
Distributed databases
in brief

Serge Abiteboul

INRIA

April 29, 2010

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 1 / 56



Introduction

The topic in general

little theory! “fluffy”?
technically complex/fun and challenging
very important because of the Web
uses for a lot of what you learnt in classical databases

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 2 / 56



Distributed database systems
company database: provides a unique logical access to all data

company network: allows decentralized processing

contradiction is only apparent:
centralized access
to physically distributed data

distributed database systems

Distributed DB: large quantity of structured data residing on several
computers (over a network)

Distributed DBMS: large piece of software that allows to have a unique
logical access to this data

Warning: centralized database is sometimes the best solution

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 3 / 56



Two views of distribution

Take a big database and distribute it:

1 put portions on different machines
2 replicate portions
3 more reliability and availability
4 better performance

Take many small databases and integrate them

1 unique entry point to several resources
2 keep them autonomous
3 do not interfere with local operations

Issue in both cases: transparency of data location

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 4 / 56



Advantages Disadvantages
of distribution of distribution

performance performance
cost cost
reliability complexity
resource sharing inconsistency
load balancing security
autonomy
modularity

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 5 / 56



Architectural issues

Transparency: See only what you should see!
1 data independence
2 network transparency
3 replication transparency
4 fragmentation transparency
5 model/language transparency

3 dimensions
1 distribution of data→ distributed vs. centralized system
2 distribution of control→ autonomy
3 heterogeneity of systems→ hardware, software, network

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 6 / 56



Ansi/Sparc architecture revisited

Centralized database – 3 level hierarchy
1 external schemaS
2 conceptual schema
3 internal schema

Distributed database – 4 level hierarchy
1 external schemaS
2 global conceptual schema
3 local conceptual schemaS
4 local internal schemaS

Typology: level of autonomy of the local databases

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 7 / 56



An illustration of a problem

8 copies of the same relation on different sites
updates come from all sites
sites 3 and 5 decide to add $100 to some entity A
they send messages to every one
site 2,4,6,8 reply OK
for some reason sites 1 and 7 do not reply
site 5 decides to abort the current transaction
how do we manage this activity?
how do we recover from failures?
transaction, concurrency and recovery in presence of replication

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 8 / 56



Organization

1 fragmentation and allocation
2 query processing and optimization
3 transaction and concurrency control

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 9 / 56



Fragmentation

Integration, fragmentation and allocation

Bottom-up approach
Integration of databases

Top-down approach
design the GCS
distribute the data to obtain LCS
relational model: split relations fragmentation
assign fragments to sites: allocation

These issues are clearly not independent

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 10 / 56



Fragmentation

Example

EMPLOYEE RELATION E(enum,name,loc,sal,...)
CURRENCY RELATION C(country,value,...)
12 branches of about same size S1,...,S12
6 are in LA, 4 in SF, 2 in SB
80% of queries in LA/SF/SB sites refer to EMPLOYEE in
LA/SF/SB
10% queries in LA/SF/SB refer to CURRENCY
3 databases DB-LA, DB-SF, DB-SB
on each db, the local employees + a copy of C
if this is too expensive, merge SF and SB sites
or keep C in SF

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 11 / 56



Fragmentation

Distributed database design

From centralized db design
1 conceptual schema (GCS here)
2 physical schema

New
1 design of fragments

what should be the fragments
2 physical design for fragments

where should they go
storage organization and access paths

Load balancing
distribute data and processing
move data to processing or processing to data

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 12 / 56



Fragmentation

Fragments: why, how

WHY?
1 same advantage as distribution: performance, availability,

reliability, locality (put the right data at the right place)
2 granularity: entire relation is a too large unit of distribution

HOW?
1 horizontal �C(R), �¬C(R)

2 vertical ΠAB(R),ΠAC(R)

3 hybrid �C(R),ΠAB(�¬C(R)),ΠAC(�¬C(R))

