
Towards Microbenchmarking XQuery
Philippe Michiels
University of Antwerp

Ioana Manolescu
INRIA Futurs, France

Cédric Miachon
LRI - Université Paris-Sud 11, France

Abstract

A substantial part of the database research field focusses on optimizing XQuery evaluation.
However, there is a lack of tools that allows one to easily compare different implementations
of isolated language features. This implies that there is no overview of which engines perform
best at certain XQuery aspects, which in turn makes it hard to pick a reference platform for
an objective comparison. This paper is the first to give an overview of a large subset of the
open source XQuery implementations in terms of performance. Several specific XQuery features
are tested for each engine on the same hardware to give an impression of the strengths and
weaknesses of that implementation. This paper aims at guiding implementors in benchmarking
and improving their products.

Key words: XML, query, XQuery, benchmark, microbenchmark, performance

1. Introduction

In the recent past, a lot of energy has been spent on optimizing XML querying. This
resulted in many implementations of the corresponding specifications, notably XQuery
and XPath. Usually, little time and space is spent on thorough measurements across
different implementations. This complicates the task of implementors to compare their
implementations to the state of the art technology, since no one really knows what system
actually represents it.

As is pointed out in [4], there are two possible approaches for comparing systems
using benchmarks. Application benchmarks like XMark [18], XMach-1 [8], X007 [9] and
XBench [20] are used to evaluate the overall performance of a database system by testing

Preprint submitted to Information Systems 25 April 2007

as many query language features as possible, using only a limited set of queries. As such,
this kind of benchmarks are not very useful for XPath/XQuery implementors, since they
are mainly interested in isolated aspects of an implementation that need improvement.

Micro-benchmarks, on the other hand, are designed to verify the performance of iso-
lated features of a system. We believe that microbenchmarks are crucial in order to get a
good understanding of an implementation. Moreover, it rarely happens that one platform
is the fastest on all aspects. Only microbenchmarks can reveal which implementation per-
forms best for isolated features. Our focus is to benchmark a set of important XQuery
constructs that form the foundation of the language and thus greatly impact the overall
query engine performance. These features are:

– XPath navigation

– XPath predicates (including positional predicates)

– XQuery FLWORs

– XQuery Node Construction

The selected XQuery processors are chosen to represent both in-memory and disk-based
implementations of the language.

We hope to continue this effort using automated tools such as XCheck [1,5]. This
continuation involves the population of a repository with a large amount of ready-made
micro-benchmarks as well as the benchmarking of many more platforms. We hope that
this work can guide XQuery implementors to improve their products based on objective,
thorough and relevant measurements.

Limitations We take the view that detailed performance measures should document as
much as possible the times spent by an XQuery processing engine in each stage of query
evaluation - for instance, separating query optimization from query execution and from
the XML result serialization time. From our experience, in the case of large-result queries,
the serialization time can easily dominate the other evaluation times (sometimes by
orders of magnitude)! Unfortunately, some engines do not provide a means to isolate the
serialization time from the other execution components, e.g. when execution is streamed.
Therefore, we have decided to measure the time to run each query as such, and then the
time simply count the query results, with the hope that the latter time is a reasonable
approximation of the time to run the query without serializing the result.

We are aware of two possible problems of this approach. First, a very simplistic im-
plementation may serialize the results and then count them, thus including, against our
will, the serialization time in the counting query running time. Second, a sophisticated
implementation may answer counting queries from some data statistics, e.g. histograms
or indexes, without actually accessing the data. In this case, the execution time is in-
comparable with the time to run the simple query, without the count. Despite these
shortcomings, we found the counting queries useful in practice as a means to approxi-
mate the otherwise inaccessible XML serialization time.

2

2. Settings

In this section, we present the documents (Section 2.1) and queries (Section 2.2 and 2.4)
used for the performance measures in this paper, as well as the rationale for choosing
them. Section 2.5 describes our hardware and software environment, and the system
versions used.

All documents, queries, settings, and (links to) the systems used in these measures can
be found at [2].

2.1. Documents

In order to have full control over the parameters characterizing our documents, we
used synthetic ones, generated by the MemBeR project’s XML document generator [3,4].
MemBeR-generated documents consist of simple XML elements, whose element names
and tree structure is controlled by the generator’s user. Each element has a single at-
tribute called @id, whose value is the element’s positional order in the document. The
elements have no text children.

Some of the systems we tested are based on a persistent store, while the others run
completely in memory. While we are aware of the inherent limitations that an in-memory
system encounters, we believe it is interesting to include both classes of systems in our
comparison, since performant techniques have been developed independently on both
sides, and the research community can learn interesting lessons from both. To enable
uniform testing of all systems, we settled for moderate-sized documents of about 11
MB, which most systems can handle well. As such, the stress testing of the systems
below has a focus on query scalability, rather than data scalability.

To these documents, we added a family of 10 more documents of varying size, going
from 100,000 nodes to 1,000,000 nodes. The purpose of this last document family was to
enable an analysis of the way query engines process path queries. The interesting feature
of such queries is that a naive implementation requires sorting and duplicate elimination
to be performed after each XPath step, whereas efficient engines are able to avoid it. Our
10 chosen documents allow tracing the data scalability of an engine on path queries, thus
making inferences about the engine’s inner workings.

The document structures are outlined in Figure 1. In this figure, white nodes represent
elements, whose names range from t1 to t19; dark nodes represent @id attributes. The
exponential2.xml, layered.xml and mixed.xml documents have a depth of 19, which
we chose so that complex navigation can be studied, and in accordance with the average-
to-high document depth recorded in a previous experimental study [17].

– The exponential2.xml document’s size is 11.39 MB. At level i (where the root is
at level 1), the document has 2i−1 elements labeled ti.

– The layered.xml document’s size is 12.33 MB. The root is labeled t1, and it has
32768 children labeled t2. At any level i comprised between 3 and 19, there are 32768
nodes labeled ti. Each element labeled ti, with 3 ≤ i ≤ 18, has exactly one child labeled
t(i + 1). Elements labeled t19 are leaves.

– The mixed.xml document’s size is 12.33 MB. The root is labeled t1, and it has
3268 children labeled t1. Each such child (at level 2) has 10 children labeled (with

3

exponential2.xml

!!! !!! !!! !!! !!! !!! !!! !!!

!!!

!!!

!!!!!! !!!

"#$%&%'#(

"#)%&%'#$

""%&%'*

"#%&%'"

"#%&%'#

layered.xml

!!!

!!!

!!!

!!!

"#$#%"

&"'#$#%&

&"'#$#%(

&"'#$#%")

&"'#$#%"*

mixed.xml

!!!

!!!

!!!

!!!

"#$#%"

&'()#$#%'

&'()*#$#%&#+#!!!#+#%",

!!!

&'()*#$#%&#+#!!!#+#%",

&'()*#$#%&#+#!!!#+#%",

&'()*#$#%&#+#!!!#+#%",

blocking.xml

!!! !!! !!! !!! !!! !!! !!! !!! !!!

"##!###$%&'()*$+##!###$%&'()*$!!!*$"!###!###$%&'()

!!! !!!!!! !!!

,-%&./$0

Fig. 1. Outline of the documents exponential2.xml, layered.xml, mixed.xml and blockingn.xml
used in the measures.

equal probability) t3, t4, . . ., t12. Nodes at levels comprised between 3 and 18 each
have 1 child, labeled (with equal probability) t3, t4, . . ., t12. At level 19, all nodes
are leaves, and are labeled t13.

– The blockingn.xml documents all have a fixed fanout of 3 for every node except the
leaf nodes. Their depth is variable and depends on the size of the document. Document
blocking1.xml contains 100,000 nodes, blocking2.xml contains 200,000 nodes and so on.
This corresponds with ten documents whose size vary from 2.09 MB to 21.83 MB.

The rationale for choosing these documents is the following. The document exponen-
tial2.xml allows studying the impact of increasing number of nodes at a given level,
on the performance of path traversal queries. At the same time, in this document, the
size of a subtree rooted at level i is exponential in i. At another extreme, the document
layered.xml has the same depth and approximate tree size as exponential2.xml, but
the size of subtrees rooted at various levels depends only linearly on the level. The sub-
tree shapes exhibited by both exponential2.xml and layered.xml are quite extreme;
subtrees from real-life documents are likely to be somewhere in between. Controlling
both the path depth and the size of the subtrees rooted at each depth is important,
since these parameters have important, independent impacts on query performance: the
first determines the performance of navigation queries, while the second determines the
performance of reconstructing (or retrieving) full document subtrees.

