] (by reduction from the “exact cover by three-sets”). One may want to con-
vert a pair of delete and insert operations applied on a similar subtree into a single
move operation. But the result obtained is in general not minimal, unless the cost
of move operations is strictly identical to the total cost of deleting and inserting the
sutree.

LaDiff. Recent work from S. Chawathe includes LaDiff [CHA 96, CHA 97], de-
signed for hierarchically structured information. It introduces a matching criteria to
compare nodes, and the overall matching between both versions of the document is
decided on this base. A minimal edit script -according to the matching- is then con-
structed. Its cost is in ^-� � 	 T n T � � where � is the total number of leaf nodes, and T
a weighted edit distance between the two trees. Intuitively, its cost is linear in the size
of the documents, but quadratic in the number of changes between them. Note that
when the change rate is maximized, the cost becomes quadratic in the size of the data.
Since we do not have an XML implementation of LaDiff, we could not include it in
our experiments.

XyDiff. It has been proposed with one of the authors of the present paper in [COB 02].
XyDiff is a fast algorithm which supports move operations and XML features like the
DTD ID attributes. Intuitively, it matches large identical subtrees found in both doc-

�
. other users on the Web seemed to have similar problems



uments, and then propagates matchings. A first phase consists in matching nodes
according to the key attributes. Then it tries to match the largest subtrees and con-
siders smaller and smaller subtrees if matching fails. When matching succeeds, par-
ents and descendants of identical nodes are also matched as long as the mappings
are unambiguous (e.g. an unambiguous case is when two matched nodes have both
a single child node with a given tag name). Its cost in time and space is quasi linear
^-� � 	 ]4
�`*� � �.� in the size � of the documents. It does not, in general, find the minimum
edit script.

4.4. Summary of tested diff programs

As previsouly mentioned, the algorithms are summarized in Figure 2 (page 14).
The time cost given here (quadratic or linear) is a function of the data size, and cor-
responds to the case when there are few changes.

For GNU diff, we do not consider minimality since it does not support XML (or
tree) editing operations. However, we mention in Section 6 some analysis of the result
file size.

5. Experiments: Speed and Memory usage

As previously mentioned, our XML test data has been downloaded from the web.
The files found on the web are on average small (a few kilobytes). To run tests on
larger files, we composed large XML files from DBLP [LEY ] data source. We used
two versions of the DBPL source, downloaded at an interval of one year.

The measures were conducted on a Linux system. Some of the XML diff tools are
implemented in C++, whereas others are implemented in Java. Let us stress that we
ran tests that show that these algorithms compiled in Java (Just-In-Time compiler) or
C++ run on average at the same speed, in particular for large files.

Let us analyze the behaviour of the time function plotted in Figure 3(page 15) .
It represents, for each diff program, the average computing time depending on the
input file size. On the one hand, XyDiff and DeltaXML are perfectly linear, as well as
GNU Diff. On the other hand, MMDiff increase rate corresponds to a quadratic time
complexity. When handling medium files (e.g. hundred kilobytes), there are orders of
magnitude between the running time of linear vs. quadratic algorithms.

For MMDiff, memory usage is the limiting factor since we used a 1Gb RAM PC
to run it on files up to hundred kilobytes. For larger files, the computation time of
XMDiff (the external-memory version of MMDiff) increases significantly when disk
accesses become more and more intensive.

In terms of implementation, GNU Diff is much faster than others because it doesn’t
parse or handle XML. On the contrary, we know -for instance- that XyDiff spends



Program Name Author Time Memory Moves Minimal Notes
Edit Cost

fully tested
DeltaXML DeltaXML.com linear linear no no
MMDiff Chawathe and al. quadratic quadratic no yes (tests with our implementation)
XMDiff Chawathe and al. quadratic linear no yes quadratic I/O cost

(tests with our implementation)
GNU Diff GNU Tools linear linear no - no XML support (flat files)

XyDiff INRIA linear linear yes no
not included in experiments

LaDiff Chawathe and al. linear linear yes no criteria based mapping
XMLTreeDiff IBM quadratic quadratic no no

DiffMK Sun quadratic quadratic no no no tree structure
XML Diff Dommitt.com we were not allowed to discuss it