4 granularity/degree of fragmentation
e.g.: too few fragments: little concurrency
(distributed file systems)
e.g.: too many fragments: overhead in reconstructing relation

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 13 / 56



Fragmentation

Fragments: where

each fragment on a site: single copy (partitioned db)

replication
improves query performance
improved reliability
cost in updates
more complex concurrency control
real systems: often partial replication

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 14 / 56



Fragmentation

Property of fragmentation: reconstructible
reconstructible: no data is lost and one can reconstruct the database
using relational algebra

kind decomposition reconstruction

horizontal � ∪

vertical Π ⊳⊲

simple/complex selection criteria for horizontal fragmentation

What is the data unit?
1 in horizontal: entity is a tuple

(each t in R is in some fragment)
2 in vertical: entity is a portion of tuple (a property)

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 15 / 56



Fragmentation

Property of fragmentation: disjointness

disjointness facilitates the task: an entity is present in only one
fragment

most frequently asked queries: �sal<30(R), �20<sal(R)

candidate fragments: �sal<30(R), �20<sal(R) – non disjoint

alternative �sal<=20(R), �20<sal<30(R), �30<=sal(R) – disjoint

disjoint vs. non-disjoint
disjoint is nice and facilitates updates
non-disjoint may speed-up some queries
some form of replication

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 16 / 56



Fragmentation

Fragmentation

How do we get reconstructible and disjoint?

generate these “automatically”
often done “manually” by the DBA & checked

3 main techniques

1 primary horizontal decomposition
2 derived horizontal decomposition
3 vertical decomposition

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 17 / 56



Fragmentation

Derived horizontal decomposition
E(enum,name,sal,loc,...)
J(enum,project)

horizontal decomposition of E: loc=SA and loc=SB
FAQ: given some emp name, list his/her projects

E1

enum name loc sal
5 john sa 10
8 sally sa 12
...

E2

enum name loc sal
12 manon sb 20
4 bob sb 12
...

J

enum project
5 data bases
8 vlsi
...
12 data bases
4 www
...

J1

enum project
5 data bases
8 vlsi
...

J2

enum project
12 data bases
4 www
...

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 18 / 56



Fragmentation

Derived horizontal decomposition

R decomposed to F1,...,Fn
S decomposed to S ⊳< F1, ..., S ⊳< Fn
condition for this to work:

reconstruction S =
∪

(S⊳<Fi)
disjoint (i ∕= j) (S⊳<Fi) ∩ (S⊳<Fj) = ∅

conceptual modelling
1 link between R and S
2 R is the owner of R and S the member

S has a foreign key X from R
1 means that X is a key in R
2 for each tuple t in S, t[X] is in R
3 sufficient condition for reconstruction and disjoint

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 19 / 56



Fragmentation

Vertical fragmentation

normalization: split relation vertically for semantic reasons
vertical fragment: split more for distribution reasons
Example: E(enum,name,loc,sal)

E1(enum,name,loc)
E2(enum,sal)

Reconstruction - lossless join: R = ⊳⊲ Ri

1 sufficient condition: key X is repeated in each fragment

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 20 / 56



Fragmentation

Allocation (no replication)

Where to put the fragments in absence of replication
Optimization problem

1 develop a cost/performance model
2 minimize cost: storage, processing, communication
3 maximize performance: best response time, largest system

throughput

Very complex problem in general
If the solution does not meet the requirements (too slow), replicate
resources

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 21 / 56



Fragmentation

Replication

replicate data
trade-off query (faster) vs. update (slower)

▶ actually a query may also become slower since we cannot read a
replicate until all updates are performed

what to replicate and where
again a complex optimization problem
use a greedy approach

while not stable do
for each possible replication of some fragment

what is the benefit?
what is the cost?

replicate one such that
(benefit − cost) > 0
(benefit − cost) is maximal

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 22 / 56



Fragmentation

Replication in materialized views

instead of replicating a relation, materialize a view
frequent in distributed environment