The third document was chosen so as: (i) to be of overall size and aspects close to
the two previous documents; (ii) to feature different tags uniformly distributed over
many levels, thus allowing us to vary, in a controlled manner, the structural selectivity
of various queries (by allowing some tags to range over increasingly large subsets of
{t1,t2,. . .,t13}).

Finally, the series of documents blockingn.xml are chosen to have a linearly increasing

4

amount of nodes in the intermediate results of path expressions that select the entire doc-
ument tree. A superlinear tendency in the data scalability plot can indicate the presence
of sorting operations.

2.2. XPath Queries

We measured on the document exponential2.xml seven parameterized XPath queries,
denoted Q1.1(n), Q1.2(n), . . ., Q1.7(n), where 1 ≤ n ≤ 19, as follows:

– Q1.1(n) is: /t1/t2/. . ./tn
This query retrieves nodes at increasing depths of the document. Its output size de-
creases as the roots of the returned subtrees move lower in the document. This query
is designed to test the ability of the query processor to deal with increasing lengths
of path expressions. For instance, intermediate materialization will have an increasing
performance impact for longer queries. We also measured Q1.1(n) on layered.xml,
which provided some interesting insights when compared to the results on the first
document.

– Q1.2(n) is: /t1/t2/. . ./tn/data(@id)
To distinguish the impact of navigation from the impact of subtree serialization in the
output, we also use the query Q1.2(n), which navigates at the same depth as Q1.1(n)
but only returns simple attribute values.

– Q1.3(n) is: (/t1/t2/. . ./tn)[1]/data(@id)
This query is used to see if query engines are able to take advantage of the [1] predicate
to shortcircuit navigation as soon as a single node is found.

– Q1.4(n) is: (/t1/t2/. . ./tn)[position()=last()]/data(@id)
This query is similar to Q1.3(n), but it uses the [position()=last()] predicate, which
does not easily allow the same optimization as [1] if the engine is coded to navigate
over the target nodes in the order dictated by XPath’s semantics [11]. Measuring both
Q1.3(n) and Q1.4(n) hints at the navigation optimization techniques supported in
the engine.

– Q1.5(n) is: /t1[t2/. . ./tn]/data(@id)
The queries Q1.5(n) aim at quantifying the impact of increasingly deeper navigation
along existential branches. Once again this verifies whether query engines can get
around materializing the predicate results and/or if they are capable to use shortcut
evaluation, once a single predicate result has been found.

– Q1.6(n) is: /t1[t2/. . ./tn]/t2/. . ./tn/data(@id)
Query Q1.6(n) presents an optimization opportunity (the existential branch can be
suppressed without changing the query semantics); its results are to be interpreted
together with those of Q1.2(n)

– Q1.7(n) is: //tn
Finally, query Q1.7(n) retrieves all elements of a given tag. Its results are to be
compared with those of Q1.1(n), to see if the user’s knowledge of the depth of the
desired elements simplifies the query processor’s task.

5

2.3. Recursive XPath Queries

In order to get a better understanding of how exactly XPath expressions are being
evaluated, we run the following two queries:

– Qxpr.1 count(//*/*)

– Qxpr.2 count(/descendant-or-self::*/descendant-or-self::*)

on all blockingn.xml documents. Examining system performance on these queries allows
verifying whether query processors perform sorting and duplicate elimination.

2.4. XQuery Queries

We measured on the document mixed.xml a set of six parameterized XQuery queries,
denoted Q2.1(n), Q2.2(n), . . ., Q2.6(n), where 0 ≤ n ≤ 9, as follows:

– Q2.1(n) is:

for $x in /t1/t2 return
<res>{

for $y in $x/∗/∗/. . ./∗
return string($y/@id)

}</res>

where the path expression to which $y is bound features n child navigation steps
starting from $x. These queries test the performance of increasingly deeper navigation
in the return clause, while returning results of modest (and, on mixed.xml, constant)
size.

– Q2.2(n) is:

for $x in /t1/t2 return
<res>{ $x/∗/∗/. . ./∗ }</res>

where the path expression in the return clause features n child navigation steps start-
ing from $x. The queries Q2.2(n) combine increasingly deep navigation with de-
creasingly large subtrees to be copied in the output (recall that XQuery semantics [7]
requires the content of newly created elements to be copied).

– Q2.3(n) is:

for $x in /t1/t2 return
<res>{ $x//t3, $x//t4, . . ., $x//t(n + 2) }</res>

The queries Q2.3(n) are designed to return results whose size is expected to increase
with n, given that elements labeled t3, t4, . . ., t12 are uniformly distributed over levels
3-18 in mixed.xml. Moreover, the elements which Q2.3(n) must retrieve are scattered
over the document. This allows us to verify how increasingly big and scattered results
are dealt with by the processor.

– Q2.4(n) is:

6

for $x in /t1/t2 return
<res>{ $x/∗[position() ≤ n] }</res>

Q2.4(n) returns results whose size linearly grows with n, however in this case, the
elements to be returned are grouped in contiguous subtrees in the original document.
The performance of Q2.3(n) compared with that of Q2.4(n) provides interesting
insight on the node clustering strategy used by the system (if any).

– Q2.5(n) is:

for $x in /t1/t2 return
$x/∗[position() ≤ n]

The queries Q2.5(n) are similar to Q2.4(n), however Q2.5(n) does not construct
new elements. Strictly speaking, Q2.5(n) could have been expressed in XPath, but we
keep it in the XQueries group for comparison with Q2.4(n). Given that Q2.5(n) does
not construct new elements, there is an opportunity for a more efficient evaluation
than in the case of Q2.4(n), since no tree copy operation is needed.

– Q2.6(n) have increasingly deeply nested return clauses. All the queries retrieve t13
elements, and return them “wrapped” in increasingly deeper <res> elements. Rather
than giving the general form, quite difficult to read, we provide here some examples:

Q2.6(0):

for $x in /t1/t2 return
<res>{

for $x1 in $x/∗ return
<res>{ $x1//t13 }</res>

}</res>

Q2.6(1):

for $x in /t1/t2 return
<res>{

for $x1 in $x/∗ return
<res>{

for $x2 in $x1/∗ return
<res>{ $x2//t13 }</res>

}</res>
}</res>

Q2.6(2):

for $x in /t1/t2 return
<res>{

for $x1 in $x/∗ return
<res>{

for $x2 in $x1/∗ return
<res>{

for $x3 in $x1/∗ return
<res>{ $x3//t13 }</res>

}</res>
}</res>

}</res>

Query Q2.6(n) returns subtrees consisting of n + 2 recursively nested <res> ele-
ments, each of which encloses some t13 elements. on the document mixed.xml, will
all return 3260 <res> elements, since there are 3260 t2 elements in mixed.xml. More-
over, each such <res> elements will include copies of 10 t13 elements. As n grows,
however, the number of “layers” of <res> elements in which the t13 elements are
wrapped increases. The queries and the document have been chosen to capture the
impact of result nesting only.

7

2.5. Hardware and software environment

Our measures were performed on a single machine. Although this allows absolute
comparisons of the tested systems, we are mostly interested in identifying the tendency
of each system’s running time across increasingly complex queries. The relevant machine
parameters are as follows:

Processor 2.00 GHz Pentium 4 (512 KB Cache);
Memory 512 MB DDR SDRAM;
Hard Disk Maxtor DM+8, 40 GB, 2MB buffer, avg. seek time < 10 ms;
Operating System Linux 2.6.12-10-386

The limited amount of memory on the testing machine can be a disadvantage, especially
to the main memory engines. Most engines do well in terms of memory for the tests we
are running here. Some however, run onto trouble very fast and require a lot of memory
swapping. This is why we measure CPU time here, rather than wall clock time. Whenever
the XQuery processor fails to produce usable results for a benchmark due to swapping,
this is mentioned in the engine’s discussion in Section 3. the discussion of the engine. We
tested the following systems:

Berkeley DB XML (v 2.2.13) – Oracle Berkeley DB XML is an open source, embed-
dable XML database with XQuery-based access to documents stored in containers and
indexed based on their content. Oracle Berkeley DB XML is built on top of Oracle
Berkeley DB. Queries can be passed to the database system by means of scripts. We
used the command line dbxml -s dbxml.script to execute queries, where dbxml.script is
a straightforward wrapper script that contains the query.