Constrained Diff K. Zhang quadratic quadratic no yes -for unordered trees
-constrained mapping

X-Diff Y. Wang, D. DeWitt, Jin-Yi Cai quadratic quadratic no yes -for unordered trees
(U. Wisconsin) -constrained mapping

F
igure

2.
Q

uick
Sum

m
ary



10ms

0.1s

1s

10s

1min

10min

1h

10 KB 100 KB 1 MB

C
om

pu
tin

g 
T

im
e

XML File Size

XMDiff
MMDiff

DeltaXML
XyDiff

GNU Diff

Figure 3. Speed of different programs

ninety percent of the time in parsing the XML files. This makes GNU Diff very per-
formant for simple text-based version management schemes.

A more precise analysis of DeltaXML results is depicted in Figure 4 (page 16). Its
shows that although the average computation time is linear, the results for some doc-
uments are significantly different. Indeed, the computation time is almost quadratic
for some files. We found that it corresponds to the worst case for D-Band algorithms:
the edit distance

b
(i.e. the number of changes) between the two documents is close

to the number of nodes � . For instance, in some documents,
� j percent of the nodes

changed, whereas in other documents less than
�

percent of the nodes changed. This
may be slight disadvantage for applications with strict time requirements, e.g. com-
puting the diff over a flow of crawled documents as in NiagaraCQ [CHE 00] or Xy-
leme [NGU 01]. On the contrary, for MMDiff and XyDiff, the variance of computation
time for all the documents is small. This shows that their average complexity is equal
to the upper bound.

6. Experiments: Quality of the result

The “quality” study in our benchmark consists in comparing the sequence of changes
generated by the different algorithms. We used the result of MMDiff and XMDiff as a



10ms

0.1s

1s

10s

1min

10min

1h

10 KB 100 KB 1 MB

C
om

pu
tin

g 
T

im
e

XML File Size

average DeltaXML measures
other DeltaXML measures

MMDiff

Figure 4. Focus on DeltaXML speed measures

reference because these algorithms find the minimum edit script. Thus, for each pair
of documents, the quality for a diff tool (e.g. DeltaXML) is defined by the ratio

X h U
U������

where U is the delta edit cost and U ����� is MMDiff delta’s edit cost for the same pair
of documents. A quality equals to one means that the result is minimum and is con-
sidered “perfect”. When the ratio increases, the quality decreases. For instance, a
ratio of

�
means that the delta is twice more costly than the minimum delta. In our

first experiments, we didn’t consider move operations. This was done by replacing for
XyDiff each move operation by the corresponding pair of insert and delete . In this
case, the cost of moving a subtree is identical to the cost of deleting and inserting it.

In Figure 5 (page 17), we present an histogram of the results, i.e. the number of
documents in some range of quality. XMDiff and MMDiff do not appear on the graph
because they serve as reference, meaning that all documents have a quality strictly
equal to one. GNU Diff do not appear on the graph because it doesn’t construct XML
(tree) edit sequences.

These results in Figure 5 show that:

– (i) DeltaXML: For most of the documents, the quality of DeltaXML result is
perfect (strictly equal to 1). For the others, the delta is on average thirty percent more
costly than the minimum.



10000

20000

30000

40000

(perfect) 1.3 (medium) 2.5 (low) 5

N
um

be
r 

of
 d

oc
um

en
ts

Quality of the Delta

DeltaXML
XyDiff

Figure 5. Quality Histogram

– (ii) XyDiff: Almost half of the deltas are less than twice more costly than the
minimum. The other half costs on average three times the minimum.

Result file size. In terms of file sizes, we also compared the different delta docu-
ments, as well as the flat text result of GNU Diff. The result diff files for DeltaXML,
GNU Diff and XyDiff have on average the same size. The result files for MMDiff are
on average twice smaller (using a XyDelta representation of changes).

Using “move”. We also conducted experiments by considering move operations and
assigning them the cost

�
. Intuitively this means that move is considered cheaper than

deleting and inserting a subtree, e.g. moving files is cheaper than copying them and
deleting the original copy. Only XyDiff detects move operations. On average, XyDiff
performs a bit better, and it particular becomes better than MMDiff for five percent of
the documents.

