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Abstract 

The use of non-determinism in logic-based languages is motivated using pragmatic and 
theoretical considerations. Non-deterministic database queries and updates occur naturally, 
and there exist non-deterministic implementations of various languages. It is shown that 
non-determinism resolves some difficulties concerning the expressive power of deterministic 
languages: there are non-deterministic languages expressing low complexity classes of 
queries/updates, whereas no such deterministic languages are known. Various mechanisms 
yielding non-determinism are reviewed. The focus is on two closely related families of 
non-deterministic languages. The first consists of extensions of Datalog with negations in 
bodies and/or heads of rules, with non-deterministic fixpoint semantics. The second consists 
of non-deterministic extensions of first-order logic and fixpoint logics, using the w~tness 
operator. The expressive power of the languages is characterized. In particular, languages 
expressing exactly the (deterministic and non-deterministic) queries/updates computable in 
polynomial time are exhibited, whereas it is conjectured that no analogous deterministic 
language exists. The connection between non-deterministic languages and determinism is also 
explored. Several problems of practical interest are examined, such as checking (statically or 
dynamically) if a given program is deterministic, detecting coincidence of deterministic and 
non-deterministic semantics, and verifying termination for non-deterministic programs. 

1. Introduction 

While the t radi t ional  logic-based languages  used in databases  and AI  are 
deterministic,  recent investigations suggest that  non-determinis t ic  query  and  

upda te  languages may  have considerable  advantages.  In this paper ,  we br ing 

together  in a cohesive f ramework  some o f , t he  evidence to this effect. We  focus 

pr imari ly  on  results dispersed in [2-7],  bu t  also include pointers  to o ther  relevant  
work,  such as [28,32,33,39]. 
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The arguments in favor of non-deterministic languages are both practical and 
theoretical. The first is that non-determinism is already here in various forms. 
There are natural non-deterministic queries and updates, whose implementation 
using deterministic languages is contrived and inefficient. There are well-known 
applications in Artificial Intelligence which naturally lead to non-determinism, 
and expert systems shells (such as KEE [26] or OPS5 [10]) whose rule-based 
components work non-deterministically. The theoretical arguments for non-de- 
terminism involve primarily the expressive power of non-deterministic languages. 
Indeed, the use of non-determinism circumvents some of the problems associated 
with deterministic languages. For instance, it is conjectured that there is no 
deterministic language expressing exactly the queries computable in polynomial 
time. On the other hand, there are non-deterministic languages expressing exactly 
the (deterministic and non-deterministic) queries computable in polynomial time. 
The motivation for non-determinism is discussed in detail in the paper. 

A variety of mechanisms yielding non-determinism are presented. We consider 
rule-based languages with non-deterministic semantics. The languages are exten- 
sions of Datalog (i.e., "pure" Prolog) allowing negations in the bodies of rules 
and /o r  deletions in heads of rules. The languages have fixpoint semantics: the 
result is computed by firing the rules until a fixpoint is reached. The non-de- 
terminism results from the arbitrary choice of which rule instantiation to fire 
next. We also consider non-deterministic extensions of traditional logic languages 
such as first-order logic and its fixpoint extensions. The non-determinism is 
provided by an operator called witness, which yields formulas with several 
different interpretations for each given structure. This provides a uniform way of 
obtaining non-deterministic counterparts for traditional deterministic logics. Close 
connections between the Datalog-like languages and the fixpoint extensions of 
first-order logic are exhibited. Other mechanisms for obtaining non-determinism 
are also reviewed, such as the choice operator [28,32] and the assume of [39]. 

A primary focus of the paper is on the expressive power of the non-determinis- 
tic languages. The results help understand the impact of non-determinism in 
conjunction with various language constructs on expressive power. In particular, 
non-deterministic languages expressing exactly the queries computable in poly- 
nomial time are exhibited, whereas analogous deterministic languages remain an 
elusive goal. 

The results on expressive power suggest that non-deterministic languages, in 
addition to computing useful non-deterministic queries, also provide efficient 
means to compute otherwise "hard" deterministic queries. Then it becomes of 
interest to detect if a non-deterministic program computes in fact a deterministic 
query. Such connections between non-determinism and determinism are explored. 
For each language, we consider the non-deterministic programs whose computa- 
tion paths have a "Church-Rosser" property, and thus compute deterministic 
transformations. Such deterministic transformations constitute the functional 
fragment of the language. We characterize the functional fragments of various 
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languages. In particular, we exhibit languages whose functional fragment consists 
precisely of the transformations computable in polynomial time. We also char- 
acterize the deterministic transformations obtained by taking the union or inter- 
section of the possible outcomes of non-deterministic programs in a given 
language. This is in the spirit of possible, respectively certain, answers to queries 
on databases with incomplete information [20], and also related to possible worlds 
semantics in truth-maintenance systems [25]. 

We examine several problems arising from the use of non-deterministic pro- 
grams to compute deterministic transformations. The problems were suggested by 
practical work on implementing rule-based languages similar to ours [30,35]. First 
we look at the problem of checking whether a given program expresses a 
deterministic transformation. We show that static checking is generally unfeasi- 
ble. However, dynamic checking can be done in some of the languages (i.e., a 
program can be made to issue a "warning"  of non-functionality on a given 
input). 

In the case of rule-based languages, the same program can be given determinis- 
tic or non-deterministic semantics. It is of interest in practice to know when the 
two semantics coincide. For instance, a program might be evaluated more 
efficiently with deterministic semantics, since the rules can be fired in parallel 
rather than one at a time. Thus, coincidence of the semantics can be used in 
optimization [35]. Note that this problem is related but different from the 
problem of whether a program with non-deterministic semantics belongs to the 
functional fragment. We show that the general problem of checking coincidence 
of the semantics is undecidable for some languages. We exhibit a language such 
that a decision procedure exists for queries in that language but not for updates. 
This highlights a surprising distinction between queries and updates, which also 
arises in several other results in the paper. 

Some of the languages allow for programs with non-terminating computations. 
We study the notion of " loop-freedom".  A program is loop-free if it has only 
terminating computations. We show that static checking of loop-freedom is 
generally undecidable. However, we show, again, that dynamic checking is 
feasible in some of the languages (i.e., programs can be made to issue "warnings"  
of non-termination without actually entering a non-terminating computation). 

2. Why non-determinism? 

Starving Frenchman: "May I have a roast-beef sandwich, please?" 
Irate Server: "What kinda bread?" 
Starving Frenchman: "Any kind will do." 
Irate Server: "You gotta choose." 
Starving Frenchman: "But I do not know what bread you have!" 
Irate Server: "Sorry buddy, I can't order for you! Next please!" 

Real-worM experlence 
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The immediate argument in favor of non-deterministic database languages is 
that there are natural non-deterministic queries/updates to be answered. Con- 
sider, for example: 
- "Find one cafe at the intersection of Blvd. St-Germain and Blvd. St-Michel". 
- "Assign as undergraduate advisor one junior faculty member who has not been 

an advisor in the past three years". 
The first query has several (four) possible answers, any one of which will 

satisfy the user. The update has also several possible outcomes, but which 
particular one is chosen is immaterial. (In fact, the person issuing such an update 
may well prefer that the actual choice be left up to the system!) 

The update shown above is reminiscent of applications in AI involving 
programming with constraints. Another well-known example is "Mrs. Manners", 
where a set of diners must be seated at the table subject to certain constraints 
which allow for several possible solutions [26] (see also example 4.1). 

A second practical argument in favor of a serious look at non-deterministic 
languages is realism: there are in fact non-deterministic languages already imple- 
mented. For instance, several implementations of production systems and rule- 
based expert system shells are non-deterministic. While in some cases the non-de- 
terminism is "accidental", the result of poorly understood semantics or of ad-hoc 
implementations, in other cases the non-determinism is deliberate. One example 
in the latter category is RDL1 [30,35], other, well-known ones are KEE [26] and 
OPS5 [10]. For instance, [26] describes a non-deterministic KEE program for the 
"Mrs. Manners" problem, where each solution of the problem is a possible 
outcome of the program. 

The examples above can be viewed as partially specified queries or updates, 
where the specification leaves room for several acceptable solutions. A valid 
question is whether such queries or updates require truly non-deterministic 
languages, or whether the non-determinism can be "simulated" using traditional 
deterministic languages. Roughly speaking, in the absence of some mechanism for 
non-deterministic choice, deterministic programs are generally forced to produce 
simultaneously all possible solutions. While this overkill may be acceptable in 
some cases such as the first query, it is not acceptable in others such as the update 
in the second example (one might wind up with several undergraduate advisors, 
which was not intended and may violate the integrity constraints of the database). 
Equally important, the cost of unnecessarily producing all solutions can be 
prohibitive. 

More surprisingly, it turns out that the availability of non-deterministic choice 
can yield more efficient ways to compute deterministic queries. Consider, for 
example, the well-known "parity" query (R is a unary relation, i.e. a set): 

I true if ]R ] is even, 
even ( R )  = ~ false if ] R ] is odd. 

The natural way to compute the query is to remove elements from R one at a 
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time, and keep a binary counter. However, the elements of R are conceptually 
undistinguishable one from another, so picking a single element requires a 
non-deterministic choice. This can be easily done if a mechanism for non-de- 
terministic choice is available. However, this query becomes hard with purely 
deterministic means: indeed, it has been shown that the parity query cannot be 
computed by the relational algebra (first-order logic), and not even by its 
powerful iterative extensions, the fixpoint queries (complete in PTIME) and the 
while queries (complete in PSPACE) [11,13]. 

The parity query is a deterministic query computable in polynomial time, but 
not computable by the usual deterministic query languages. A major open 
question is whether there exists a deterministic language expressing exactly the 
queries computable in polynomial time. The answer is conjectured to be negative 
for polynomial time, as well as for all lower complexity classes of queries. For the 
parity query, we saw that non-determinism can be used to circumvent the 
difficulty in the computation. It turns out that this situation extends to all queries 
computable in polynomial time. Thus, there are non-deterministic languages 
which compute exactly the queries computable in polynomial time. Of course, 
programs in such a language compute non-deterministic queries in addition to the 
deterministic ones. This suggests a trade-off between determinism and expressive 
power: one gives up the guarantee that every program in the language is 
deterministic, in exchange for the ability to express "nice" classes of queries and 
updates. 