CDuce/CQL version 0.4.1. CDuce (pronounced ”seduce”) is a general purpose typed
functional programming language implemented in OCaml, which is specifically tar-
geted to XML applications. It conforms to basic standards such as DTDs, Namespaces
etc. Theoretical foundations of the CDuce’s type system can be found in [13]. Recently,
a “Select-From-Where” syntax similar to XPath has been added for user convenience
on top of CDuce [6]; it is translated into CDuce. An important characteristic of CDuce
is its pattern algebra, which extends the XDuce [15] pattern algebra, allowing complex
and powerful pattern matching. Pattern matching in CDuce is implemented by means
of automata constructed “just-in-time”. CDuce has a strong type system, which en-
ables static verification of safe program composition. Among the XQuery features not
supported is node identity: CDuce is value-based, that is, it does not distinguish two
distinct nodes having the same serialized value (other than by their respective posi-
tions in the original document). In particular, there is no way to test if two variable
bindings correspond to the same node, in XQuery sense [7]. CDuce execution proceeds
in two stages: first the query is compiled by invoking cduce –compile query.cd –obj-dir
cdo, then the query is executed by invoking cduce –run query.cdo -I cdo.

eXist (v 1.1rc) – eXist is an Open Source native XML database, implemented in Java.
It features index-based XQuery processing and automatic indexing. The database im-
plements the current XQuery 1.0 working drafts, with exception of the schema im-
port and schema validation features defined as optional in the XQuery specification.
Performance measurements were performed by launching an eXist server using the
startup.sh script part of the distribution and then executing each query by passing

8

the query to the client: client.sh -F query -c /db -n 10000. Here query is the plain query
file, /db is the collection containing the document. Note that eXist limits serialization
to a maximum of 10000 nodes, although usually, the engine will run out of memory
before being able to compute reasonably large results.

Galax (v 0.6.10) – Galax is an open-source OCaml based implementation of XQuery.
Galax closely tracks the definition of XQuery 1.0 as specified by the W3C. The com-
mand line used to launch the experiment was: galax-run -inline-variables on -streaming-
shebang on -factorization on -monitor-time on query.xq.

MonetDB/XQuery (Pathfinder v 0.12.0) – MonetDB/XQuery provides an XQuery
implementation, which is constructed as an independent compiler, producing code for
the MonetDB server backend. Both systems are implemented in C++. We used a 32-
bit compilation with no optimizations. Queries where run as follows: pf query.xq —
Mserver.

QizX/open (v 1.1.p2) – Qizx/open is an open-source Java implementation of the XML
Query specifications, working in main memory. We launched the execution by calling
qizxopen batch.sh query.xq > buf, where query.xq is a file containing the query,
and buf is a temporary buffer file receiving the output. The script qizxopen batch.sh
is part of the distribution.

Qexo/Kawa (v 1.8) – Qexo is a partial main-memory implementation of the XML
Query language, which attempts to achieve high performance by compiling queries
down to Java bytecodes using the Kawa framework. We used the following command
line to evaluate the queries:
qexo -f /tmp/qexo query.xq.

Saxon-B v 8.8J – Saxon is a high performance implementation of the XQuery, XPath
and XSLT recommendations. The system is implemented in Java and operates in main
memory. The command line used was: java -Xmx1024m -cp saxon8.jar net.sf.saxon.Query
-t query.xq as recommended by the documentation.

We chose systems that (i) were freely available (if possible open source), (ii) had a
user community and/or (iii) were the target of recent published research works. Our
choice of systems includes some endowed with a persistent store (Berkeley DB, eXist and
MonetDB), as well as purely in-memory systems (Saxon, Galax, QizX, Qexo and Saxon).
In this work, we did not specifically target our measures at disk-based retrieve times of
disk-resident systems (although, of course, this aspect is interesting). Rather, we aimed
at studying the performance of various algorithms implemented in the engines once they
run in memory.

To that effect, we ran each measure 4 times, and report the average CPU time of the
last 3 (hot) runs. Although we cover a substantial part of the XQuery implementation
field, we are aware that more systems meeting our criteria exist. We plan to extend our
tests to such systems in the near future.

3. Benchmark Results

This section presents the results for each of the benchmarks. It is organized as follows.

9

 0

 2

 4

 6

 8

 10

 12

blocking-5.xml
19.64 MB

blocking-4.xml
17.44 MB

blocking-3.xml
15.25 MB

blocking-2.xml
13.05 MB

blocking_1.xml
10.86 MB

mixed.xml
11.45 MB

layered.xml
12.33 MB

exponential2.xml

11.89 MB

To
ta

l e
xe

cu
tio

n
tim

e
(s

ec
)

XCheck output (running phase), Experiment: Member Test Runs, Query: docloading

Galax-stream
Qexo
Qizx

Saxon
CDuce

Fig. 2. Document processing times for the main memory XQuery engines.

(i) First, we take a look at XPath query scalability over non-recursive documents.
Here the result size for each additional navigation step is kept constant in order to
monitor query scalability independently of the result size;

(ii) Secondly, we run additional tests for obtaining more information about the evalu-
ation strategy for XPath expressions. More specifically, we see if and how XQuery
processors deal with order and duplicates during XPath evaluation;

(iii) Lastly, we run all XPath (Q1.x(n), 1 ≤ x ≤ 7) and XQuery (Q2.x(n), 1 ≤ x ≤ 6)
queries on exponential2.xml and mixed.xml respectively. We do this for each engine
separately and relate the results to the two benchmarks above.

For completeness, we first list the document processing times for main memory processors.
These are always included in the measurements below. As Figure 2 points out, processing
times scale linear with the document size for al engines except for Saxon, which seems
to scale sublinearly. We point out that the document processing time for Galax does not
include materialization. Many queries indeed do not require materialization, but in case
they do, there will be an extra performance penalty. It is unknown to what extent this
holds for other processors.

3.1. XPath performance for non-recursive documents

We started by running queries Q1.1(n) on the layered.xml document for all engines.
The queries were run once more, wrapped in a count() function call, to eliminate the cost
of serialization. The results are depicted in Figure 3.

The eXist engine failed to produce results beyond Q1.1(13). The right graph of Fig-
ure 3 shows that eXist scales linearly, suggesting that the evaluation of sequences of
child steps scales linearly with the size of the output. The same holds for Saxon, Qizx
and MonetDB. Examples of XPath algorithms that have these properties are nested
loop with delayed sorting and duplicate elimination [12], Staircase Joins [14] as used by

10

 0

 5

 10

 15

 20

 25

 30

 35

 40

Q11-19Q11-15100501

To
ta

l C
PU

 ti
m

e
(s

ec
)

Query

XCheck, Document: layered.xml (12.33 MB)

eXist
BerkeleyDB

Saxon
Galax
Qexo
Qizx

MonetDB
CDuce

 0

 5

 10

 15

 20

Q11-19Q11-15100501

To
ta

l C
PU

 ti
m

e
(s

ec
)

Query

XCheck, Document: layered.xml (12.33 MB)

eXist
BerkeleyDB

Saxon
Galax
Qexo
Qizx

MonetDB
CDuce

Fig. 3. Results for queries Q1.1(n) using layered.xml on all processors, including serialization (left) and
without serialization (right).

 0

 10

 20

 30

 40

 50

1000K500K100K

To
ta

l C
PU

 ti
m

e
(s

ec
)

Document Size (# nodes)

XCheck, Blocking XPath

eXist
Berkeley

Saxon
Galax-stream

Qexo
Qizx

MonetDB_S

 0

 20

 40

 60

 80

 100

1000K500K100K

To
ta

l C
PU

 ti
m

e
(s

ec
)

Document Size (# nodes)

XCheck, Blocking XPath

eXist
Berkeley

Saxon
Galax-stream

Qexo
Qizx

MonetDB_S

Fig. 4. Results for queries Qxpr.1 (left) and Qxpr.2 (right) on blockingn.xml for all XQuery processors.