▶ make data available locally (local copy)
Update propagation

▶ update db: propagate to materialized views
▶ update view: propagate/translate to a database update

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 23 / 56



Fragmentation

Integrity control in distributed contexts

intra fragment: like in centralized case
inter fragment: requires messages – expensive
Example: G and J on two different sites

▶ G(eno,jno,resp,duration), J(jno,jname,budget)
▶ constraint: ∀g ∈ G (∃j ∈ J (g.jno = j .jno))
▶ trigger on insert-in-G(42,32,“programmer”,12)

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 24 / 56



Query processing

Query processing

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 25 / 56



Query processing

Query processing

what is the problem?
a query arrives at site i and uses data from sites j and k

query on the GCS⇒ program on the local physical schemas

Example
G(eno,jno,resp,duration), E(eno,ename,title)

E1@3 = �eno<=45(E), E2@4 = �eno>45(E)

G1@1 = �eno<=45(G), G2@2 = �eno>45(G)

query at site 5:

select ename
from E, G
where E.eno = G.eno

and resp = “manager”

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 26 / 56



Query processing

Exemple - continued

Πename(�resp=”manager”∧E .eno=G.eno(E ×G))
Πename(E ⋈eno (�resp=”manager”(G)))

strategy1: send all to site 5 and compute

strategy2: proj/sel in G1 then send to site 3 compute join in site 3

same thing for G2 and site 4

send both results to site 5 and compute union

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 27 / 56



Query processing

Goal: minimize costs

rough idea – assume

CPU << I/O << communication

approach
minimize communication cost only
reduce to problem of centralized db
then minimize local processing and I/O

problem: this is based on slow communication
e.g., kilobytes per second
LAN : bandwidth same order of magnitude as the disk

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 28 / 56



Query processing

A standard possible architecture

Layers
decomposition
SQL on GCS⇒ algebraic query on GCS
localization
algebraic query on GCS⇒ algebraic query on LCS’s
global optimization (focus on communication)
optimize communication
local optimization (I/O and processing)
generate query plans for the local queries

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 29 / 56



Query processing

Query processing

Like in centralized query processing
use reducers, access path, join ordering as before
goal is reduction of CPU + IO + communications
size of temporary results is critical if I have to ship them
response time vs. total time
search space is even larger because you have the choice on
where to evaluate an operation
new technique: semi-join

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 30 / 56



Query processing

Importance of join ordering

Decide where to perform joins
Determine data transfer
Ex: E@S1 ⋈eno G@S2 ⋈jno J@S3
5 alternatives:

1 E→ S2; join; temporary result→ S3
2 G→ S1; join; TR→ S3
3 G→ S3; join; TR→ S1
4 J→ S2; join; TR→ S1
5 E,J→ S2; join

to choose: need to know sizes of E,G,J, E ⋈ G, J ⋈ G,
we discarded: E→ S3 (not as good as last)

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 31 / 56



Query processing

Semi-join

important technique for distributed databases
R(U) and S(V)
definition: R ⊳< S = ΠU (R ⋈ S)
key observation
R ⋈ S = (R ⊳< S) ⋈ S

(R ⊳< S) ⋈ (S ⊳< R)
Semi-join algorith for computating join

▶ send ΠU∩V (S) to site 1
▶ compute R ⊳< S and send it to site 2
▶ compute result
▶ communication cost: size(ΠU (S)) + size(R ⊳< S)
▶ communication for join: size(R)

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 32 / 56



Query processing

Is it useful?

size(R)<size(S), R on site 1, S on site 2

size(ΠU∩V (S)) + size(R ⊳< S) vs. size(R)

always more processing

sometimes less communication

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 33 / 56



Query processing

Bit vector filtering - Based on Bloom Filter

a technique to compute semi-join

R@1 ⊳< S@2, semi-join on attributes W = U ∩ V

hash function F: tup(W)→ [1..N]

compute F(�W (S)) (subset of [1..N])

send it as a bit vector to site 1

compute R1 = { r in R ∣ F(r) in F(�W (S)) }

Key observation: R ⊳< S ⊆ R1 ⊆ R

send R1 to site 2 and compute result there

false positive: R1 - (R ⊳< S)