The need for non-deterministic choice in the parity example arises because the 
elements of the input set are indistinguishable at the conceptual level. This is no 
longer the case if the data independence principle is renounced by allowing the 
program access to the internal storage. This provides in effect an ordering of the 
elements of the set, which allows distinguishing one element from another. With 
such an ordering, it is easy to compute parity deterministically: pick the elements 
in R one at a time in increasing order and keep a counter. Again, the situation for 
the parity query is symptomatic: indeed, if an ordering of the domain is available, 
all queries computed in polynomial time can be computed by the fixpoint queries 
[22,38]. More generally, it has been shown that many complexity classes of 
queries can be captured by deterministic languages in the presence of order [23]. 
Of course, the price to pay for the violation of the data independence principle is 
that users must know about the internal storage in order to write queries. Also, 
one can then write programs where access to the internal storage is used abusively 
and yields queries which are nonsensical at the conceptual level, such as "F ind  all 
departments whose internal binary representation is a prime number". Thus, 
consistency with the information provided at the conceptual level is no longer 
assured. 

Intuitively, there is a strong connection between the use of order (i.e., informa- 
tion on the internal storage) and non-determinism. If a query is implemented 
using information on internal storage, abstracted at the conceptual level, then the 
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answer may depend on such information and thus appear non-deterministic at 
the conceptual level. The trade-off between determinism and expressive power is 
an alternative to the trade-off between data-independence and expressive power. 
Indeed, the following conjectured meta-theorem has been consistently confirmed 
(C is a time or space Turing complexity class at least linear): 

If the class of deterministic queries in C can be expressed by a deterministic 
language in the presence of order, then the class N -  C of deterministic and 
non-deterministic queries computable in C can be expressed by a non-de- 
terministic language. 

The idea behind the meta-theorem is that an arbitrary order which can be used to 
compute the queries in C can be generated by non-deterministic means in linear 
t ime/space.  

In connection with the update example above, we suggested that deterministic 
implementations may lead to violations of the integrity constraints of the data- 
base. We further elaborate on the need for non-determinism in updates. Suppose 
that the valid updates of a database are specified by a set of admissible operations, 
given as a finite set of procedures of the form p(x ,  y . . . . .  z). Valid instances of 
the database are then generated by repeated calls to the given procedures. On the 
other hand, suppose that the valid instances of the database which must be 
generated are those which satisfy certain static integrity constraints. Given a 
specification using integrity constraints and an update language, it is of interest 
whether one can write a set of procedures in the given language which can be 
used to generate the database instances satisfying the integrity constraints. This 
issue was examined at length in [8,9]. In particular, it was shown in [9] that some 
types of integrity constraints require a non-deterministic update language. For 
instance, specifications using common constraints such as functional dependen- 
cies, inclusion dependencies, and join dependencies may require non-determinis- 
tic update capabilities. This is illustrated by the following. 

Example 2.1 
Consider a relation R over attributes ABC and the following set of constraints: 

- the embedded join dependency 

Vxyzx ' y ' z '  ( R ( xyz ) A R ( x ' y ' z '  ) = R ( xy 'z  ) ), 

- the functional dependency C ~ AB, 
- the inclusion dependency R[A] __c R[C], 
- the inclusion dependency R[B] c R[A], 
- the inclusion dependency R[A] c R[B]. 
It is easy to check that, for each relation satisfying the constraints, the number of 
constants in the relation is a perfect square (n 2, n >~ 0). Intuitively, non-de- 
terminism is needed because the unbounded "gaps" between instances cannot be 
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crossed in a deterministic fashion, using procedures which supply only a bounded  
number  of parameters at each call. [] 

We have reviewed some of the practical and theoretical arguments for non-de- 
terminism. Another potentially important  but  less explored consideration is 
optimization. Intuitively, a non-deterministic program yields a certain degree of 
freedom in the computat ion of a query or update. Such freedom can be exploited 
in optimization. An example is provided by  the use of the choice operator  in 
Datalog [28,32]. The availability of alternative execution paths in non-determinis- 
tic programs is likely to be of use in concurrency control as well. Indeed, a 
scheduler with more options available is likely to yield increased concurrency. 

3. Background 

3.1. PRELIMINARIES 

In this section we review some terminology relating to relational databases. In 
particular, we recall some of the traditional deterministic languages, including 
iterative extensions of first-order logic and relational algebra (the fixpoint and 
while queries), and several Datalog-like languages. 

We assume the reader is familiar with the basic concepts and terminology of 
relational database theory (see [37]). We also refer to [24] for a survey of the field. 
We review briefly some of the basic terminology and notation. 

We assume the existence of three infinite and pairwise disjoint sets of symbols: 
the set att of attributes, the set dom of constants, and the set var of variables. A 
relational schema is a finite set of attributes. A tuple over a relational schema R 
is a mapping from R into dom U var. A constant tuple over a relational schema R 
is a mapping from R into dora. An instance over a relation schema R is a finite 
set of constant tuples over R. The projection of an instance r over R on a subset 
S of its attributes is denoted ~rs(r ). A database schema is a finite set of relational 
schemas. An instance I over a database schema R is a mapping from R such that 
for each R in R, I (R)  is an instance over R. The set of all instances over a 
schema R is denoted by  inst(R). 

Note  that, in logic terms, a database schema supplies a finite set of predicates, 
and a database instance provides an interpretation of the predicates into finite 
structures. Indeed, only finite structures are considered in this paper. 

We are interested primarily in database queries and updates, which involve 
transformations of database instances into other database instances. We dis- 
tinguish here between deterministic and non-deterministic database transforma- 
tions. A non-deterministic database transformation is a subset of inst(R) • inst(S) 
for some R, S, and a deterministic database transformation is a mapping from 
inst(R) to inst(S). If R and S are disjoint, we will say that the transformation is a 
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query, otherwise it is an update. In the case of queries, the input predicates are 
sometimes referred to as EDB (extensional database) predicates, and the output 
predicates as IDB (intensional database) predicates. 

Database transformations are usually required to obey three conditions: well- 
typedness, effective computability and genericity [4,12]. Well-typedness is captured 
by requiring that instances over a fixed schema be related to instances over 
another fixed schema. Effective computability is self explanatory. Genericity 
originates from the data independence principle, discussed also in the previous 
section: a query or update can only use information provided at the conceptual 
level. In particular, distinct data values can be treated differently only if they can 
be distinguished using the information available at the conceptual level, or if they 
are named explicitly in the query/update .  This is formalized by the notion of 
genericity: 

Let R and S be database schemas, and C a finite set of constants. A subset -r 
of inst(R) • inst(S) is C-generic iff for each bijection p over dora which is 
the identity on C, (I ,J)~ "r iff (p(I), p(J))E~-. A transformation from 
inst(R) to inst(S) is C-generic iff its graph is C-genetic. 

In the definition of genericity, the set C specifies "exceptional" constants, 
which can be treated differently from other constants. This is needed because a 
query or update can explicitly name a finite set of constants. 

We will refer to complexity classes of database transformations. We use as 
complexity measures the time and space used by a Turing Machine to produce a 
standard encoding of the output instance starting from an encoding of the input 
instance. Note that this is slightly different from the traditional definition in 
terms of the associated recognition problem [38], where the complexity of a 
transformation is defined as the complexity of deciding if a given tuple belongs to 
the result. Clearly, this is no longer appropriate for non-deterministic transforma- 
tions, where several answers are possible. The complexity measures are functions 
of the size of the input instance. For each Turing Machine complexity class C, 
there is a corresponding complexity class of (non-deterministic) transformations 
denoted (N)DB-C. In particular, the class of non-deterministic database transfor- 
mations which can be computed by a non-deterministic Turing Machine in 
polynomial time is denoted NDB-PTIME. By Savitch's theorem, PSPACE--  
NPSPACE. Note that a DB-PSPACE transformation is deterministic by defini- 
tion, whereas NDB-PSPACE contains non-deterministic transformations, so DB- 
PSPACE 4: NDB-PSPACE. For determimstic transformations, we sometimes de- 
scribe complexity in terms of the associated recognition problem. Thus, DB-NP 
denotes deterministic transformations for which the recognition problem is in 
NP. (DB-NP is not to be confused with NDB-PTIME!) We will specify which 
measure is used only when the distinction is relevant. 
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Given a program P (in a transformation language L),  the mapping (or 
relation) between database instances that the program describes is called the 
effect of the program, and denoted effL(P ). The concepts of input, output and 
temporary relations are also important. When a program is applied to a given 
database, its effect is often interpreted by identifying some relations as input 
relations, and other relations as output relations. In addition to semantically 
significant input and output relations, the programs may use " t empora ry"  
relations. Thus, it appears useful to also define the effect of a program with 
respect to specified input and output database schemas. Given a program P and 
two schemas R and S, P transforms instances over R into instances over S as 
follows: relations which are not in the input schema are assumed to be empty 
before the program is executed; after the program is run, the relations in the 
output schema must contain the desired result. (The content of the other relations 
is immaterial.) The effect thereby obtained is denoted by effL(R, S; P). A 
program P with input schema R and output schema S defines a query if 
R n S = t~, and an update otherwise. 

3.2. REVIEW OF DETERMINISTIC LANGUAGES 

We assume the reader is familiar with relational algebra, relational calculus 
(i.e. the first-order queries, denoted FO), and Datalog, or "pure"  Prolog (see, for 
instance, [37]). In this section, we review several deterministic Datalog-like 
languages and the deterministic fixpoint extensions of first-order logic. 

The Datalog extensions we consider allow the use of negation in the bodies of 
rules and deletion in heads of rules. With the deterministic semantics, the 
program is evaluated by "firing", in parallel, all applicable instantiations of the 
rules. This is repeated until a fixpoint is reached (if ever). For instance, the 
program 

~ G ( x ,  y )  , -  G(x ,  y) ,  G(y ,  x)  

removes (in a single stage) all edges of the graph G participating in cycles of 
length two. 

The syntax of the Datalog extensions is defined next. 

DEFINITION 3.1 
A Datalog ~* program is a finite set of rules of the form 

( ~ ) Q ( X l , . . . , x m )  ,--- B 1 . . . .  , B, 

(m >t 0, n >~ 0) where each xj is a constant or a variable and each B, a literal of 
the form (- ,)Q(xa, . . . ,  x,,) (m >/0). Furthermore,  it is required that each variable 
occurring in the head of a rule also occur positively bound in the body. [] 

The set of relations occurring in a program P is denoted sch (P). 
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We will be also interested in restricted versions of the languages. The " * "  
indicates that negations are allowed in heads of rules and " ~ "  that they are 
allowed in the bodies. If the literals in heads are all positive, the program is also a 
Datalog ~ program. If the literals in bodies are all positive, the program is also a 
Datalog* program. Finally, if all literals are positive, the program is also a 
Datalog program. 