MonetDB and Twig Joins [10]. Galax uses streaming for this query. Clearly, there is an
observable extra cost for each extra step in the pipeline, though Galax scales sublinearly.
The streaming approach has the additional advantage that the cost of subsequent op-
erations, like serialization can be amortized over the query evaluation cost. BerkeleyDB
shows a similar scalability here, although it unclear what causes this. The Qexo graph is
too irregular to draw any conclusion from it. We now continue our discussion engine by
engine for each benchmark.

3.2. XPath, order and duplicates

We ran Qxpr.1 and Qxpr.2 on n blockingn.xml documents. The results are depicted
in Figure 4. EXist either returned an error or a wrong result for both queries on all

11

 0.1

 1

 10

 100

 1000

1915100501

Lo
g

Ti
m

e
(s

ec
)

Query

XCheck, Engine: Berkeley, Document: exponential2.xml (11.89 MB)

Q11n
Q12n
Q13n
Q14n
Q15n
Q16n
Q17n

 0.1

 1

 10

 100

 1000

1915100501

Lo
g

Ti
m

e
(s

ec
)

Query

XCheck, Engine: Berkeley, Document: exponential2.xml (11.89 MB)

Q11n
Q12n
Q13n
Q14n
Q15n
Q16n
Q17n

Fig. 5. Results for queries Q1.1(n) - Q1.7(n), using exponential2.xml on BerkeleyDB, including
serialization (left) and without serialization (right).

documents. CDuce raised an exception mentioning a stack overflow for both queries on
every document. This is because descendent navigation is implemented in CDuce via
a stack that keeps all descendant matched on recursive function calls (and automata),
unlike child, parent and sibling navigation, which are implemented by automata alone.
Hence, eXist and CDuce are excluded from the discussion below.

Qizx failed to execute Qxpr.2 on documents with more than 300,000 nodes. This sug-
gests that Qizx uses an evaluation strategy that does not deal well with duplicates in the
intermediate result. Naive nested loop evaluation may cause such behavior. The same
holds for BerkeleyDB, which shows a clear superlinear tendency for both queries. Saxon
seems to scale linearly for Qxpr.1, but scales slightly superlinear for Qxpr.2. This may
mean that Saxon delays sorting until the end if possible, but this is not helping for the
second query. However, the effect of sorting in Saxon is seemingly small, compared to the
total query processing time. Qexo behaves in a similar way, but does not seem to delay
sorting and duplicate removal for the first query.

The other processors seem to use more advance evaluation strategies that eliminate
the need for sorting and duplicate elimination for our queries. Galax uses a streaming
approach for this, whereas MonetDB is known to use the staircase join.

3.3. Berkeley DB

XPath The BerkeleyDB XQuery implementation successfully completed all XPath queries.
In Figure 5, Q1.3(n) and Q1.5(n) show nearly constant execution times for all n, which
suggests that BerkeleyDB has an efficient way of handling existential predicates and some
positional predicates. All other queries show quite poor scalability when serialization is
involved. Only Q1.7(n) scales better when serialization is not included, but the results
in Section 3.2 reveal a näıve evaluation strategy for descendant as well. However, child
queries like Q1.1(n) do not seem to benefit from this index and the plot suggests level-
per-level navigation. The graph for Q1.6(n) and Q1.2(n) almost coincide, meaning that
the redundant predicate test induces little or no extra cost. In general, the numbers sug-

12

 0

 10

 20

 30

 40

 50

 60

9876543210

Ti
m

e
(s

ec
)

Query

XCheck, Engine: BerkeleyDB, Document: mixed.xml (11.45 MB)

Q21n
Q22n
Q23n
Q24n
Q25n
Q26n

 0

 10

 20

 30

 40

 50

9876543210

Ti
m

e
(s

ec
)

Query

XCheck, Engine: BerkeleyDB, Document: mixed.xml (11.45 MB)

Q21n
Q22n
Q24n
Q25n
Q26n

Fig. 6. Results for queries Q2.1(n), Q2.4(n) and Q2.5(n), using mixed.xml on BerkeleyDB, including
serialization (left) and without serialization (right).

gest that there is a lot of room for improvement with respect to common XPath steps in
BerkeleyDB.

XQuery BerkeleyDB experienced serious problems running the XQuery experiments.
Notably, the queries Q2.2(n), Q2.3(n) and Q2.6(n) hit the swapping boundary very
early on in the experiment. As such, BerkeleyDB failed to produce usable results for
these benchmarks within a reasonable time span. Clearly, the BerkeleyDB developers
have some memory issues to solve here. Moreover, the difference between Q2.5(n) in the
left and right graphs shows how expensive serialization is in absolute numbers, although
it does scale linearly. Q2.5(n) is the only query for which the behavior is comparable to
the other engines. The plot for Q2.1(n) is a bumpy ride from which there seems little to
deduce. BerkeleyDB is the only engine that shows a pronounced superlinear scalability
for Q2.4(n). The fact that Q2.5(n) is the only query without constructors suggests that
BerkeleyDB has some issues with those.

3.4. CDuce

XPath The running times of Q1.1(n) and Q1.7(n) are comparatively more important,
and decrease as n grows, due to the decreasing total size of the query result (Figure 7 left).
The curves for Q1.1(n) and Q1.7(n) are roughly similar.

Both Q1.3(n) and Q1.4(n) have very short running time and are almost constant.
The translation of these XPath queries to CQL, combined with the pattern matching
concept underlying the system, allows to propagate the [1] and [position()=last()]
predicates at up, thus the efficient evaluation.

The time for Q1.2(n) exhibits an exponential growth in Figure 7 as the number of
returned/visited nodes grows exponentially. The same observation holds for Q1.6(n),
which is more expensive than Q1.2(n), although they are equivalent. The reason is that
the pattern resulting from the translation of Q1.6(n) has twice the size of the pattern

13

 0

 5

 10

 15

 20

 25

1915100501

Ti
m

e
(s

ec
)

Query

XCheck, Engine: CDuce, Document: exponential2.xml (11.89 MB)

Q11n
Q12n
Q13n
Q14n
Q15n
Q16n
Q17n

 4

 5

 6

 7

 8

 9

1915100501

Ti
m

e
(s

ec
)

Query

XCheck, Engine: CDuce, Document: exponential2.xml (11.89 MB)

Q11n
Q12n
Q13n
Q14n
Q15n
Q16n
Q17n

Fig. 7. Results for queries Q1.1(n) - Q1.7(n), using exponential2.xml on CDuce, including serialization
(left) and without serialization (right).

 0

 5

 10

 15

 20

 25

9876543210

Ti
m

e
(s

ec
)

Query

XCheck, Engine: Cduce, Document: mixed.xml (11.45 MB)

Q21n
Q22n
Q23n
Q24n
Q25n
Q26n

 4

 6

 8

 10

 12

 14

9876543210

Ti
m

e
(s

ec
)

Query

XCheck, Engine: Cduce, Document: mixed.xml (11.45 MB)

Q21n
Q22n
Q23n
Q24n
Q25n
Q26n

Fig. 8. Results for queries Q2.1(n), Q2.4(n) and Q2.5(n), using mixed.xml on CDuce, including seri-
alization (left) and without serialization (right).

for Q1.2(n) (in other words, the pattern is not minimized to eliminate the redundant
existential branch).

Q1.5(n) times tend to grow sensibly for large values of n. The reason is that the
corresponding pattern’s size grows linearly with n, and the curve reflects the complexity
of automata-based evaluation for such patterns.

CDuce reported times in the left graph of Figure 7 are the sum of: the automaton
construction time, determined by the query and the input document’s DTD; the
execution time, during which the results are constructed but not serialized yet; and
the serialization time.

These results confirm earlier results discussed in [16], which also gives some details on
the impact of the presence of a precise level-by-level DTD according to which exponen-
tial2.xml validates.

