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Introduction

The topic in general

little theory! “fluffy”?
technically complex/fun and challenging
very important because of the Web
uses for a lot of what you learnt in classical databases
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Distributed database systems
company database: provides a unique logical access to all data

company network: allows decentralized processing

contradiction is only apparent:
centralized access
to physically distributed data

distributed database systems

Distributed DB: large quantity of structured data residing on several
computers (over a network)

Distributed DBMS: large piece of software that allows to have a unique
logical access to this data

Warning: centralized database is sometimes the best solution
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Two views of distribution

Take a big database and distribute it:

1 put portions on different machines
2 replicate portions
3 more reliability and availability
4 better performance

Take many small databases and integrate them

1 unique entry point to several resources
2 keep them autonomous
3 do not interfere with local operations

Issue in both cases: transparency of data location
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Advantages Disadvantages
of distribution of distribution

performance performance
cost cost
reliability complexity
resource sharing inconsistency
load balancing security
autonomy
modularity
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Architectural issues

Transparency: See only what you should see!
1 data independence
2 network transparency
3 replication transparency
4 fragmentation transparency
5 model/language transparency

3 dimensions
1 distribution of data→ distributed vs. centralized system
2 distribution of control→ autonomy
3 heterogeneity of systems→ hardware, software, network
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Ansi/Sparc architecture revisited

Centralized database – 3 level hierarchy
1 external schemaS
2 conceptual schema
3 internal schema

Distributed database – 4 level hierarchy
1 external schemaS
2 global conceptual schema
3 local conceptual schemaS
4 local internal schemaS

Typology: level of autonomy of the local databases
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An illustration of a problem

8 copies of the same relation on different sites
updates come from all sites
sites 3 and 5 decide to add $100 to some entity A
they send messages to every one
site 2,4,6,8 reply OK
for some reason sites 1 and 7 do not reply
site 5 decides to abort the current transaction
how do we manage this activity?
how do we recover from failures?
transaction, concurrency and recovery in presence of replication
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Organization

1 fragmentation and allocation
2 query processing and optimization
3 transaction and concurrency control
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Fragmentation

Integration, fragmentation and allocation

Bottom-up approach
Integration of databases

Top-down approach
design the GCS
distribute the data to obtain LCS
relational model: split relations fragmentation
assign fragments to sites: allocation

These issues are clearly not independent
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Fragmentation

Example

EMPLOYEE RELATION E(enum,name,loc,sal,...)
CURRENCY RELATION C(country,value,...)
12 branches of about same size S1,...,S12
6 are in LA, 4 in SF, 2 in SB
80% of queries in LA/SF/SB sites refer to EMPLOYEE in
LA/SF/SB
10% queries in LA/SF/SB refer to CURRENCY
3 databases DB-LA, DB-SF, DB-SB
on each db, the local employees + a copy of C
if this is too expensive, merge SF and SB sites
or keep C in SF
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Fragmentation

Distributed database design

From centralized db design
1 conceptual schema (GCS here)
2 physical schema

New
1 design of fragments

what should be the fragments
2 physical design for fragments

where should they go
storage organization and access paths

Load balancing
distribute data and processing
move data to processing or processing to data
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Fragmentation

Fragments: why, how

WHY?
1 same advantage as distribution: performance, availability,

reliability, locality (put the right data at the right place)
2 granularity: entire relation is a too large unit of distribution

HOW?
1 horizontal �C(R), �¬C(R)

2 vertical ΠAB(R),ΠAC(R)

3 hybrid �C(R),ΠAB(�¬C(R)),ΠAC(�¬C(R))

4 granularity/degree of fragmentation
e.g.: too few fragments: little concurrency
(distributed file systems)
e.g.: too many fragments: overhead in reconstructing relation
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Fragmentation

Fragments: where

each fragment on a site: single copy (partitioned db)

replication
improves query performance
improved reliability
cost in updates
more complex concurrency control
real systems: often partial replication
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Fragmentation

Property of fragmentation: reconstructible
reconstructible: no data is lost and one can reconstruct the database
using relational algebra

kind decomposition reconstruction

horizontal � ∪

vertical Π ⊳⊲

simple/complex selection criteria for horizontal fragmentation

What is the data unit?
1 in horizontal: entity is a tuple

(each t in R is in some fragment)
2 in vertical: entity is a portion of tuple (a property)
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Fragmentation