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 34 / 56



Query processing

Bit vector filtering - Based on Bloom Filter

advantage: less communications
disadvantage: more I/O (e.g., 2 scans of S)
disadvantage vs. semijoin: false positive
possibly large saving in communications if size of projected tuple
is large
variations

▶ compress the bit vector (does not work much)
▶ send bit vectors back and forth (more semi-joins) - rarely effective
▶ use several hash functions with the same bit vector (important

saving)

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 35 / 56



Query processing

Details of join algorithms

suppose you want to perform the following algorithm

for each r in R, compute r ⋈ S
R is the external (site 1)
S is the internal relation (site 2)

ship-whole vs. fetch-as-needed

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 36 / 56



Query processing

4 strategies:
1 ship-whole-external

send R to site 2: join can be performed as soon as tuples start
arriving

2 ship-all-internal
send S to site 1: we have to wait until S entirely arrived to process
first r in R

3 fetch-as-needed – semi-join
for each tuple r in R do

send ΠV (r) to site 2
send S ⋈ ΠV (r) to site 1
done

possibly very bad in term of communications
4 send both to a third site

if the relations are sorted by the join attributes, we can proceed in a
pipeline manner - send pages of data

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 37 / 56



Query processing

Exemple

G(eno,jno,resp,duration), J(jno,jname,budget)
external J ⋈ internal G on JNO
index on JNO in G

1 ship J good use of index in G
2 ship G better than 1 if size(G) << size(J)

local processing may be expensive
3 semi-join better than 1 if size(G⊳<J) << size(J)

good use of index in G
4 ship-both always bad

If G is much larger and communication is expensive: choose 2
if J is small or if many tuples match, choose strategy 1
otherwise, choose 3

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 38 / 56



Query processing

Distributed sorting

Deadlock problems in query processing
R is fragmented in 2 “producers”

p1: 1, 3, ..., 999, 1002, 1004, ..., 2000
p2: 2, 4, ..., 1000, 1001, 1003, ..., 1999

scenario with 2 consumers
p1 and p2: sort, then send odd to c1 and even to c2
c1 and c2: merge

problem: c1 needs to see 1001 to output 1
deadlock if buffers are too small
possible fix: p1 and p2 send dummies regularly to let each site know
about their state

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 39 / 56



Transaction

Transaction and concurrency control

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 40 / 56



Transaction

Transaction as in the centralized case

actions: r[x], w[x]

partial order on the operations

Note: each write is an arbitrary function of all previous reads of the
transaction

conflicting operations

read1[x] write2[x]
write1[x] read2[x]
write1[x] write2[x]

schedule: indicates how a set of transactions was executed

serial schedule: one transaction runs first, then another one...

serializable/correct schedule: equivalent to a serial schedule

Schedule is serializable iff its graph is acyclic

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 41 / 56



Transaction

As before

two main techniques
1 2 Phase Locking

1 a transaction need a read/write lock before reading/writing an entity
2 once a transaction released a lock, it cannot acquire more locks
3 2PL can produce deadlocks (abort transaction)

2 Timestamping
1 Put your timestamp on entities you update
2 If you access an entity with a younger timestamp than you, abort

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 42 / 56



Transaction

Distributed concurrency control

non-replicated databases
notion of serializability extends easily
techniques such as 2PL and TS
deadlock management is harder

replicated databases: more complicated scheduling
one-copy-serializable

Read-One-Write-All ROWA

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 43 / 56



Transaction

CC without replication

one local scheduler at each site

global scheduler = union of local schedulers

local locks

serializability theory extends to this context

2PL guarantees serialiazability/correctness

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 44 / 56



Transaction

Problem 1: deadlock management

Technique 1: Prevention

e.g., use a predefined ordering of resources (impractical)
e.g., analysis of code: difficult to know which data will be used
safe, no redo or rollback necessary