Note that, on some input, the simultaneous instantiation of the rules of a 
Datalog ~* program may produce a set of inconsistent facts, containing both A 
and ~ A  for some A. In this case, the computation blocks and the query is 
undefined. Also note that Datalog ~* programs may not terminate. However, 
Datalog ~ programs always terminate in polynomial time. 

We next review the fixpoint (iterative) extensions of first-order logic. The 
extensions consist of augmenting first-order logic with fixpoint operators, which 
provide recursion. Essentially, a fixpoint operator allows defining a relation 
inductively, by repeated applications of a given first-order formula. For instance, 
the transitive closure T of a relation R (not definable in first-order logic alone) 
can be defined by recursive applications of the formula 

~(x ,  y ) =  T(x,  y) v R(x ,  y) v ] z (T(x ,  z) A T(z,  y)) 

(the result of each iteration is reassigned to T). While in this example a fixpoint is 
always reached, this is not always the case. Generally, the fixpoint operator is 
partially defined, so interpretations of sentences in the logic are partially defined. 

We next discuss partial fixpoint logic, which is first-order logic extended with 
a partial fixpoint operator. 

DEFINITION 3.2 
Partial fixpoint formulas are obtained by repeated applications of first-order 

operators (9, A, V, 3, V) and the partial fixpoint operator starting from atoms. 
The partial fixpoint operator is defined as follows. Let qa(S) be an FO + PFP 
formula with n free variables, where S is an n-ary predicate occurring in ~. Then 
PFP(qa(S), S)(t  +) is a formula, where 7' is a sequence of n variables or constants. 
The interpretation of PFP(qa(S), S) is the following: for a given instance of the 
database, PFP(~(S), S) denotes the n-ary predicate which is the limit, if it 
exists, of the sequence defined by: J0 = I(S) and for each i > 0, J, = q~(J,-1) (the 
result of evaluating q~ on the database instance where S is assigned J,-a)- If qa is 
undefined on J,_], then J, and the interpretation of PFP(~(S),  S) are unde- 
fined. The predicate PFP(gp(S), S) can then be used inside formulas just like the 
atomic predicates. [] 

The FO + PFP formula defining the transitive closure of R using the formula 
shown earlier, is PFP(q~(T), T)(x, y). 
The queries expressible by FO + PFP formulas are called the while queries. 

They were originally introduced via a procedural language in [11,13]. 
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As mentioned above, the PFP operator is generally partially defined. One can 
ensure termination of the iteration by adopting a semantics which provides 
monotonicity. This variation of the PFP operator is called the inductive fixpoint 
operator, denoted 1FP. The difference with PFP is that at each iteration, the 
newly computed relation is added to the relation computed at the previous 
iteration. This ensures convergence in polynomial time on all inputs. The first- 
order logic augmented with the 1FP operator is called inflationary fixpoint logic 
and is denoted FO + 1FP. The queries computed by FO + IFP  are referred to as 
the f ixpoint queries. Various equivalent definitions of the fixpoint queries exist in 
the literature [11,13,19]. 

It turns out that there are close connections between the fixpoint extensions of 
first-order logic and the Datalog extensions we presented. In [5], we showed that 
Datalog -~ expresses exactly the class of fixpoint queries. It also provides an 
existential normal form for FO + IFP  (see also the remark in section 6 of [18]). 
The equivalence between Datalog ~ and FO + 1FP in conjunction with recent 
results by Kolaitis [27] and Dahlhaus [15] showing that Datalog with stratified 
negation is strictly included in FO + IFP,  implies that Datalog ~ is strictly more 
expressive than Datalog with stratified negation. It is also shown in [6] that 
Datalog ~* is equivalent to FO + PFP. 

4. Non-deterministic languages 

In this section, we consider several mechanisms for introducing non-determi- 
nism in query and update languages. We focus primarily on Datalog extensions 
with non-deterministic semantics [5,6], and non-deterministic counterparts of the 
fixpoint logics [6,7]. 

4.1. DATALOG-LIKE LANGUAGES 

We first consider non-deterministic versions of the deterministic Datalog-like 
languages described earlier. 

Recall that the deterministic semantics for the Datalog-like languages was the 
result of evaluating programs by repeatedly firing all rules in parallel. The 
non-deterministic semantics is obtained by firing one instantiation of a rule at a 
time, based on a non-deterministic choice. For instance consider again the 
program: 

~ G ( x ,  y ) * - - G ( x ,  y ) ,  G ( y ,  x ) .  

Recall that, with the deterministic semantics, the program removes all cycles of 
length two. With the non-deterministic semantics, the program computes one of 
several possible "orientations" for the graph G (i.e., for every pair of edges (x, y) 
and (y, x) in G, one of the edges is removed). 
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We first define the syntax of the non-deterministic version of Datalog ~*,  
denoted N-Datalog ~*. The difference is that, in the non-deterministic version, 
heads of rules may contain several literals, and equality can be used in bodies. It 
can be seen that these features would be redundant  with the deterministic 
semantics. 

DEFINITION 4.1 

An N-Datalog ~* program is a finite set of rules of the form 

A 1 . . . . .  A k *-- B 1 . . . . .  B,  

(k  >/1, n >~ 0), where each Aj is a literal of the form ( ~ ) Q ( x  1 . . . .  , Xm) (m  >~ 0), 
and each B, is a literal of the same form, or (~)x  1 --- x 2 (the x, 's  are variables or 
constants). It is required that each variable occurring in the head of a rule also 
occur positively bound in the body. [] 

As in the deterministic case, we will also be interested in restricted versions of 
the language. The " * "  indicates that negations are allowed in heads of rules and 
" ~ "  that they are allowed in the bodies. Thus, if the literals in heads are all 
positive, the program is also an N-Datalog ~ program. If the literals in bodies are 
all positive, the program is also an N-Datalog* program. Finally, if all literals are 
positive, the program is also an N-Datalog program. 

To formally define the non-deterministic semantics, we introduce the notion of 
(non-deterministic) immediate successor of a set of facts using a rule. Let r be an 
N-Datalog ~* rule. Let 1 be a set of facts and r '  be a ground instance of r such 
that (i) each literal of the body of r '  is true in I, (ii) the head of r '  is consistent 
and ( i i i )each  variable is valuated to some constant  occurring in I. Then the 
instance J obtained from I by deleting the facts A such that --1A is in the head of 
r ' ,  and inserting the facts A in the head of r ' ,  is called an immediate successor of 
I using r. 

By condition (ii) above, a ground instance of a rule is not considered if its head 
contains a ground literal and its negation. 

DEFINITION 4.2 

Let P be an N-Datalog ~* program. The effect of P is a relation over sets of 
facts defined as follows: for each I, (I ,  J )  is in e f f ( P )  iff there exists a sequence 
I 0 = I , . . . ,  I n = J such that (i) for each i, I,+ 1 is an immediate successor of /, 
using some r in P,  and (ii) there is no immediate successor J '  ~ J of J using 
some rule in P. [] 

R e m a r k  

To each rule 

A 1 , . . . ,  A k ~ B 1 . . . . .  B n, 
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in P, we associate the first-order sentence 

^ . . .  ^ B ,  ^ . . .  ^Ak), 

where 2' is the vector of the variables occurring in the rule. Let P be a program 
such that for each ground instance r of a rule in P,  the head of r '  does not 
contain a fact A and its negation. Let E ( P )  be the set of sentences associated 
with the rules in P. For each I, J, if ~I, J )  ~ ef f(P) then J is a model of F.(P). 
Furthermore,  if negation is not  allowed in heads of rules, then J is a model of 
E ( P )  containing L [] 

Following is an example of a program for the "Mrs.  Manners"  problem. 

Example 4.1 
We show how the "Mrs  Manners"  problem can be solved using non-determin- 

istic languages like those studied in the paper. We assume that two relations are 
given. The first one, guest, gives for each guest, h i s /he r  name, sex and hobbies. 
The second one, next, specifies the adjacent seats. For instance, a possible input 
is: 

guest( jeremie, male, chess) 
guest(jeremie, male, tennis) 
guest( manon, female, chess) 
guest( gaspard, male, chess) 
guest(gaspard, male, nap) 
guest(margot, female, nap) 
guest(margot, female, tennis). 

next(l, 2) 
next(2, 3) 
next(3, 4) 
next(4, l)  

Guests must be seated so that neighbours are of different sexes and share a 
hobby. (To simplify, assume that the number  of seats equals the number  of 
guests.) Intuitively, guests are randomly seated using the first two rules. The 
compatibility relation (indicating who can sit next to whom) is computed using 
the third rule. The last rule is used to check that the seating was correct. The 
predicate current holds the identifier of the last seat where somebody was seated. 
The predicate seated contains the names of the guests that have been seated so 
far. Finally, seating tells who sits where. The rules are as follows (with the symbol 
.1_ indicating an error): 

seated(name), current( seatl ), ~ guest(name . . . .  ), 
started, seating( name,seatl ) --1 started, next( seatl, _) 

current(seat1), current(seat2), 
seated(name), seating(name, seat2) 

current (seatl), 
next ( seatl, seat 2), 
guest(name . . . .  ), 
--, seated(name) 
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compatible (name1, name 2) *-- 
guest(name, sexl, hobby), 
guest(name, sex2, hobby), 
sexl ~ sex2 

seating(name, seatl ), 
seating(name, seat2), 
next(seat1, seat2), 

compatible (name1, name 2) 

With the above program, the correct solutions are defined to be those where _1_ is 
not inferred. (This particular language, denoted N-Datalog~&, is discussed in 
[5,6], and in section 5.2.) However, _L can be inferred if a wrong choice has been 
made. This may require backtracking. Some of our languages can indeed simulate 
the control necessary to simulate backtracking. Note also that smarter algorithms 
can be easily implemented, for example one that checks compatibility whenever 
assigning a seat. [] 

4.2. NON-DETERMINISTIC FIXPOINT EXTENSIONS OF FO 

In this section, we consider fixpoint extensions of first-order logic which 
correspond to non-deterministic languages. Such extensions allow formulas that 
define several predicates for each given structure. This is achieved by a~non-de- 
terministic operator on formulas, called the witness operator. Informally, given a 
formula if(x), the witness operator Wx applied to q~(x) chooses an arbitrary 
witness x which makes ~ true. The witness operator is related to Hilbert's 
~-symbol [29]. Its semantics is quite different. 