14

 1

 10

1915100501

Lo
g

Ti
m

e
(s

ec
)

Query

XCheck Engine: eXist, Document: exponential2.xml (11.89 MB)

Q11n
Q12n
Q13n
Q14n
Q15n
Q16n
Q17n

 1.5

 1.52

 1.54

 1.56

 1.58

 1.6

1915100501

Ti
m

e
(s

ec
)

Query

XCheck Engine: eXist, Document: exponential2.xml (11.89 MB)

Q11n
Q12n
Q13n
Q14n
Q15n
Q16n
Q17n

Fig. 9. Results for queries Q1.1n - Q1.7n, using exponential2.xml on eXist, including serialization (left)
and without serialization (right).

XQuery Figure 8 presents CDuce’s running times on XQueries. Q2.1(n) grows very
slowly with n, reflecting a moderately increasing navigation time, and a small serialization
effort. Q2.2(n) running time decreases as the size of the returned subtrees decreases.
Q2.3(n), which builds the larger results, failed to run for n ≥ 2. The reason is that each
serialized element in CDuce is written in an OCaml string variable, and the maximum size
of such string variables is constrained by the language environment. Elements returned
by Q2.3(n) grow larger with n, and outgrow at some point the available space. Clearly,
this is an engineering problem, whose solution involves the usage of some buffered data
structure continuously writing to a file.

Q2.4(n) and Q2.5(n) have roughly the same running time, since for CDuce, a newly
constructed node is just another value (there is no need to deeply copy trees). Finally,
Q2.6(n) grows linearly with the result nesting levels.

3.5. eXist

XPath The eXist version that was tested consistently failed to produce output for all
queries Q1.Xn where n ≥ 14. The eXist engine did not report any errors, leaving this
behavior unexplained. For queries Q1.1n and Q1.7n where n ≤ 4, eXist failed with an
error message indicating that eXist had run out of memory. This may be related to the
relatively large size of the result for these queries, indicating the need for materialization
when serialization is required. These problems did not occur during prior experiments [16]
and we suspect this difference in behavior to be related to the reduced amount of physical
memory of the testing machine. Figure 9 shows the running times for the queries that
were successfully executed.

Queries Q1.1n and Q1.7n virtually coincide, indicating the use of a path index for sim-
ple path queries. The relatively large result size is responsible for the high serialization
cost for these queries. The evaluation times without serialization are all located within a
0.05 second interval and it is hard to see any pattern in those timings, in fact query eval-
uation time is almost constant. Note however that we have observed degrading scalability

15

 0

 5

 10

 15

 20

9876543210

Ti
m

e
(s

ec
)

Query

XCheck, Engine: eXist, Document: mixed.xml (11.45 MB)

Q21n
Q22n
Q24n
Q25n

 1.5

 1.51

 1.52

 1.53

 1.54

 1.55

9876543210

Ti
m

e
(s

ec
)

Query

XCheck, Engine: eXist, Document: mixed.xml (11.45 MB)

Q21n
Q22n
Q24n
Q25n

Fig. 10. Results for queries Q2.1n - Q2.6n, using mixed.xml on eXist, including serialization (left) and
without serialization (right).

of eXist for all queries except Q1.1n and Q1.7n for n ≥ 14 in earlier experiments [16]. The
experiment results in Figure 3 show that the evaluation of simple path expressions like
Q1.1(n) scale linearly with the size of the result. The lack of results for longer path ex-
pressions keeps us from drawing definitive conclusions for the eXist XPath experiments,
but given the exponential growth of the result, an equally exponential tendency is to be
expected.

XQuery We experienced many problems while running the XQuery benchmarks on
eXist. For most queries, i.e., Q2.2(n) (n < 1), Q2.3(n), Q2.4(n) (n < 2), Q2.6(n)
eXist reported an error looking as follows: XMLDBException during query: The constructed
document fragment exceeded the predefined size limit (current: 10001; allowed: 10000). The
query has been killed. which results in the absence of measurements in Figure 10, for
those queries. It does come as a surprise that an XQuery engine would limit the output
to a certain amount of nodes. Only Q2.5(n) succeeded when serialization was disabled.
Our earlier measures reported in [16] were performed using twice the amount of memory
used here, and they show substantially better results. Thus, the repeated failures of eXist
reported here are likely due to the limited available memory.

3.6. Galax

XPath Compared to earlier experiments [16] Galax has undergone substantial changes.
The most important change is the addition of pull based query evaluation [19]. The
only XPath queries that show poor scalability in Figure 11 are Q1.4(n) and – to a lesser
degree – Q1.6(n). Obviously, Galax materializes intermediate results in order to evaluate
arbitrary positional predicates, although the position() = 1 predicate seems to be handled
fine. The redundant existential predicate in Q1.6(n) is not optimized and as a result,
Galax is unable to evaluate these queries without materialization. The linear scalability of
queries Q1.1(n) to Q1.3(n) and the constant running time for Q1.7(n) is a property of
Galax’s evaluation strategy. Query Q1.5(n) scales well because the intermediate results

16

 0

 20

 40

 60

 80

 100

 120

 140

1915100501

Ti
m

e
(s

ec
)

Query

XCheck, Engine: Galax-stream, Document: exponential2.xml (11.89 MB)

Q11n
Q12n
Q13n
Q14n
Q15n
Q16n
Q17n

 0

 20

 40

 60

 80

 100

 120

 140

1915100501

Ti
m

e
(s

ec
)

Query

XCheck, Engine: Galax-stream, Document: exponential2.xml (11.89 MB)

Q11n
Q12n
Q13n
Q14n
Q15n
Q16n
Q17n

Fig. 11. Results for queries Q1.1(n) - Q1.7(n), using exponential2.xml on Galax, including serialization
(left) and without serialization (right).

 0

 10

 20

 30

 40

 50

9876543210

Ti
m

e
(s

ec
)

Query

XCheck, Engine: Galax, Document: mixed.xml (11.45 MB)

Q21n
Q22n
Q23n
Q24n
Q25n
Q26n

 0

 10

 20

 30

 40

 50

9876543210

Ti
m

e
(s

ec
)

Query

XCheck, Engine: Galax, Document: mixed.xml (11.45 MB)

Q21n
Q22n
Q23n
Q24n
Q25n
Q26n

Fig. 12. Results for queries Q2.1(n) - Q2.6(n), using mixed.xml on Galax, including serialization (left)
and without serialization (right). The plot for Q2.3(n) linearly grows to 200 and 89 seconds for query
9 in the left and right graph respectively.

that need materialization for evaluating the predicate are small. The extreme behavior
of Q1.4(n) may be related to the fact that the Galax data model has a large memory
footprint. Notice that the serialization cost is being amortized over the query evaluation
cost. This results in only a limited additional serialization cost for queries Q1.1(n) and
Q1.7(n).

XQuery The results for the XQuery experiments for Galax are given in Figure 12. The
difference with the measurements in [16] is surprisingly large. The steepness of the curve
for Q2.3n has decreased substantially. The evaluation times for all queries except Q2.3n
has dropped well under 50 seconds, compared to more than 70 seconds before.

17

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1915100501

Ti
m

e
(s

ec
)

Query

XCheck, Engine: MonetDB, Document: exponential2.xml (11.89 MB)

Q11n
Q12n
Q13n
Q14n
Q15n
Q16n
Q17n

 0

 0.5

 1

 1.5

 2

1915100501

Ti
m

e
(s

ec
)

Query

XCheck, Engine: MonetDB, Document: exponential2.xml (11.89 MB)

Q11n
Q12n
Q13n
Q14n
Q15n
Q16n
Q17n

Fig. 13. Results for queries Q1.1(n) - Q1.7(n), using exponential2.xml on MonetDB, including se-
rialization (left) and without serialization (right). The plot for Q1.4(n) grows exponentially to 15.4
and 14.8 seconds for query 13 in the left and right graph respectively. For queries larger than Q14(13),
MonetDB no longer produces output.

The serialization overhead in the left graph is responsible for the downward curve for
Q2.2(n), which produces smaller results for larger queries. However, the right hand side
curve for Q2.2(n) also shows a decrease in evaluation time, indicating that the size of
the intermediate results matters here. The pull based execution of Galax allows the se-
rialization cost to be amortized over the rest of the query execution cost, explaining the
difference with the more sharply decreasing slope of earlier measurements [16]. When
serialization is avoided, queries except Q2.1(n), Q2.2(n) and Q2.5(n) show near con-
stant execution times. The relatively high cost of Q2.3(n), compared to other similar
queries is due to the inability to avoid materialization, caused by multiple uses of the vari-
able $x. Adding individual navigation steps to Q2.1(n) and Q2.2(n) hardly influences
the total cost of the query, since these steps do not affect the cardinality of the result.
Hence, the graphs on the right for Q2.1(n) and Q2.2(n) show a constant tendency. For
all other queries, the output size grows linearly, explaining the linear tendency in the
corresponding plots.