Finally, note that this quality measure focuses on the minimality of results. In
some applications, the semantics of the results is more important. But the semantic
value can not be easily measured. An interesting aspect is the support of (semantic)
matching rules by some programs (DeltaXML, XyDiff). More work is clearly needed
in the direction of evaluating the semantic quality of results. We also intend to conduct
experiments on LaDiff [CHA 96] which is a good example of criteria-based mapping
and change detection.



7. Conclusion

In this paper, we described existing works on the topic of change detection in XML
documents.

We first presented the two recent proposals for change representation, and com-
pared their features through analysis and experiments. Both support XML queries and
version management, but the identification-based scheme (XyDelta) is slightly more
compact for small deltas, whereas the delta-attributes based scheme (DeltaXML) is
more easily integrated in simple applications. A key feature of XyDelta is the support
of node identifiers and move operations that are used in temporal XML databases.

More work is clearly needed in that direction to define a common standard for
representing changes.

The second part of our study concerns change detection algorithms. We compared
two main approaches, the first one consists in computation of minimal edit scripts,
while the second approach relies on meaningfull mappings between documents. We
underlined the need for semantical integration in the change detection process. The
experiments presented show (i) a significant quality advantage for minimal-based al-
gorithms (DeltaXML, MMDiff) (ii) a dramatic performance improvement with linear
complexity algorithms (GNU Diff, XyDiff and DeltaXML).

On average, DeltaXML [DEL ] seems the best choice because it runs extremely
fast and its results are close to the minimum. It is a good trade-off between XM-
Diff (pure minimality of the result but high computation cost) and XyDiff (high per-
formance but lower quality of the result). We also noted that flat text based version
management (GNU Diff) still makes sense with XML data for performance critical
applications.

Although the problem of “diffing” XML (and its complexity) are better and better
understood, there is still room for improvement. In particular, diff algorithms could
take better advantage of semantic knowledge that we may have on the documents or
may have infered from their histories.

Acknowledgments We would like to thank Serge Abiteboul, Vincent Aguiléra,
Robin La Fontaine, Amélie Marian, Tova Milo, Benjamin Nguyen and Bernd Amann
for discussions on the topic.

8. References

[AGU 00] AGUILÉRA V., CLUET S., VELTRI P., VODISLAV D., WATTEZ F., “Querying XML
Documents in Xyleme”, Proceedings of the ACM-SIGIR 2000 Workshop on XML and
Information Retrieval, Athens, Greece, july 2000.

[APO 97] APOSTOLICO A., GALIL Z., Eds., Pattern Matching Algorithms, Oxford University
Press, 1997.



[CHA 96] CHAWATHE S., RAJARAMAN A., GARCIA-MOLINA H., WIDOM J., “Change de-
tection in hierarchically structured information”, SIGMOD, vol. 25, num. 2, 1996, p. 493-
504.

[CHA 97] CHAWATHE S., GARCIA-MOLINA H., “Meaningful Change Detection in Struc-
tured Data”, SIGMOD, Tuscon, Arizona, May 1997, p. 26-37.

[CHA 98] CHAWATHE S., ABITEBOUL S., WIDOM J., “Representing and querying changes
in semistructured data”, ICDE, 1998.

[CHA 99a] CHAWATHE S., “Comparing Hierarchical Data in External Memory”, VLDB,
1999.

[CHA 99b] CHAWATHE S. S., ABITEBOUL S., WIDOM J., “Managing Historical Semistruc-
tured Data”, Theory and Practice of Object Systems, vol. 5, num. 3, 1999, p. 143–162.

[CHE 00] CHEN J., DEWITT D. J., TIAN F., WANG Y., “NiagaraCQ: a scalable continuous
query system for Internet databases”, SIGMOD, 2000.

[CHI ] CHIEN S., TSOTRAS V., ZANIOLO C., “A Comparative Study of Version Management
Schemes for XML Documents”, TimeCenter Technical Report TR51, Sept. 2000.

[CHI 00] CHIEN S.-Y., TSOTRAS V. J., ZANIOLO C., “Version Management of XML Docu-
ments”, WebDB (Informal Proceedings), 2000.