The extension based on the witness operator is orthogonal to the fixpoint 
extensions of first-order logic corresponding to the deterministic languages. Thus, 
we will consider inflationary and non-inflationary versions of fixpoint logic with 
the W operator, denoted FO + 1FP + W and FO + PFP + W, respectively. We 
note that each "deterministic" logic has a natural W-extension. Thus, one can 
consider W-extensions of first-order logic, Horn clause logic (Datalog), etc. This 
yields a family of "non-deterministic" logics parallel to the traditional logics used 
for query languages. Following is a simple example of the use of the witness 
operator in conjunction with first-order logic. 

Example 4.2 
Consider two relations 

bonus(passenger-name) and 

records (passenger-name, flight$, day, month,  year) 

of an airline database. Relation bonus holds the names of all passengers who 
have been given a bonus for which it is necessary to have flown in March 1988. 
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The following (FO + W) formula defines a relation verification which exhibits 
one qualifying flight (flight:~ and day) for each passenger given the bonus:  

verification(n, f, d) = bonus(n) A Wfd(records(n, f, d, "March" ,  "1988")) .  [] 

More precisely, the W operator is used in conjunct ion with first-order formulas 
as follows. If q,(J?, y-') is a formula, where ~ and )7 are vectors of distinct free 
variable in q~, then W~(q,(Y', y->)) is a formula. All free variables of q~, including Z, 
remain free in W~(r  y~). 

We next define informally the semantics of the W operator.  In this context, a 
formula defines a set of predicates, i.e., the set of possible interpretations of the 
formula. Let W~(q>(~?, y--')) be a formula, where )7 is the vector of variables other 
than Z which are free in 4~- The set of predicates defined by WY'(q~(x, )7)) is the 
set of I such that for some J defined by r 
- I c J ,  

- for each )7 for which [~?, y-"] is in J for some :~, there exists a unique ~y such 
that [J?y, ~ is in I. 

Intuitively, one "witness"  2'y is chosen for each )7 satisfying 3~?ff(Y', )7). 
It is also possible to describe the semantics of the W operator using functional  

dependencies:  for each instance J defined by r )7), W~(q,(~?, )7)) defines all 
maximal sub-instances I of J such that the attributes corresponding to the 
variables in fi' form a key in I. 

Note  that, in general, Wx(Wyep(x, y)) is not equivalent 1) to Wxyq~(x, y);  
also, Wx(Wyrp(x, y)) is not equivalent to Wy(Wxr y)). To see the latter, let 
q> = R(x, y), where R is interpreted as {[0,1], [2,1], [2,3]}. Note  first that  {[0,1], 
[2,1]} and {[0,1], [2,3]} are the only possible interpretations of WyR(x, y), and 
{[0,1]}, {[2,1]} and {[0,1], [2,3]} the only possible in terpreta t ions  of 
Wx(WyR(x,  y)). It is easily seen that {[2,3]} belongs to the set of predicates 
defined by Wy(WxR(x,  y)), so 

Wx(WyR(x ,  y))  and Wy(WxR(x ,  y))  

are not equivalent. 
Al though the focus here is on FO + IFP + W and FO + PFP + W, it is useful 

to first examine in more detail the W-extension of first-order logic or relational 
algebra. Example 4.2 shows an FO + W query. Similarly, relational algebra can 
be extended with an operator Wx(R), where R is a relation and X a subset of its 
attributes (the semantics is the obvious one). It can be shown that the W-exten- 
sions of the calculus and algebra are equivalent, so we shall look just  at the 
calculus extension FO + W. However, the language FO + W suffers f rom some 
subtle drawbacks. This arises f rom the fact that two identical subformulas in a 
FO + W formula can define distinct relations due to non-determinism. Moreover,  
there is no mechanism to re-use an intermediate result defined by a non-de-  

1) Two formulas are equivalent iff they define the same set of predicates for each given structure.  
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terministic subformula. For instance, the formula 

3x (Wy(R(x ,  y ) ) ) V 3 y ( W y ( R ( x ,  y))) 

does not define 

,~y(p) U~x(p) 

for each fixedp defined by Wy(R(x, y)), but instead it defines 

7ry( q) kA ~rx( r ) 

for all independent choices of q and r among the relations defined by 

Wy(R(x ,  y)). 

To remedy this rather artificial difficulty, we must allow a mechanism to name 
subformulas. We opt for a variation of FO, denoted FO +, where a program is a 
sequence of statements of the form r := q~, where r is a relation variable and 4~ an 
FO formula. Each formula can only use relation symbols from the database or 
defined in previous statements. For example, the program 

p. '= Wy(R(x ,  y)) ;  

answer:= 3 x ( p ( x ,  y)) V 3y (p ( x ,  y)). 

now defines 

for each fixed p defined by Wy(R(x, y)). Clearly, FO + is equivalent to FO. 
However, FO++ W is more powerful than FO + W (with respect to the non-de- 
terministic transformations computed) due to the ability to re-use results defined 
by non-deterministic subformulas. 

We proceed with the non-deterministic extensions of the fixpoint logics, 
FO + IFP + W and FO + PFP + W. Formulas in these logics are obtained by 
repeated applications of first-order operators, the IFP (PFP) operator, and the 
W operator. Note that the naming problem discussed above for FO + W does not 
arise in FO + 1FP + W and FO + PFP + W because intermediate results can be 
named and re-used from one iteration to the next. Following is a simple example 
in FO + PFP + W: 

Example 4.3 
Let G be a symmetric, binary relation. Consider the formula (in FO + PFP + 

W): 

PFP(q~(G), G)(x, y),  

where 

d?(x, y ) =  [G(x, y) A~ W x y (G( x ,  y)/X G(y,  x))] .  
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It defines an orientation G' of G, where one edge [x, y] is retained for each [x, 
y] and [y, x] in G. The program removes from G one "redundant"  edge at each 
iteration. Note that an orientation G' of G cannot generally be defined by 
deterministic means, since a non-deterministic choice of the edges to be removed 
is generally required. [] 

The semantics of the IFP and PFP operators are similar to the ones for the 
deterministic case, with the complication that each stage of the iteration has 
several possible outcomes. 

In section 5 we examine the expressive power of the non-deterministic Data- 
log-like languages and fixpoint extensions of FO. In particular, we will show that 
the Datalog languages are equivalent to their fixpoint counterparts. The simula- 
tions of FO + 1FP + W and FO + PFP + W by the Datalog extensions, and the 
converse simulations, provide some interesting results on FO + 1FP + W and 
FO + PFP + W themselves. The results concern normal forms (implying the 
collapse of the respective hierarchies based on the depth of nesting of the fixpoint 
operators). In particular, it is shown that FO + IFP  + W has a " W "  normal 
form and a "W-exists" normal form on ordered databases. 

PROPOSITION 4.4 

(i) For each FO + IFP + W formula q~, there exists a first-order formula ~k 
whose free variables are ~', such that r is equivalent to 

I F P (  W ~  (~) ,  T ) ( ~  

for some i and predicate T of ~. 
(ii) For each FO + IFP + W formula 4, there exists an existential first-order 

formula ~b with free variables ~, such that r is equivalent on ordered databases to 

I F P (  W~p (.E), T )( t-') 

for some t" and predicate T of ~. 
(iii) For each FO + PFP + W formula (/), there exists an FO + W formula 

such that ~ is equivalent to 

J 'FP( +, T ) ( ~  

for some i and predicate T of ~. [] 

Remark 
It turns out that FO + PFP + W has an ex~tential normal ~ rm.  

4.3. OTHER APPROACHES 

In [39], Warren proposes a modal operator "assume" as an alternative to 
Prolog's "assert". The idea of viewing an update as a modality is elaborated in 
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[17,31]. Non-determinism is naturally incorporated in such approaches. To il- 
lustrate this, we consider the language DLL of [31]. 

Example 4.5 
Consider a database where the relation ES stores the salary of each employee, 

and the relation ED the department of each employee. A tuple AS(dep, avg) 
indicates that the average salary of department dep is avg. Consider first the 
following Prolog program: 

:-assert(ES(John, 200K)), assert( ED(John, toy)), AS(toy, avg), 

avg < 50K. 

Intuitively, this is intended to hire John in the toy department with a salary of 
200K if the average salary of the department stays below 50K. However, because 
of Prolog semantics, if the average salary after hiring John is more than 50K, 
John has nevertheless been hired. (The reader might try to write the "correct" 
Prolog program.) 

Now consider the following DLL update procedure: 

( hire ( emp, sal, dep ) ) 

,-- ( + ES(emp, sal))(( + ED(emp, dep))(AS(dep, avg) & avg < 50K)) 

A call hire(John, 200K, toy) hires John in the toy department only if after 
hiring him, the average salary of the department stays below 50K. The " + "  
symbols indicate insertions. The parentheses after the insertions in ES and ED 
indicate that after the two tuples have been inserted the condition must hold. 
Otherwise, the update is not realized (i.e., the system backtracks). Tuple inser- 
tions and deletions in DLL can be viewed as modal operators. A key difference 
with Prolog assert is that the database updates are "undone" while backtracking. 
[] 

Note that DLL is essentially non-deterministic. This is illustrated by the 
following example: 

Example 4.6 
Consider the DLL update: 

enroll(Ename)) ~ ( + secl( Ename))(size(secl, N ) & N < 30) 

( enroll ( Ename )) *-- ( + sec 2( Ename )) ( size ( sec 2, N ) & N < 30 ) 

The semantics is that, for a given employee name, a rule is non-deterministically 
chosen. One tries to enroll the employee in a section. If this does not succeed, 
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some backtracking is done. If neither section is full, the employee is enrolled in 
section 1 or 2. If they are both full, the update fails. [] 

In LDL [28,32], the primitive choice is introduced to provide a form of 
non-determinism. The choice primitive is closely related to our W-operator. We 
illustrate it with an example. 

Example 4. 7 
Suppose that we have a relation emp that relates employees and departments 

and that we want to select one employee per department. To do that, we use the 
LDL rule: 

selectEMP ( Name ) *-- emp ( Name, Dept ), choice ( ( Dept ), ( Name )). 

The choice predicate forces the non-deterministic choice of any maximal subset 
of emp satisfying the functional dependency Dept ~ Name. It is therefore similar 
to: WName(emp). [] 

It is observed that the choice primitive can be viewed as an alternative for the 
cut in Prolog. More precisely, a "pure" non-deterministic version of Prolog 
without meta-predicates and without left-to-right search order is considered. It is 
shown that in this context, cut can be simulated using choice. 