The constructor operation in Galax has a streaming interface, i.e., it returns a SAX
token cursor. As a result, the Galax compiler picks up a special implementation for the
count function, triggering lazy evaluation. In contrast, the query without the constructor
does not pick up this approach and uses the default count function, which materializes
before actually counting. This explains the staggering difference between Q2.4(n) and
Q2.5(n) in the right graph of Figure 12.

3.7. MonetDB

XPath The MonetDB engine seemed to have some problems with the use of the fn:data
function. The reported error was “type error: can’t cast type ’untypedAtomic*’ to type
’node*’ ”. Therefore, we ran MonetDB on the same queries without the function call.
Normally, this should raise an error since the serialization of free standing nodes is not

18

 0

 2

 4

 6

 8

 10

9876543210

Ti
m

e
(s

ec
)

Query

XCheck, Engine: MonetDB_S, Document: mixed.xml (11.45 MB)

Q21n
Q22n
Q23n
Q24n
Q25n
Q26n

 0

 1

 2

 3

 4

 5

9876543210

Ti
m

e
(s

ec
)

Query

XCheck, Engine: MonetDB_S, Document: mixed.xml (11.45 MB)

Q21n
Q22n
Q23n
Q24n
Q25n
Q26n

Fig. 14. Results for queries Q2.1(n) - Q2.6(n), using mixed.xml on MonetDB, including serialization
(left) and without serialization (right). The plot for Q2.3(n) linearly grows to 48.3 and 24.5 seconds for
query 9 in the left and right graph respectively.

allowed by the XQuery 1.0 CR, but fortunately MonetDB did not complain about this.
As for many other engines, queries Q1.4(n) is problematic for MonetDB, probably due

to the need for materializing the results in order to evaluate the predicate. For n > 13
MonetDB suddenly stops producing output and exists with the following error: glibc
detected free(): invalid pointer: 0x8a957008 . Q1.7(n) is the only series of queries showing
constant scalability in the absence of serialization. All other queries (including Q1.1(n))
show a superlinear tendency for larger values of n. The superlinear tendency for Q1.1(n)
is explained by pointing out that the staircase join scales with the sum of the input and
output nodes for a step, which grow exponentially here by navigating deeper into the
document tree. This behavior is propagated to all other queries except Q1.7(n) and is
confirmed by the experiments at the beginning of this Section and the corresponding
results in Figure 3. Despite the superlinear tendency, the predicate queries – with the ex-
ception of Q1.4(n) – seem to scale well in absolute numbers. However, as Q1.4(n) shows,
if the intermediate results would grow significantly larger for these queries, performance
may suffer more. The small difference in absolute numbers here leaves us inconclusive
about how the redundant predicate in Q1.6(n) is handled by MonetDB. Finally, the
downward curves in the left graph of Figure 13 shows that serialization accounts for a
substantial part of query evaluation cost. The smaller the serialized values get, the faster
the queries finish.

XQuery MonetDB failed to execute query Q2.1(n), reporting a problem with the sig-
nature of the string function. The message was type error: no variant of function fn:string
accepts the given argument type(s): attribute id { atomic }. Other queries did finish suc-
cessfully and their results are depicted in Figure 14. The downward slope in the plot of
Q2.2(n) in the right graph corresponds with the decreasing result size and – as in Galax
– must partly be caused by the relatively large intermediate results, since it also shows
up when serialization is not performed. There is a slight superlinear tendency for queries
Q2.3(n) and Q2.6(n), but it is too small to draw conclusions from it. Queries Q2.2(n),

19

 0

 5

 10

 15

 20

1915100501

Ti
m

e
(s

ec
)

Query

XCheck, Engine: Qexo, Document: exponential2.xml (11.89 MB)

Q11n
Q12n
Q13n
Q14n
Q15n
Q16n
Q17n

 0

 5

 10

 15

 20

1915100501

Ti
m

e
(s

ec
)

Query

XCheck, Engine: Qexo, Document: exponential2.xml (11.89 MB)

Q11n
Q12n
Q13n
Q14n
Q15n
Q16n
Q17n

Fig. 15. Results for queries Q1.1(n) - Q1.7(n), using exponential2.xml on Qexo, including serialization
(left) and without serialization (right).

 0

 5

 10

 15

 20

9876543210

Ti
m

e
(s

ec
)

Query

XCheck, Engine: Qexo, Document: mixed.xml (11.45 MB)

Q21n
Q22n
Q23n
Q24n
Q25n
Q26n

 0

 5

 10

 15

 20

9876543210

Ti
m

e
(s

ec
)

Query

XCheck, Engine: Qexo, Document: mixed.xml (11.45 MB)

Q21n
Q22n
Q23n
Q24n
Q25n
Q26n

Fig. 16. Results for queries Q2.1(n) - Q2.6(n), using mixed.xml on Qexo, including serialization (left)
and without serialization (right). The plot for Q2.3(n) linearly grows to 76.5 and 77.7 seconds for query
9 in the left and right graph respectively.

Q2.4(n) and Q2.5(n) scale linearly with the size of the output. As the Q2.4(n) plot
shows, adding a constructor to Q2.5(n) changes the behavior of the query from constant
to linear. Nesting constructors in Q2.6(n) seems considerably more expensive.

3.8. Qexo

XPath Like MonetDB, Qexo was unable to evaluate the queries that contained the
fn:data function call. In Qexo, the function is simply not implemented. We resorted to
running the same queries as we did for MonetDB.

The Qexo results are depicted in Figure 15. All queries have superlinear scalability,

20

 2

 3

 4

 5

 6

 7

 8

1915100501

Ti
m

e
(s

ec
)

Query

XCheck, Engine: Qizx, Document: exponential2.xml (11.89 MB)

Q11n
Q12n
Q13n
Q14n
Q15n
Q16n
Q17n

 3

 3.5

 4

 4.5

 5

1915100501

Ti
m

e
(s

ec
)

Query

XCheck, Engine: Qizx, Document: exponential2.xml (11.89 MB)

Q11n
Q12n
Q13n
Q14n
Q15n
Q16n
Q17n

Fig. 17. Results for queries Q1.1(n) - Q1.7(n), using exponential2.xml on Qizx, including serialization
(left) and without serialization (right).

where Q1.4(n) and Q1.6(n) unsurprisingly show the worst scalability. The bad scala-
bility of Q1.2(n) (coinciding on the graph with Q1.4(n)) is a bit surprising considering
the little difference with Q1.1(n), i.e., just one extra attribute step. The superlinear
behavior for Q1.7(n) is unique among all the processors. The experiments in Section 3.2
suggest a näıve XPath evaluation strategy. Despite the superlinear tendency, the Qexo
engine performs remarkably well in absolute numbers and shows a very low extra cost
for serialization.

XQuery The Qexo results for the XQuery experiments are depicted in Figure 16. The
very small difference between serializing and non-serializing queries is again quite striking.
Qexo is the only engine for which Q2.2(n) does not show a downward slope. It seems
that Qexo is less sensitive to the size of the (intermediate) results. This may be in
part because query processing time dominates serialization time. There is very little
difference between Q2.4(n) and Q2.5(n), indicating a marginal cost for constructors.
Constructors, however, are relatively expensive (consider Q2.6(n)).

3.9. QizX

XPath Figure 17 shows the results for Qizx. The decreasing times in the left graph
for Q1.1(n) and Q1.7(n) correspond to the decreasing volumes of data that need to be
materialized. The scalability of the XPath queries Q1.1(n), which use only child steps, is
worse than the scalability of the equivalent query, using the descendant step in Q1.7(n).
The reason for this is that the cost of the separate steps scales linearly with the size
of the result, as we have seen in the experiment at the beginning of this Section. It is
also interesting to see that Q1.3(n) scales better than Q1.2(n), suggesting that Qizx
deals well with the positional predicate. The redundant predicate in Q1.6(n) and the
positional predicate in Q1.4(n) are clearly not optimized.