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 45 / 56



Transaction

Technique 2: Avoidance

e.g., time-out
e.g., priorities (e.g., timestamp)
Tj locks A, Ti request A
wait-die

if Ti higher priority then Ti waits
else Ti aborts

wound-wait

if Ti higher priority then Tj aborts
else Ti waits

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 46 / 56



Transaction

Technique 3: Detection

most used kind

detect cycles and break them by aborting some transaction

main tool: Maintain the distributed Wait-for-graph
cycle⇒ deadlock

abort to break cycles
issue as in centralized case: choose the victim

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 47 / 56



Transaction

Cycle detection

difficulty: the graph is distributed and dynamic

Centralyzed cycle detection

one site receives local wait-for-graphs
construct global wait-for-graph and detect cycles

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 48 / 56



Transaction

Distributed deadlock detection
wait(i): the process that is blocking process i
message: probe(i,j,k) send by process j to process k to let it know that
process i is blocked by k
algorithm

when i requests a resource that is used by j
wait(i) := j
probe(i,i,j)
when k receives probe(i,j,k) (from j)

if k is waiting then if k = i then deadlock detected
else probe(i,k,wait(k))

more complicated: processes should be “released”
possibility of false alarm: the deadlock is not real but the release did
not arrive in time
make sure the releases have been treated before sending a probe

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 49 / 56



Transaction

Problem 2: replicated data

serializable does not work anymore
x duplicated at site 1 and 2
two transactions:

T1: read(x); x:=x+5; write(x); commit
T2: read(x); x:=x*10; write(x); commit

2 local schedules:
S1: R1(x),W1(x),C1,R2(x),W2(x),C2
S2: R2(x),W2(x),C2,R1(x),W1(x),C1

each is serial
suppose that x = 1 before
after x@s1 is 60 and x@s2 is 15
there should be some consistency between the two schedules

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 50 / 56



Transaction

One-copy serializable

Definition of correctness

schedule should be equivalent to a serial schedule
on a database with a single copy

implies: two conflicting operations should be in the same relative order
in all local schedules where they appear together

Read-once/write-all ROWA
a read(x) operation is translated to read(xi ) for some copy of x
a write(x) is transalated to

{ write(xi ) ∣ for all copies of x }

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 51 / 56



Transaction

One-copy serializable - continued

ideal world: consider all write to be simultaneous

guarantees one-copy serializable

reality: some write may fail (one copy is not available)→ block the
transaction

alternative: write-all-available

when a site recovers, it should update its data before serving data
(otherwise, it may serve out-of-date data)

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 52 / 56



Transaction

CC with replicated data: centralized 2PL

Centralized 2PL

one site keeps all the lock tables and
is responsible for granting locks
advantage: simple and works OK
disadvantage: the central LM is a potential bottleneck
if it fails⇒ everything stops

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 53 / 56



Transaction

CC with replicated data: primary copy 2PL

Primary copy 2PL

each entity is assigned a primary site
lock is managed there
reduces the bottleneck of the centralized 2PL

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 54 / 56



Transaction

CC with replicated data: distributed 2PL

Distributed 2PL
each site has a lock manager and locks for data item it stores
ROWA replica protocol
lock request
→ involved lock managers
→ participating processors
advantage for reads:
to read local data, need only a local lock
disadvantage: to write, need to obtain locks from all copies
need to maintain a catalog of all copies

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 55 / 56



Transaction

Nested transactions - autonomous systems

transaction on the global database

subtransactions in local databases

problem: no control on the TM of local databases
problems with serializability
problems with deadlock detection
problems with failure recovery

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 56 / 56


	Fragmentation
	Query processing
	Transaction