A further use of non-determinism in logic programs is proposed in [33]. They 
provide a non-deterministic semantics for Datalog extended with negation, where 
each stable model is a possible outcome of the program. Note that it is not always 
possible to compute one stable model of a program deterministically. This is 
illustrated by the following example from [33]. 

Example 4.8 
Consider the following program, where takes(student, course) is the input 

predicate and one-student(student, course) is the output predicate: 

takes ( St, Crs ), 
one-student(St, Crs ) 

different-student( St,  Crs ) 

St '  ~ St, takes (St ,  Crs), 
different-student(St, Crs ) ~-- 

one-student (S t ' ,  Crs ) 

In the stable models of the program, relation one-student contains one arbitrary 
student associated with each course. With the non-deterministic semantics pro- 
posed in [33], each of the stable models is a possible outcome of the program. 
Note that this is equivalent to Wst( takes( St, Crs)). Also note that there can be no 
deterministic program producing one of the stable models, because then generic- 
ity would be violated. In other words, producing any of the stable models requires 
a non-deterministic choice. [] 
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It is shown in [33] that the non-deterministic semantics based on stable models 
subsumes the choice construct described above, and thus the cut in Prolog. 

Lastly, in [36] non-determinism is introduced in logic programs using a 
construct which assigns to tuples in a relation arbitrary integer tuple identifiers. 
The power of the construct is similar to that provided by an arbitrary ordering of 
the domain. If arithmetic operations on integers (such as successor) are also 
allowed, the language becomes computationally complete. The use of operations 
like successor is similar to the use of "invented" values in [5]. Indeed, both 
mechanisms provide an unbounded number of values not in the database which 
can be used throughout the computation, which results in computational com- 
pleteness. 

5. Expressive power 

In this section, we present results of [5-7] on the expressive power Of the 
non-deterministic languages considered in the previous section: N-Datalog ~* 
and FO + PFP + W, then N-Datalog ~ and FO + 1FP + 14/" and finally N-Data- 
log*. As discussed in section 2, the most significant result involves expressibility 
of NDB-PTIME. Also of interest is the close connection established between the 
Datalog-like languages and the fixpoint logics. 

The Datalog extensions and the fixpoint logics contain, roughly, two categories 
of languages. The first includes N-Datalog ~ and FO + IFP + W, and consists of 
languages where termination is always guaranteed in polynomial time. This is due 
to the increasing use of space, a consequence of the absence of deletion. Such 
languages are called inflationary. The other languages - N-Datalog ~ *, FO + PFP 
+ W, and N-Datalog* - are non-inflationary, in that their use of space is 
non-increasing due to the ability to delete, or "re-use" space. Since a fixed 
schema is used throughout the computation and relations can only contain 
constants present in the input or program, the amount of space which can be 
built by programs in our languages is bounded by a polynomial in the size of the 
input. Thus, for the non-inflationary languages, the maximum expressive power 
which can be expected is NDB-PSPACE. On the other hand, for inflationary 
languages the use of space is increasing throughout the computation, so the 
maximum power that can be expected is NDB-PTIME. It turns out that NDB- 
PTIME and NDB-PSPACE can indeed be expressed using the above languages. 
We examine first the non-inflationary languages, then turn to the inflationary 
languages. 

5.1. THE POWER OF NON-INFLATIONARY LANGUAGES 

We consider here the expressive power of the non-inflationary languages - 
N-Datalog ~*, FO + PFP + W, and N-Datalog*. As discussed above, NDB- 
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PSPACE is a bound on the expressive power of non-inflationary languages. We 
show that, in fact, N-Datalog ~* and FO + P F P  + W compute precisely the 
NDB-PSPACE transformations. In particular, the equivalence between N-Data- 
log ~* and the seemingly more powerful FO + P F P  + W is surprising. This 
extends analogous results in the deterministic case on the equivalence of Data- 

log ~ and fixpoint logic. 

THEOREM 5.1 
Let -r be a transformation from a database schema R to a single relation S not 

in R. The following are equivalent: 
- ~- is defined by an FO + P F P  + W formula, 
- ~- is the effect of an N-Datalog ~* program, 
- ~- is in NDB-PSPACE. [] 

The proof that FO + P F P  + W expresses NDB-PSPACE is based on a simula- 
tion of the procedural language STL, which was defined in [4] and shown to 
express NDB-PSPACE. For the equivalence of FO + P F P  + W and N-Datalog ~ *, 
the non-trivial part of the proof involves the simulation of FO + P F P  + W by 
N-Datalog ~*, since N-Datalog ~* seemingly has much weaker control capability 
than FO + PFP + W. Surprisingly, it turns out that the deletions provide in fact 
the ability to simulate explicit control. To compute the fixpoint operator on a 
formula, some rules are used to "simulate" the formula that is iterated, and 
others for the control of the iteration. Since rules are allowed to fire at any time, 
there is no guarantee that the control and simulation rules fire in the intended 
sequence. Therefore, a journal of the "updates" is kept. If an error in the 
sequencing of the rules is detected, "roll-back" is possible using the journal and 
deletions. We will see that some difficulties arise in the analogous simulation for 
the inflationary case due to the lack of deletions. 

Let us note again that the non-deterministic mechanisms present in the above 
languages allow expressing not only additional non-deterministic transforma- 
tions, but also additional deterministic ones. For example, recall that the lan- 
guages FO + PFP and Datalog ~* cannot express the parity query. However, this 
query is expressible in the non-deterministic counterparts of these languages. For 
instance, parity is expressed by the N-Datalog ~* program: 

o d d , - , R ( x )  ~ R ( x ) , - , o d d  

- ~ o d d , ~ R ( x )  ~ R ( x ) ,  odd. 

The issue of the deterministic transformations expressible using non-deterministic 
languages is examined in detail in the next section. 

As discussed in the previous section, the equivalence between the languages 
FO + PFP + W and N-Datalog ~* yields a normal form for the language FO + 
P F P  + W. 
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The ability to perform what amounts to deletion in the non-inflationary 
languages leads to the existence of non-terminating programs. We briefly address 
next this issue of practical interest, discussed in detail in [2,3]. 

In non-deterministic programs, termination comes in two flavors. It may be 
that, on given input, a// computations of the program terminate. In this case the 
program is said to be loop-free (on the given input). A weaker version is that, for 
each input, there is some terminating computat ion producing an output, but there 
may be other computations which are non-terminating. In this case the program 
is called total. Note that loop-freedom implies totalness, but  the converse is 
generally false. Unfortunately,  static checking of totalness or loop-freedom (on all 
inputs) is generally unfeasible, as shown by the following. 

THEOREM 5.2 

It is undecidable, given a N-Datalog ~* or FO + W + PFP program, whether 
the program is total or loop-free. [] 

The language N-Datalog* (deletions in heads but  no negation in bodies) 
provides an interesting special case where, surprisingly, the distinction between 
queries and updates is crucial. 

PROPOSITION 5.3 

- It is decidable whether a given N-Datalog* query is loop-free or total. 
- It is undecidable whether a given N-Datalog* update is loop-free or total. [] 

While static checking of termination is unfeasible in general, the situation is 
better for dynamic checking. First, given a N-Datalog ~* or FO + W +  PFP 
program and an input, it is decidable whether the program is loop-free or total on 
that particular input. Intuitively, this is so because one need only look at 
computations of length exponential in the size of the input to detect a cycle. 
Moreover, non-termination can be detected within the languages themselves. More 
precisely, we introduce a notion of "loop-free simulation" of programs. Let F be 
a program. Let / "  be a program using the predicates in /" and a distinguished 
0-ary predicate (not in s called defined. Then F '  is a loop-free simulation of F 
iff on each input I, F '  always stops and: 
- if /" has a non-terminating computation on input I, then there is a computa- 

tion of F '  which stops with defined set to false, 
- if F has a computation on input I yielding output J, then there is a 

computat ion of s  on input I which stops with defined set to true and such 
that the projection of the output on the predicates of F is J. 

Furthermore,  this characterizes all computations of F '  with input over the 
predicates of /'. 

A program F has a loop-free simulation in a given language iff ~there is a 
program s  in that language which is a loop-free simulation f o r / ' .  
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We now have: 

THEOREM 5.4 
- Each N-Data log  ~* program has a loop-free simulation in N-Data log  ~* 
- Each F O  + W + P F P  program has a loop-free simulation in F O  + W + P F P .  

[] 

Moreover, for each program in F O  + P F P  + W (N-Da ta log  ~* ), a correspond- 
ing loop-free simulation program can be constructed effectively and efficiently. 

5.2. THE POWER OF INFLATIONARY LANGUAGES 

We consider here the expressive power of the inflationary languages - N-Data-  

log ~ and F O  + I F P  + W. As discussed earlier, inflationary programs are guaran- 
teed to terminate in polynomial time. The main result of the section is to exhibit 
(inflationary) languages which capture exactly the transformations in NDB-  
PTIME. In particular, the following theorem shows that F O  + 1FP + W is such a 
language. However, the symmetry between the Datalog-like languages and the 
fixpoint languages breaks down in the inflationary, non-deterministic case. In- 
deed, we will show that N-Data log  ~ is strictly weaker than F O  + I F P  + W but  
will augment the language to compensate for the loss of expressive power. 

THEOREM 5.5 
Let ~- be a transformation from a database schema R to a single relation S not 

in R. The following are equivalent: 
- ~- is in NDB-PTIME,  
- ~" is defined by an F O  + I F P  + W formula. [] 

We now turn to N-Data log  ~. It is easy to see that each N-Data log  ~ transfor- 
mation is in NDB-PTIME.  It turns out that there are simple N D B - P T I M E  
queries that cannot be expressed in N-Data log  ~. We show this next, and then 
show how N-Data log  ~ can be augmented to increase the expressive power  to 
NDB-PTIME.  

The strict inclusion in NDB-PTIME,  is shown using the following example. 

E x a m p l e  5. 6 

Let R = {P(A) ,  Q ( A B ) } ,  S = {S(A)}.  Then it can be shown that there is no 
N-Data log  ~ program which computes P -  ~rA(Q) in S. It is straightforward to 
obtain a formula in F O  + 1FP + W which has this effect. [] 

The precise characterization of the power of N-Data log  ~ is open. We note, 
however, that N-Data log  ~ expresses exactly N D B - P T I M E  in the presence of 
order. 
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As seen in the example above, there are very simple transformations that 
N-Datalog ~ cannot compute. We now look at the origin of this weakness and 
show how it can be corrected. Note that N-Datalog ~ does not provide sufficient 
control capability to simulate the composition of two programs. Indeed, P -  
~rA(Q) can be obtained as the composition of the mappings defined by the 
following two rules: 

T ( x )  ~ Q ( x ,  y ) ,  and 

S ( x )  ~ P ( x ) , ~ T ( x ) .  