21

 0

 2

 4

 6

 8

 10

9876543210

Ti
m

e
(s

ec
)

Query

XCheck, Engine: Qizx, Document: mixed.xml (11.45 MB)

Q21n
Q22n
Q23n
Q24n
Q25n
Q26n

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

9876543210

Ti
m

e
(s

ec
)

Query

XCheck, Engine: Qizx, Document: mixed.xml (11.45 MB)

Q21n
Q22n
Q23n
Q24n
Q25n
Q26n

Fig. 18. Results for queries Q2.1(n) - Q2.6(n), using mixed.xml on Qizx, including serialization (left)
and without serialization (right). The plot for Q2.3(n) linearly grows to 30.4 and 13.5 seconds for query
9 in the left and right graph respectively.

XQuery The Qizx experiments run substantially faster than the Qexo ones, but show
surprisingly similar graph shapes in Figure 18. The only difference is that in the absence
of serialization there seems to be a very slight superlinear tendency for Q2.3(n). The
similarity with other main memory processors suggests similar evaluation strategies, in
which case the same conclusions apply, i.e., adding a constructor to a query can change its
behavior from constant to linear,s and nesting constructors steepens the slope of the query
scalability plot. Q2.3(n) is consistently more expensive, since it requires materializing
quite large intermediate results.

3.10. Saxon

XPath The results for Saxon are given in Figure 19. Q1.1(n) and Q1.7(n) nearly
coincide in the both graphs, but start diverging from the x-axis for larger values of
n in the right graph, suggesting superlinear behavior. However, the absolute difference
between the numbers is too small to draw definitive conclusions on this. The evaluation
of child and descendant steps seems to scale linearly with the size of the result. Q1.4(n)
shows somewhat poorer scalability, although performance is still very good in absolute
numbers, especially when compared to some of the secondary storage systems. Q1.3(n)
performs better than Q1.2(n) in the absence of serialization, indicating a smart way
to deal with the positional predicate. The redundant predicate in Q1.6(n) seems to be
handled quite well, since the graph for Q1.6(n) almost coincides with that for Q1.2(n).
Generally speaking, Saxon’s combination of scalability and absolute performance make
it stand out, even compared to the secondary storage systems.

XQuery The results for the Saxon experiments are given in Figure 20. The graphs are
quite similar to those of other engines. Adding a constructor to Q2.5(n) (which runs
in near-constant time) makes the query suddenly scale linearly. This may indicate that

22

 4

 5

 6

 7

 8

 9

1915100501

Ti
m

e
(s

ec
)

Query

XCheck, Engine: Saxon, Document: exponential2.xml (11.89 MB)

Q11n
Q12n
Q13n
Q14n
Q15n
Q16n
Q17n

 4

 4.5

 5

 5.5

 6

 6.5

 7

1915100501

Ti
m

e
(s

ec
)

Query

XCheck, Engine: Saxon, Document: exponential2.xml (11.89 MB)

Q11n
Q12n
Q13n
Q14n
Q15n
Q16n
Q17n

Fig. 19. Results for queries Q1.1(n) - Q1.7(n), using exponential2.xml on Saxon, including serialization
(left) and without serialization (right).

 4

 5

 6

 7

 8

 9

 10

9876543210

Ti
m

e
(s

ec
)

Query

XCheck, Engine: Saxon, Document: mixed.xml (11.45 MB)

Q21n
Q22n
Q23n
Q24n
Q25n
Q26n

 4

 5

 6

 7

 8

 9

 10

9876543210

Ti
m

e
(s

ec
)

Query

XCheck, Engine: Saxon, Document: mixed.xml (11.45 MB)

Q21n
Q22n
Q23n
Q24n
Q25n
Q26n

Fig. 20. Results for queries Q2.1(n) - Q2.6(n), using mixed.xml on Saxon, including serialization (left)
and without serialization (right). The plot for Q2.3(n) linearly grows to 23.4 and 16.2 seconds for query
9 in the left and right graph respectively.

some buffering is going on. Nesting constructors in Q2.6(n) is slightly more expensive.
The inability to avoid buffering in Q2.3(n) has obvious consequences.

4. Concluding Remarks

In this section, we summarize some of our experiments’ conclusions, and hint to avenues
for future work.

23

4.1. Methodology Lessons Learned

A first observation is that benchmarking needs to performed for a quite substantial
number of data points. Failing to do so comes at the risk of not picking up important
facts. For instance, in the Saxon case exponential behavior of XPath evaluation only
becomes apparent for path expressions that are long enough (see Figure 19).

Another important part of our approach is to vary only one benchmark parameter at
a time. For instance, varying both document size and query size at the same time may
cause effects that cancel each other out, eventually blurring or hiding the impact of the
separate changes. This is why we ran the queries Q1.1(n) on the layered document in
order to see the relation between the scalability of XPath and the size of the result.

We also believe it is important to decompose query evaluation times into their com-
ponents, as this is the only way to understand the impact of several parameters on the
times. Especially serialization time and – at least for main memory processors – document
loading times are important. For instance, for Galax (Figure 11) and QizX (Figure 17)
we have seen that query evaluation times are sometimes dwarfed by the time needed to
serialize the result. It would be quite inappropriate to only report query evaluation time
for such queries and systems, ignoring serialization. It would just be puzzling to report
the overall time, without checking the respective evolution of its components.

A major problem is that an easy way to report an exact decomposition of the query
processing time does not always exist. Lazy evaluation poses some serious challenges on
this. Furtheron, current system releases make it increasingly difficult or impossible to
properly evaluate component times. The names and interpretations of such components
time also vary. For instance, while the separation between “execution” and “serialization”
seemed clean in all systems, in the case of QizX, this separation is quite arbitrary, as our
previous study has shown [16]. Extreme caution is therefore advised to the careful tester.
Few assumptions should be made on what a system does, or what its intermediate times
mean, as long as these assumptions have not been checked with the system developers.
This is why we have resorted to tricks like using the count() function to discover the
impact of several XQuery processing phases on the total execution time. Special care
should be taken that the tested engines do not use this function application to enhance
query performance.

Another unexpected twist came up by running all the implementations on one ma-
chine with a rather limited amount of physical memory. Clearly, some implementations –
especially BerkeleyDB and eXist – suffer from severe performance penalties for memory
swapping or are simply uncapable of completing queries when the system’s memory is
rather small. This is important information and calls for the extension of the benchmark-
ing effort towards measuring memory consumption. Clearly, BerkeleyDB is not a good
candidate for XML query processing on embedded systems.

4.2. Performance Lessons Learned

Our study does not warrant a claim of having found the best XQuery processor among
the systems we tested. It seems likely that different systems perform well at different
features and under different circumstances. For instance, MonetDB (Figure 13) performs
quite badly on Q1.4(n) compared to Qizx (Figure 17) but it performs better for all other

24

queries. Galax performs bad in absolute numbers, but has a very favorable scalability for
streamable queries.

The impact of the implementation language on performance is quite limited. We might
have expected a system implemented in C++ to perform some order of magnitude faster,
however Java and OCaml times are very competitive and sometimes even better. This
is reason for optimism, as we would indeed prefer algorithms and efficient techniques to
have a bigger impact on performance than the simple choice of the development language.

The performance of child axis navigation, a basic XPath feature, can be assessed by
inspecting the execution time of Q1.1(n) on exponential2.xml and layered.xml.
– On exponential2.xml, the number of returned nodes is in O(2n), and the number of

nodes visited by a näıve XPath evaluation strategy is also in O(2n).
– On layered.xml, the number of returned nodes is constant (and equal to the number

of nodes returned by Q1.1(14), whereas the number of nodes visited by a näıve XPath
evaluation strategy is in O(n).

A linearly increasing execution time for Q1.1(n) on layered.xml may show that the
engine indeed implements a näıve top-down XPath evaluation strategy, which visits all
intermediate nodes between the root and the target nodes. This is probably the case for
Qexo (Figure 3, right graph). On the contrary, for systems such as MonetDB (Figure 13),
we see that the execution time is extremely small (and roughly constant).