[COB 02] COBÉNA G., ABITEBOUL S., MARIAN A., “Detecting Changes in XML Docu-
ments”, ICDE, 2002.

[COH 02] COHEN E., KAPLAN H., MILO T., “Labeling dynamic XML trees”, PODS, 2002.

[CUR 99] CURBERA F., EPSTEIN D., “Fast difference and update of XML documents”,
XTech, 1999.

[DEL ] DELTAXML, “Change Control for XML in XML”, www.deltaxml.com.

[Dom ] DOMMITT INC., “XML Diff and Merge tool”, www.dommitt.com.

[FSF ] FSF, “GNU Diff”, www.gnu.org/software/diffutils/diffutils.html.

[IBM ] IBM, “XML Treediff”, www.alphaworks.ibm.com/.

[La 01] LA FONTAINE R., “A Delta Format for XML: Identifying changes in XML and rep-
resenting the changes in XML”, XML Europe, 2001.

[LEV 66] LEVENSHTEIN V. I., “Binary codes capable of correcting deletions, insertions, and
reversals”, Cybernetics and Control Theory 10, , 1966, p. 707-710.

[LEY ] LEY M., “DBLP”, dblp.uni-trier.de/.

[MAR 01] MARIAN A., ABITEBOUL S., COBÉNA G., MIGNET L., “Change-centric Man-
agement of Versions in an XML Warehouse”, VLDB, , 2001.

[MAS 80] MASEK W., PATERSON M., “A faster algorithm for computing string edit dis-
tances”, J. Comput. System Sci., 1980.

[MYE 86] MYERS E., “An O(ND) difference algorithm and its variations”, Algorithmica,
1986.

[NGU 01] NGUYEN B., ABITEBOUL S., COBÉNA G., PREDA M., “Monitoring XML Data
on the Web”, SIGMOD, 2001.

[SAN 83] SANKOFF D., KRUSKAL J., “Time warps, String Edits, and Macromolecules”,
Addison-Wesley, Reading, Mass., , 1983.



[SEL 77] SELKOW S. M., “The tree-to-tree editing problem”, Information Processing Letters,
6, , 1977, p. 184-186.

[SHA 90] SHASHA D., ZHANG K., “Fast algorithms for the unit cost editing distance between
trees”, J. Algorithms, 11, , 1990, p. 581-621.

[Sun ] SUN MICROSYSTEMS, “Making All the Difference”,
http://www.sun.com/xml/developers/diffmk/.

[TAI 79] TAI K., “The tree-to-tree correction problem”, Journal of the ACM, 26(3), july 1979,
p. 422-433.

[W3C a] W3C, “Resource Description Framework”, www.w3.org/RDF.

[W3C b] W3C, “XQuery”, www.w3.org/TR/xquery.

[WAG 74] WAGNER R., FISCHER M., “The string-to-string correction problem”, Jour. ACM
21, , 1974, p. 168-173.

[WAN ] WANG Y., DEWITT D. J., CAI J.-Y., “X-Diff: A Fast Change Detection Algorithm
for XMLDocuments”, http://www.cs.wisc.edu/ yuanwang/xdiff.html.

[WU 90] WU S., MANBER U., MYERS G., “An O(NP) sequence comparison algorithm”,
Information Processing Letters, 1990, p. 317-323.

[XML ] XML DB, “XUpdate”, http://www.xmldb.org/xupdate/.

[xyl] “Xyleme”, www.xyleme.com.

[YAN 91] YANG W., “Identifying syntactic differences between two programs”, Software -
Practice and Experience, 21, (7), , 1991, p. 739-755.

[ZHA 92] ZHANG K., STATMAN R., SHASHA D., “On the editing distance between unordered
labeled trees”, Information Proceedings Letters 42, , 1992, p. 133-139.

[ZHA 95] ZHANG K., WANG J. T. L., SHASHA D., “On the editing distance between undir-
ected acyclic graphs and related problems”, Proceedings of the 6th Annual Symposium on
Combinatorial Pattern Matching, 1995, p. 395-407.

[ZHA 96] ZHANG K., “A Constrained Edit Distance Between Unordered Labeled Trees”, Al-
gorithmica, 1996.