The weak control capability of N-Datalog ~ makes it impossible for programs in 
this language to simulate the explicit control inherent in FO + IFP + W and 
necessary to compute NDB-PTIME transformations. Note that, in the case of 
N-Datalog ~*, the control needed is provided by deletions. For example, the 
query in example 5.6 is computed by the following N-Datalog ~* program (note 
that this is in fact an N-Datalog* program): 

S ( x )  ~- P ( x )  

~ S ( x ) , ~ P ( x )  ~ Q ( x ,  y )  

The constructs we add to N-Datalog ~ essentially provide sufficient control to 
simulate composition (in an inflationary manner). We consider two alternative 
constructs. The first construct allows for an "inconsistency" symbol 3_ to appear 
in heads of rules. The resulting language is denoted N-Datalog ~ 3_. The idea is 
that if such a symbol is derived in a computation, that particular computation is 
abandoned. The second construct is universal quantification in bodies of rules 
and yields the language N-Datalog~V. We first present N-Datalog~.l_ and 
N-Datalog ~ V. 

N-Datalog ~ with inconsistency symbol: N-Datalog ~ _L 
The language N-Datalog ~ is extended with the symbol 3- that can occur only as 
a literal in the head of rules. A pair (I, J) is in the effect of a N-Datalog~3- 
program iff J is obtained by a computation where 3- is not derived. 
N-Datalog ~ with universal quantification: N-Datalog~V 
The language N-Datalog ~ is extended to allow rules of the form: 

A 1 . . . . .  A q  <---- V x B  1 . . . .  , O n ,  

where ~' is a sequence of variables occurring only in the body of the rule. Let f 
be the vector of the variables occurring in B1,..., B, and not in 2, and v be a 
valuation of f .  The rule is fired with valuation v if for each extension b of v to 
the variables in s (which valuates variables in ~? in the active domain), bB1 
A ... A bB, holds. 

To illustrate these two languages, we show how to compute the query of 
example 5.6 with N-Datalog~V or N-Datalog ~ 3- programs. 
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Example 5. 7 
The mapping P -  rrA(Q) is computed by the following N-Datalog~V program: 

T(x )  ~ V y R ( x ) ,  ~ Q ( x ,  y) .  

An N-Datalog ~ • program computing the same query is: 

PROJ(x )  ~ ~done-with-proj, Q(x ,  y)  

done-with-proj *-- 

• ~ done-with-proj, O(x ,  y) ,  ~ P R O J ( x )  

T ( x )  *-- done-with-proj, R ( x ) , ~ P R O J ( x ) .  

Intuitively, in N-Datalog~V, one can check that a stage is completed (using V) 
before proceeding to the next one; this allows simulating composition. In N- 
Datalog ~ L ,  a detected error leads to the derivation of •  The following shows 
that in fact these constructs provide sufficient power to bridge the gap between 
N-Datalog ~ and NDB-PTIME. 

THEOREM 5.8 
Let (R, S) be an i-o schema with R and S disjoint, and ~- a query. The 

following are equivalent: 
- ,r is in NDB-PTIME,  
- ,r is defined by a N-Datalog ~ _1_ program, and 
- "r is defined by a N-Datalog~V program. [] 

This provides a three-way characterization of NDB-PTIME transformations: 
FO + IFP + W (inflationary logic), N-Datalog ~ V, and N-Datalog ~ •  

As mentioned in section 4, the simulation of FO + PFP + W by the Datalog 
extensions, and the converse simulations, provide a normal form for FO + PFP + 
W. 

We finally consider briefly the language N-Datalog* (no negations in bodies 
but deletions allowed in heads of rules). We first note the interesting fact that, 
despite the deletions, N-Datalog* queries are essentially inflationary. 

LEMMA 5.9 
Let P be an N-Datalog* query and I an instance over the EDB predicates of 

P. Let ( I  0 = I . . . . .  I n = J )  be a computation of P on input I reaching a fixpoint 
J. Then (i) for each i, I, c / , + 1  and (ii) each computat ion of P on input I 
terminates in J. [] 

It should be noted that the lemma does not imply that no tuple is deleted in 
the computation of an N-Datalog* query. It only indicates that computat ions 
where deletions occur never terminate. Furthermore,  one can show that if an 
N-Datalog* query is "loop-free" (on each input all computations terminate), then 
there exists an equivalent N-Datalog (so also an equivalent Datalog) query. The 
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lemma and remarks do not extend to updates. For example, the lemma fails for 
the program ~ Q ( x )  *-- Q(x). 

There is no precise characterization of the expressive power of N-Datalog*. We 
show that N-Datalog ~ and N-Datalog* are incomparable. 

Example 5.10 
Consider the program P: 

R ( x )  ~ P ( x ) ,  ~ Q ( x )  

W ( x ,  y)  ~- P ( x ) ,  R ( y )  

Suppose that the input is { P, Q }. One can show that no N-Datalog* program 
can yield the same effect. (To see this, consider the inputs (P(1))  and (P(1),  
Q(1)}). [] 

It is trivial to see that given an N-Datalog* program P and a predicate Q 
occurring in P, then there does not always exist an N-Datalog ~ program which is 
equivalent to P for Q. (To see that, choose Q to be an input predicate and have P 
be the program that empties Q. With the inflationary semantics, it is not possible 
to invalidate an input fact.) However, N-Datalog* is not included in N-Datalog ~ 
for more interesting reasons. Indeed, we next show that there exists an N-Data- 
log* program P and a non-input predicate Q of P, such that there does not exist 
an N-Datalog ~ program which is equivalent to P for Q. 

Example 5.11 
Consider example 5.6. Recall that it is not possible to compute P - ~rA(Q) in S 

using N-Datalog ~. This can be done in N-Datalog* using the simple program: 

S ( x )  , -  P ( x )  
[] 

~ S ( x ) , ~ P ( x )  *-- Q(x ,  y)  

Remark 
Throughout the section, the issue of expressive power was intertwined with the 

ability of various languages to simulate explicit control. The languages which 
express complexity classes of transformations are typically capable of simulating 
explicit control. For instance, recall that N-Datalog -~* and N-Datalog~V are 
equivalent to languages with powerful explicit control (composition and iteration) 
such as FO + PFP + W and FO + IFP + W. This indicates that N-Datalog ~* 
and N-Datalog ~ V are capable of simulating explicit control such as composition 
and iteration of programs in the same language. Thus, if a user chooses to specify 
the semantics of a program using compositions F; F '  and iterations (F)* of 
programs in the language, this can be allowed and the resulting program can still 
be compiled within the language. As suggested in [21], this allows for flexible 
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specification of semantics. For instance, if a compiler for N-Datalog ~* is 
available but the user prefers a stratified semantics involving strata F 1 . . . .  , F,, the 
user can express the query as (F1)* ; . . .  ; (F , )*  (where each F, is a N-Datalog ~* 
program), which can then be compiled into one N-Datalog ~* program. 

6. Connections with determinism 

6.1. FUNCTIONAL FRAGMENTS 

In this section we consider the ability of various non-deterministic languages to 
express deterministic transformations. We characterize the functional fragments 
of our languages. We also consider the deterministic transformations definable by 
considering the "possible" and "certain" answers of a non-deterministic transfor- 
mation, in the spirit of queries on databases with incomplete information. The 
results for inflationary languages (no deletions) concern queries, while for non-in- 
flationary languages they concern arbitrary transformations. The results are from 
[31. 

The notion of functional fragment expressed by a language is defined next. 

DEFINITION 6.1 
The functional fragment of a (non-deterministic) language is the set of de- 

terministic transformations which are effects of programs in the language. The 
functional fragment of a language L is denoted f unc t (L) .  [] 

In the previous section we characterized the non-deterministic transformations 
expressible in the various languages. These results can be used to characterize the 
functional fragments expressible in these languages. Thus, we have: 

THEOREM 6.1 
(1 )  funct( N-Datalog~V) = funct( N-Datalog ~ z )  = funct( FO + IFP + W )  = 

DB-P TIME.  
(2)  funct( N-Datalog ~* ) = funct( FO + PFP + W )  = D B - P S P A C E .  [] 

It can be shown that funct(N-Datalog ~) c DB-PTIME and f unc t (N-  
Datalog * ) c DB-PSPACE. 

The above does not provide languages that express precisely D B - P T I M E ,  
DB-PSPA CE since non-deterministic transformations can also be expressed and, 
as will be seen in the next subsection, it is undecidable if a program is determinis- 
tic. Instead, the result shows the power of non-deterministic constructs. Thus, 
augmenting a deterministic language L with the witness operator may allow 
expressing more deterministic transformations than in L. For  instance, FO + 
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IFP + W can express the DB-PTIME queries, while FO + IFP alone cannot 
express the simple "parity" query. 

It is of interest to understand if the increase in power is due to the witness 
operator alone, or if the interaction with recursion is needed. We conjecture that 
recursion is needed in addition to the W operator to obtain an increase in power 
with respect to the deterministic transformations computed. More precisely: 

Conjecture: 

funct( FO + W )  = funct( FO+ + W )  = FO. 

An alternative way of obtaining deterministic transformations using non-de- 
terministic programs is suggested by the work of [20] on incomplete information. 
Indeed, there is a natural connection between incomplete information and 
non-determinism. As noted in [1], incomplete information can be seen as resulting 
from incompletely specified (therefore non-deterministic) updates. The notions of 
possible and certain answers in [20] suggest the following definition: 

DEFINITION 6.2 
Given a non-deterministic program F, the image of an input I under F with 

the possibility semantics (denoted poss(I,  f')) and its image using the certainty 
semantics (denoted cert(I, F)) are defined by: 

poss(I ,  F ) = U (  J l ( I ,  J )  ~ e f f ( F ) )  and 

cert(I ,  F ) = N {  J I ( I ,  J )  ~ e f f ( F ) ) .  

The deterministic transformation expressed by a program F under possibility 
semantics is denoted poss(I'), and under certainty semantics cert(F). For a 
language L, poss(L) = (poss(F) IF ~ L)  and cert(L) = (cert(F) IF ~ L}. 