Apparently, many engines (BerkeleyDB, Qexo, Qizx, Saxon) use a straightforward
XPath implementation strategy that requires some form of intermediate sorting and
duplicate removal. Others (eXist, Galax, MonetDB) use more specialized algorithms that
avoid these blocking operations.

The impact of imprecise navigation (expressed with // steps) can be assessed by com-
paring Q1.1(n) with Q1.7(n). In our tests, these queries are equivalent, while the sec-
ond uses //. There is little difference among these queries for eXist, Galax, MonetDB
and Saxon, which shows that these systems do not need to visit irrelevant nodes when
evaluating Q1.7(n). BerkeleyDB, Qexo and Qizx exhibit some performance differences,
suggesting that // navigation is suboptimal for these engines.

Early-stop optimizations allow the evaluation of queries like Q1.3(n) to proceed much
faster than Q1.2(n). CDuceis a clear winner here. Results for MonetDB and Qexo show
that Q1.3(n) is actually running slower than Q1.2(n) indicating that these optimiza-
tions are not picked up.

Existential branches or path predicates exhibit different performance depending on
the tested system. This can be assessed by comparing Q1.2(n) with Q1.6(n), as well
as comparing Q1.2(n) with Q1.5(n). Each of these pairs contains equivalent queries on
the tested documents. For Galax, MonetDB and Qexo, Q1.6(n), featuring an existential
test, is more expensive than Q1.2(n), whereas for BerkeleyDB and Saxon, the existential
branch seems to cause no overhead at all. In Galax, Q1.5(n) is more expensive, since it
prohibits streaming evaluation, but for the other engines this is not the case, probably
due to efficient application of shortcut evaluation.

Result serialization times corresponding to our queries are an important component of
total running times, and in some cases, the dominant one (see, for instance Figure 13).
This depends of course on the chosen queries and data, however our tests stress the
importance this (often ignored) part of query execution times may take. Overall, serial-
ization time reflects the number and size of the returned subtrees. The impact of some
OCaml (or system programming) issues leads either to surprising performance variations

25

(Figure 11), or to unfeasible queries such as for eXist (Figures 9 and 10).
Complex result construction such as required by Q2.3(n) and Q2.6(n) is related to the

problem of serializing large results; Q2.6(n) constructs more complex new trees, but of
smaller size. Interestingly, Galax (Figure 12) handles Q2.6(n) well, whereas BerkeleyDB
and eXist do not (missing measurements in Figures 10 and 6).

New node creation is also an interesting feature in our measures. Queries Q2.4(n)
and Q2.5(n) differ only by the fact that Q2.4(n) constructs new trees (which requires
copying some t2 descendents) whereas Q2.5(n) returns these nodes from the original
documents. Several strategies are possible. Galax copies the nodes in a lazy manner,
avoiding the full materialization of the copied trees. All other engines – except Qexo,
apparently – copy and materialize the subtrees under the constructed nodes, causing
Q2.4(n) to be substantially less performant.

Finally, we also remark the the good performance of main memory implementations,
for the moderate-sized documents used in the experiments.

4.3. Future Work

This paper is only a starting point in a greater effort, which targets a better under-
standing of the drawbacks and advantages of XPath/XQuery implementation strategies.
An important step towards such a better understanding is the development of many more
microbenchmarks, to reveal detailed information regarding the performance of implemen-
tations at isolated language features. We also need to encourage developers to use our
microbenchmarks, which can help – as proven before – to identify bugs and bottlenecks
in their implementations.

Feedback from the experiences in running the experiments in this paper will be used
to improve the XCheck platform. One thing that we can take away from the results
of our tests is that a more clear separation of query evaluation times and serialization
times is desirable. This could be included in the platform mentioned above by doing an
additional run without serialization and/or a run for measuring document loading times.
Additionally, tools for measuring memory usage would be a very welcome addition.

Important additional tests to be performed are system stress tests, that identify the
operational boundaries of XPath and XQuery implementations. Other interesting aspects
to be tested include: the impact of XML Schema information on navigation queries;
handling of atomic values, value joins etc.; handling of increasing branching factors by
XPath etc.

References

[1] L. Afanasiev, M. Franceschet, M. Marx, and E. Zimuel. Xcheck: A platform for benchmarking
XQuery engines (demo). In VLDB, 2006.

[2] L. Afanasiev, I. Manolescu, C. Miachon, and P. Michiels. Micro-benchmarking XQuery experiments
page, 2006. http://www-rocq.inria.fr/∼manolesc/microbenchmarks.html.

[3] L. Afanasiev, I. Manolescu, and P. Michiels. Member: A micro-benchmark repository, 2005. http:

//ilps.science.uva.nl/Resources/MemBeR/.
[4] L. Afanasiev, I. Manolescu, and P. Michiels. MemBeR: A micro-benchmark repository for XQuery.

In XSym, volume 3671 of Lecture Notes in Computer Science, pages 144–161. Springer, 2005.

26

[5] L. Afanasiev and M. Marx. XCheck, an automated XQuery benchmark tool, 2005. http://ilps.

science.uva.nl/Resources/XCheck.
[6] V. Benzaken, G. Castagna, and C. Miachon. A full pattern-based paradigm for XML query

processing. In PADL 05, 7th International Symposium on Practical Aspects of Declarative
Languages, number 3350 in LNCS, pages 235–252. Springer, Jan. 2005.

[7] S. Boag, D. Chamberlin, M. Fernández, D. Florescu, J. Robie, and J. Siméon. XQuery 1.0 An XML
Query Language, W3C Working Draft, April 2005. http://www.w3.org/TR/xquery.

[8] T. Böhme and E. Rahm. Xmach-1: A benchmark for XML data management. In Proceedings of
BTW2001, Oldenburg, 7.-9. Mz, Springer, Berlin, March 2001.

[9] S. Bressan, G. Dobbie, Z. Lacroix, M. Lee, Y. Li, U. Nambiar, and B. Wadhwa. X007: Applying
007 benchmark to XML query processing tool. In CIKM, pages 167–174. ACM, 2001.

[10] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: Optimal XML pattern matching. In
M. J. Franklin, B. Moon, and A. Ailamaki, editors, SIGMOD, pages 310–321. ACM, 2002.

[11] W. W. W. Consortium. XML path language (XPath) version 2.0 – W3C Working Draft, 2005.
http://www.w3.org/TR/xpath20/.

[12] M. F. Fernández, J. Hidders, P. Michiels, J. Siméon, and R. Vercammen. Optimizing sorting and
duplicate elimination in XQuery path expressions. In K. V. Andersen, J. K. Debenham, and
R. Wagner, editors, DEXA, volume 3588 of Lecture Notes in Computer Science, pages 554–563.
Springer, 2005.

[13] A. Frisch, G. Castagna, and V. Benzaken. Semantic Subtyping. In Proceedings, Seventeenth Annual
IEEE Symposium on Logic in Computer Science, pages 137–146. IEEE Computer Society Press,
2002.

[14] T. Grust, M. van Keulen, and J. Teubner. Staircase join: Teach a relational DBMS to watch its
(axis) steps. In J. C. Freytag, P. C. Lockemann, S. Abiteboul, M. J. Carey, P. G. Selinger, and
A. Heuer, editors, VLDB, pages 524–525. Morgan Kaufmann, 2003.

[15] H. Hosoya and B. Pierce. XDuce: A typed XML processing language. ACM Transactions on Internet
Technology, 3(2):117–148, 2003.

[16] I. Manolescu, C. Miachon, and P. Michiels. Towards XML microbenchmarking. In First International
Workshop on Performance and Evaluation of Data Management Systems (EXPDB), Chicago, 2006.

[17] L. Mignet, D. Barbosa, and P. Veltri. The XML web: A first study. In WWW Conference, 2003.
[18] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, M. J. Carey, I. Manolescu, and R. Busse. Why

and How to Benchmark XML Databases. SIGMOD Record, 3(30):27–32, 2001.
[19] M. Stark, M. Fernández, P. Michiels, and J. Siméon. XQuery streaming á la carte. In ICDE, 2007.

to appear.
[20] B. Yao, T. Özsu, and N. Khandelwal. XBench benchmark and performance testing of XML DBMSs.

In ICDE, pages 621–633. IEEE Computer Society, 2004.

27