The poss or cert semantics yield significant power: 

THEOREM 6.2 
( 1 ) poss( FO + IFP + W)  = poss(N-Datalog ~ V) = poss(N-Datalog ~ 3_ ) = DB- 

NP. 
(2) cert( FO + IFP + W)  = cert( N-Datalog~V) = cert( N-Datalog ~ J_ ) = DB- 

coNP. 
(3) cert( FO + PFP + W)  = poss( FO + PFP + W)  = cert( N-Datalog ~* ) = 

poss ( N-Datalog~ * ) = DB-PSPA CE. [] 

Note that, for the non-inflationary languages (part (3)), the poss and cert 
semantics do not yield additional power. In particular, these semantics can be 
simulated within the functional fragment of each language. 

It turns out that, in the inflationary case, recursion is superfluous with the 
powerful possibility and certainty semantics, as shown next 2) 

z) 3s0 and VSO denote the existential and universal second-order queries, known to express 
DB-NP and DB-coNP, respectively [16]. 
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THEOREM 6.3 
(1)  poss( FO§ + W ) =  3SO = DB-NP.  
(2)  cert( FO + + W )  = VSO = DB-coNP. [] 

We illustrate by an example a simulation of existential second-order features. 
Consider a unary relation R and the parity query "are  there an even number  of 
tuples in R?". The query is computed by poss(F), where F is the following 
FO § + W query with input R and output even: 

partition(u, z )  = W z ( R ( u )  A ((z = 0 V z = 1))); 
map(u,  v) = Wu[Wv(part i t ion(u ,  1)/xpart i t ion(v,  0))]; 
even = V u3v(  map(  u, v) V map(v ,  u)). 

The first statement defines a partition of R in two sets; the second defines a 
(partial) one-to-one mapping between the two sets; and the last checks that the 
mapping is total and onto, in which case the sets have equal size and [R [ is even. 

6.2. CHECKING FUNCTIONALITY 

We argued that non-deterministic programs can sometimes be used to compute  
more efficiently deterministic queries. For instance, we saw that the language 
FO + IFP + W expresses exactly the NDB-PTIME queries. Among the queries in 
NDB-PTIME, some happen to be deterministic. Indeed, the deterministic queries 
in NDB-PTIME are exactly the queries in DB-PTIME. Such queries are com- 
puted by non-deterministic programs which happen to produce a unique output  
for each input. Obviously, this property is crucial if one is to use non-determinis- 
tic programs to compute deterministic queries. The property, called functionality, 
is examined in the present section (most of the results are from [2,3]). We define 
functionality next. 

DEFINITION 6.3 
Let F be a program and Q an output predicate of I7 /~ is functional with 

respect to Q iff for each input of F, all outputs have identical projections on Q. 

It is obvious that FO + PFP + W, FO + IFP + W, N-Datalog ~, and N-Data- 
log ~* are generally not functional with respect to given output predicates. On the 
other hand, N-Datalog programs are obviously functional. The case of N-Data- 
log* is more interesting. Once more, the distinction between queries and updates 
becomes essential. 

PROPOSITION 6.4 
(i) All N-Datalog* queries are functional; 
(ii) there exist N-Datalog* updates that are not  functional. [] 



180 S. Abiteboul, V. Vianu / Non-determinism 

Part (i) is a consequence of lemma 5.9. To see (ii), consider the N-Datalog* 
update F where F consists of the single rule: 

--,e(x,  y)*-- P(x ,  y),  P ( y ,  x)  

and the input I = { P(O, 1), P(1, 0)}. [] 

It turns out that, not surprisingly, functionality is undecidable for languages 
where it is not guaranteed. Thus, we have the following. 

THEOREM 6.5 
(i) It is undecidable, given an N-Datalog ~ program F and an output predicate 

Q whether F is functional for Q. 
(ii) It is undecidable, given an N-Datalog* update F, and an output predicate 

Q whether F is functional for Q. [] 

Note that the above result implies undecidability of functionality for the 
languages FO + IFP + W and FO + PFP + W. In fact, it turns out that func- 
tionality remains undecidable even for FO + W (by reduction of the implication 
problem for functional and inclusion dependencies, known to be undecidable 
[141). 

Remark 
The undecidability results carry over for the stronger notion of "global" 

functionality. A program is globally functional if it is functional with respect to 
every predicate occurring in the program. One can also consider a notion of 
"uniform functionality", where all predicates are both input and output. This is 
similar in spirit to the notion of uniform equivalence [34]. The results of [34] 
suggest that uniform functionality might be decidable, but this question remains 
open. [] 

The above undecidability results show that static checking of functionality is 
unfeasible. It turns out that, as in the case of loop-freedom, functionality can 
sometimes be checked dynamically. More precisely, we shall say that functionality 
can be detected dynamically within a language L iff for each program F in L 
and output predicate Q of F, there exists a program F '  in L such that: 
- the input predicates of F and F '  are the same, and the output  predicates of F '  

are those of F together with a 0-ary predicate (not in F), called functional; 
- on each input I on which F is not functional (with respect to Q), F '  always 

stops with the value of functional set to false; 
- on each input I on which F is functional (with respect to Q), all computations 

of F '  produce the same results as F (on the common output predicates) and 
the value of functional is set to true; 
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- if F has only terminating computation on input I, then F '  has only terminat- 
ing computations on input I. 
We now have: 

THEOREM 6.6 
Functionality can be checked dynamically within the languages N-Datalog ~* 

and FO + PFP + W. 

Proof (sketch) 
Clearly, a program is functional with respect to Q on a given input I iff the 

union and intersection of all possible outputs (on Q) coincide. Thus, it is 
sufficient to compute the union and intersection of possible outputs (over Q). It is 
easily seen that the membership problem for the union and intersection of the 
outputs is in NPSPACE and co-NPSPACE, respectively. By Savitch's theorem, 
both problems are in PSPACE. Since the above languages can express all 
DB-PSPACE queries, it can be seen that they are able to compute the union and 
intersection of outputs, and thus check functionality. [] 

It turns out that functionality cannot be checked dynamically within the other 
languages considered here. The argument for N-Datalog~-l., N-Datalog~V, 
FO + IFP + W programs and N-Datalog* updates is based on complexity. 
Indeed, it can be shown that checking functionality dynamically within each of 
these languages is NP-hard and in DP. In fact, the problem is NP-hard even for 
FO++ W (by reduction of 3-colorability of a graph)! On the other hand, the 
inflationary languages stay within polynomial time, and the language N-Datalog* 
is also in polynomial time in view of lemma 5.9. This makes it highly unlikely that 
checking functionality is possible. For the language N-Datalog ~, there is a direct 
proof that functionality cannot be checked dynamically. The proof technique is 
the same as the one used for showing that the query in example 5.6 is not 
expressible in the language. 

6.3. DETERMINISTIC VS. NON-DETERMINISTIC SEMANTICS 

In the previous section we looked at functionality, which is the property of a 
non-deterministic program of computing unique results for given inputs. Note 
that, although such programs compute deterministic transformations, it is not 
necessarily true that the non-deterministic semantics coincides with the determin- 
istic semantics. The latter property is nonetheless interesting for different reasons 
related to optimization. Indeed, as discussed in [35], implementing a non-de- 
terministic program with deterministic semantics allows more efficient processing 
of the query using parallelism. This is due to the fact that several instantiations of 
rules can be "fired" in parallel without changing the final result. In this section 
we look at when the non-deterministic semantics of a program in the Datalog-like 
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languages coincides with the deterministic semantics. We are concerned with 
programs that can be assigned both a deterministic and a non-deterministic 
semantics, i.e. the rules have single-literal heads, and the equality predicate is not 
used. The coincidence of semantics is defined next relative to a predicate. The 
results are from [2,3]. 

DEFINITION 6.4 
Let F be a program in both N-Data log  ~X*> and Datalog ~>~ *> and an output 

predicate Q. The deterministic and non-deterministic semantics of F with respect 
to Q coincide iff for each input I of F the projection on Q of the output under 
the deterministic semantics equals the projection on Q of every output under the 
non-deterministic semantics. [] 

We first exhibit an example which shows that functionality and coincidence of 
deterministic and non-deterministic semantics are distinct properties. 

E x a m p l e  6. 7 

Consider the program: 

A ~ ~ A , ~ B  
B ~ ~ A , ~ B  
C ~ A , - ~ B  
C *-- ~ A ,  B 
A ,--- C 
B *-- C .  

Note first that the program, with non-deterministic semantics, is functional for all 
predicates. However the deterministic and non-deterministic semantics are differ- 
ent (C becomes true with non-deterministic semantics and stays false with 
deterministic semantics, assuming that all predicates are initially false). [] 

We now look at the coincidence of deterministic and non-deterministic 
semantics. Obviously, for programs without negation, the two semantics coincide. 
For Datalog ~ queries, the above example shows that the two semantics may be 
distinct. As shown next, one cannot decide, for Datalog ~ and N-Data log  ~ 

queries, whether the deterministic and non-deterministic semantics coincide. 

THEOREM 6.8 
It is undecidable whether for a given program F in both N-Data log  ~ and 

Datalog ~ and an output predicate Q, the deterministic and non-deterministic 
semantics of F coincide for Q. [] 

Let us now consider again the special case of N-Data log* .  In this case again, 
the deterministic and non-deterministic semantics may differ, as shown by the 
following: 
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Example 6.9 
Consider the query F consisting of the rules: 

-~Q*--A, Q ~ A ,  ~ A ~ Q .  

With non-deterministic semantics, the program is functional and Q is derived (Q 
is initially false and A true). With deterministic semantics, Q is never derived. [] 

The decidability issue for N-Datalog* highlights again the difference between 
queries and updates. Indeed, we have: 

THEOREM 6.10 
(i) It is decidable whether, for a given N-Datalog* query and ouput predicate, 

the deterministic and non-deterministic semantics coincide with respect to the 
output  predicate. 

(ii) It is undecidable whether, for a given N-Datalog* update and ouput 
predicate, the deterministic and non-deterministic semantics coincide with respect 
to the output predicate. 

7 .  C o n c l u s i o n  

We motivated and studied the use of non-determinism in logic-based lan- 
guages, primarily database queries and updates. We argued that non-determinism 
arises naturally in various circumstances such as: 
- incomplete specification of queries or updates, 
- viewing a given query or update at different levels of abstraction. 
Allowing incomplete specification of queries or updates is sometimes simply a 
matter of convenience for the user (remember the Starving Frenchman!). More 
importantly, there are natural queries or updates which require non-deterministic 
implementations because they are not generic, so they cannot be computed by 
any deterministic program (recall example 4.3 on computing an orientation of a 
graph). In the context of logic programming, it was suggested that some model- 
based semantics are naturally non-deterministic, since they place on equal footing 
several models with certain properties, each of which violates genericity and so 
cannot be selected deterministically (see example 4.8 based on [33]). 

When a transformation requires a non-deterministic choice, this is due to the 
fact that not enough information is available to make a deterministic choice. This 
can sometimes be compensated by viewing the transformation at a lower level of 
abstraction, where more information may be available. Thus, there is an intimate 
connection between non-determinism and abstraction: a query which is non-de- 
terministic at one level of abstraction may become deterministic if viewed at a 
lower level of abstraction. This may occur in the context of computat ion con- 
nected to a type hierarchy. It also suggests a connection between non-de- 
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terminism and the data-independence principle. This is captured in the meta-the- 
orem relating expressiveness by deterministic languages in the presence of order 
to expressiveness by non-deterministic languages (section 3). In particular, queries 
expressible by a deterministic language at one level of abstraction may not be 
expressible in the same language when viewed at a higher level of abstraction, but 
may instead be expressible by a non-deterministic variation of the language. As a 
case in point, the parity query cannot be expressed by the fixpoint queries (e.g. 
FO + IFP), but can be expressed either by the fixpoint queries in the presence of 
order (which amounts to changing the level of abstraction) or by a non-determin- 
istic extension of the fixpoint queries (e.g., FO + IFP + W). These trade-offs 
extend to all the transformations computable in polynomial time. 

We identified a trade-off between determinism and expressive power. In 
particular, adding non-deterministic constructs to a language may allow comput- 
ing more deterministic transformations than in the original language. Indeed, we 
showed that non-deterministic constructs allow expressing low complexity classes 
of deterministic transformations, whereas it is conjectured that no deterministic 
languages expressing such "nice" classes exist. We characterized the deterministic 
transformations expressible in various languages (their functional fragments). We 
exhibited languages whose functional fragments are DB-PTIME and DB- 
PSPACE. It would also be of interest to exhibit languages with functional 
fragments of lower complexity. 

One can also view non-deterministic transformations as incompletely specified 
transformations leading to databases with incomplete information. We consid- 
ered deterministic semantics for such transformations in the spirit of possible and 
certain answer semantics to queries on databases with incomplete information. 
However, the classes of deterministic transformations expressed with possibility 
and certainty semantics have relatively high complexity (DB-NP and DB-coNP). 
It appears that the possibility and certainty semantics dominate the iteration and 
fixpoint constructs with respect to expressive power (see theorem 6.3). 

We considered several issues of practical interest arising from the use of 
non-deterministic programs to compute deterministic transformations, such as 
checking if a program is deterministic and verifying termination. The results 
showed that static checking of such properties is generally impossible, but 
dynamic checking is feasible in some of the languages. Some of the results yielded 
surprising distinctions between queries and updates. 

Two families of non-deterministic languages were emphasized here: Datalog- 
like languages with fixpoint semantics, and non-deterministic extensions of 
fixpoint logic using the witness operator W. The properties of logics with the W 
operator are not yet completely understood. (For instance no axiomatization is 
known for FO + W, if indeed one exists.) Strong connections were established 
among the two families of languages. On the one hand, the equivalence of 
Datalog-like languages with the W-extensions of the fixpoint logics shows that the 
complex fixpoint logics, which provide ample explicit control, have simple normal 
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forms (see proposi t ion 4.4). On the other  hand ,  it shows that  some of the 
Datalog-l ike languages are capable of  s imulat ing explicit control,  which allows 
for more flexible specification of p rogram semantics within each language, using 
p rogram composi t ion and  i terat ion (see remark,  section 5). 

Opt imizat ion issues in the presence of non-de te rmin i sm remain largely unex- 
plored. We noted  that  coincidence of  non-determinis t ic  and  determinis t ic  
semantics for Datalog-l ike programs (or individual  rules) provides one source of 
opt imizat ion.  However,  non-de te rmin ism itself provides a potent ia l  source of  
opt imizat ion by allowing a certain degree of  f reedom in the computa t ion .  Only  
pre l iminary  investigations exist on such opt imizat ion  (e.g., [28]). This f reedom of 
choice could also be exploited in concurrency control.  

Acknowledgement 

The authors  wish to thank Eric Simon for useful discussions on the material  
presented here. 

References 

[1] S. Abiteboul and G. Grahne, Update semantics for incomplete databases, Int. Conf. on Very 
Large Data Bases (1985) 1-12. 

[2] S. Abiteboul and E. Simon, Fundamental properties of deterministic and non-deterministic 
extensions of Datalog, submitted to Theor. Comp. Sci. 

[3] S. Abiteboul, E. Simon and V. Vianu, Non-deterministic languages to express deterministic 
transformations, Proc. ACM SIGACT-SIGMOD-SIGART Syrup. on Principles of Database 
Systems (1990) pp. 218-229. 

[4] S. Abiteboul and V. Vianu, Procedural languages for database queries and updates, J. Comp. 
Syst. Sci. 41 (2) (1990). 

[5] S. Abiteboul and V. Vianu, Procedural and declarative database update languages, Proc. ACM 
SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems (1988) pp. 240-250. 

[6] S. Abiteboul and V. Vianu, Datalog extensions for database queries and updates, INRIA 
Technical Report No.715 (1988), to appear in J. Comp. Syst. Sci. 

[7] S. Abiteboul and V. Vianu, Fixpoint extensions of first-order logic and Datalog-like languages, 
Proc. Symp. on Logic in Computer Science (1989) pp. 71-79. 

[8] S. Abiteboul and V. Vianu, A transaction-based approach to relational database specification, 
J. ACM 36(4) (1989) 758-789. 

[9] S. Abiteboul and V. Vianu, The connection of static constraints with determinism and 
boundedness of dynamic specifications, Proc. 3rd Int. Conf. on Data and Knowledge Bases 
(Morgan Kaufmann, 1988) pp. 324-334. 

[10] L. Brownston, R. Farrel, E. Kant and N. Martin, Programming Expert Systems in OPS5 
(Addison-Wesley, 1985). 

[11] A.K. Chandra, Programming primitives for database languages, Proc. ACM Symp. on Princi- 
ples of Programming Languages, Williamsburg (1981) pp. 50-62. 

[12] A.K. Chandra and D. Harel, Computable queries for relational databases, J. Comp. Syst. Sci. 
21(2) (1980) 156-178. 

[13] A.K. Chandra and D. Harel, Structure and complexity of relational queries, J. Comp. Syst. Sci. 
25(1) (1982) 99-128. 



186 S. Abiteboul, V. Vianu / Non-determinism 

[14] A. Chandra and M. Vardi, The implication problem for functional and inclusion dependencies 
is undecidable, SIAM J. Comp. 14(3) (1985) 671-677. 

[15] E. Dahlhaus, Skolem Normal Forms Concerning the Least Fixpoint, Computation and Logic, 
Lecture Notes in Computer Science (Springer Verlag, 1987). 

[16] R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, Complexity of 
Computation, ed. R. Karp, SIAM-AMS Proc. 7 (1974) pp. 43-73. 

[17] L. Farinas and A. Herz~g, Reasoning about database updates, Workshop on Foundations of 
Logic Programming and Deductive Databases, J. Minker (ed.) (1986). 

[18] Y. Gurevich, Logic and the challenge of computer science, in: Trends in Theoretical Computer 
Science, E. Borger (ed.) (Computer Science Press, New York, 1988) pp. 1-57. 

[19] Y. Gurevich and S. Shelah, Fixed-point extensions of first-order logic, 26th Symp. on 
Foundations of Computer Science (1985) pp. 346-353. 

[20] T. Imielinski and W. Lipski, Incomplete information in relational databases, J. ACM 31(4) 
(1984) 761-791. 

[21] T. Imielinski and S. Naqvi, Explicit control of logic programs through rule algebra, Proc. ACM 
SIGACT-SIGART-SIGMOD Syrup. on Principles of Database Systems (1988) pp. 103-116. 

[22] N. Immerman, Relational queries computable in polynomial time, Inf. Control 68 (1986) 
86-104. 

[23] N. Immerman, Languages which capture complexity classes, SIAM J. Comp. 16(4) (1987) 
760-778. 

[24] P.C. Kanellakis, Elements of relational database theory, to appear as a chapter in: Handbook 
of Theoretical Computer Science (North-Holland). 

[25] J. de Kleer, An assumption-based truth maintenancesystem, Art. Int. 28 (1) (1986) 127-162. 
[26] KEE Reference Manual, release 3.0, Intellicorp (1986). 
[27] P. Kolaitis, The expressive power of stratified logic programs, to appear in Inf. Comp. 
[28] S. Naqvi and R. Krishnamurthy, Non-deterministic choice in Datalog, Proc. 3rd lnt. Conf. on 

Data and Knowledge Bases (Morgan Kaufmann, Los Altos, 1988) pp. 416-424. 
[29] A.C. Leisenring, Mathematical Logic and Hilbert's c-symbol. (Gordon and Breach, 1969). 
[30] C. de Maindreville and E. Simon, Modelling non-deterministic queries and updates in 

deductive databases, Proc. Int. Conf. on Very Large Databases, Los Angeles (1988) pp. 
395-407. 

[31] S. Manchanda and D.S. Warren, A logic-based language for database updates, in: Foundations 
of Logic Programming and Deductive Databases, ed. J. Minker (1987). 

[32] S. Naqvi and S. Tsur, A Logical Language for Data and Knowledge Bases (Computer Science 
Press, New York, 1989). 

[33] D. Sacca and C. Zaniolo, Stable models and non-determinism in logic programs with negation, 
Proc. ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems (1990) pp. 
205-217. 

[34] Y. Sagiv, Optimizing datalog programs, Proc. 6th ACM Syrup. on Principles of Database 
Systems (1987) pp. 349-362. 

[35] E. Simon and C. de Maindreville, Deciding whether a production rule is relationally computa- 
ble, Proc. 2nd Int. Conf. on Database Theory, Bruges, Belgium (1988) pp. 205-222. 

[36] Y. Shen, IDLOG: Extending the expressive power of deductive database languages, Proc. 
ACM SIGMOD Int. Conf. on Management of Data (1990) pp. 54-63. 

[37] J.D. Ullman, Principles of Database and Knowledge Base Systems (Computer Science Press, 
New York, 1988). 

[38] M. Vardi, Relational queries computable in polynomial time, 14th ACM Symp. on Theory of 
Computing (1982) pp. 137-146. 

[39] D.S. Warren, Database updates in pure Prolog, Proc. Int. Conf. on Fifth Generation Computer 
Systems (1984). 