Property of fragmentation: disjointness

disjointness facilitates the task: an entity is present in only one
fragment

most frequently asked queries: �sal<30(R), �20<sal(R)

candidate fragments: �sal<30(R), �20<sal(R) – non disjoint

alternative �sal<=20(R), �20<sal<30(R), �30<=sal(R) – disjoint

disjoint vs. non-disjoint
disjoint is nice and facilitates updates
non-disjoint may speed-up some queries
some form of replication
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Fragmentation

Fragmentation

How do we get reconstructible and disjoint?

generate these “automatically”
often done “manually” by the DBA & checked

3 main techniques

1 primary horizontal decomposition
2 derived horizontal decomposition
3 vertical decomposition
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Fragmentation

Derived horizontal decomposition
E(enum,name,sal,loc,...)
J(enum,project)

horizontal decomposition of E: loc=SA and loc=SB
FAQ: given some emp name, list his/her projects

E1

enum name loc sal
5 john sa 10
8 sally sa 12
...

E2

enum name loc sal
12 manon sb 20
4 bob sb 12
...

J

enum project
5 data bases
8 vlsi
...
12 data bases
4 www
...

J1

enum project
5 data bases
8 vlsi
...

J2

enum project
12 data bases
4 www
...
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Fragmentation

Derived horizontal decomposition

R decomposed to F1,...,Fn
S decomposed to S ⊳< F1, ..., S ⊳< Fn
condition for this to work:

reconstruction S =
∪

(S⊳<Fi)
disjoint (i ∕= j) (S⊳<Fi) ∩ (S⊳<Fj) = ∅

conceptual modelling
1 link between R and S
2 R is the owner of R and S the member

S has a foreign key X from R
1 means that X is a key in R
2 for each tuple t in S, t[X] is in R
3 sufficient condition for reconstruction and disjoint
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Fragmentation

Vertical fragmentation

normalization: split relation vertically for semantic reasons
vertical fragment: split more for distribution reasons
Example: E(enum,name,loc,sal)

E1(enum,name,loc)
E2(enum,sal)

Reconstruction - lossless join: R = ⊳⊲ Ri

1 sufficient condition: key X is repeated in each fragment
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Fragmentation

Allocation (no replication)

Where to put the fragments in absence of replication
Optimization problem

1 develop a cost/performance model
2 minimize cost: storage, processing, communication
3 maximize performance: best response time, largest system

throughput

Very complex problem in general
If the solution does not meet the requirements (too slow), replicate
resources
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Fragmentation

Replication

replicate data
trade-off query (faster) vs. update (slower)

▶ actually a query may also become slower since we cannot read a
replicate until all updates are performed

what to replicate and where
again a complex optimization problem
use a greedy approach

while not stable do
for each possible replication of some fragment

what is the benefit?
what is the cost?

replicate one such that
(benefit − cost) > 0
(benefit − cost) is maximal
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Fragmentation

Replication in materialized views

instead of replicating a relation, materialize a view
frequent in distributed environment

▶ make data available locally (local copy)
Update propagation

▶ update db: propagate to materialized views
▶ update view: propagate/translate to a database update
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Fragmentation

Integrity control in distributed contexts

intra fragment: like in centralized case
inter fragment: requires messages – expensive
Example: G and J on two different sites

▶ G(eno,jno,resp,duration), J(jno,jname,budget)
▶ constraint: ∀g ∈ G (∃j ∈ J (g.jno = j .jno))
▶ trigger on insert-in-G(42,32,“programmer”,12)
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Query processing

Query processing
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Query processing

Query processing

what is the problem?
a query arrives at site i and uses data from sites j and k

query on the GCS⇒ program on the local physical schemas

Example
G(eno,jno,resp,duration), E(eno,ename,title)

E1@3 = �eno<=45(E), E2@4 = �eno>45(E)

G1@1 = �eno<=45(G), G2@2 = �eno>45(G)

query at site 5:

select ename
from E, G
where E.eno = G.eno

and resp = “manager”
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Query processing

Exemple - continued

Πename(�resp=”manager”∧E .eno=G.eno(E ×G))
Πename(E ⋈eno (�resp=”manager”(G)))

strategy1: send all to site 5 and compute

strategy2: proj/sel in G1 then send to site 3 compute join in site 3

same thing for G2 and site 4

send both results to site 5 and compute union
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Query processing

Goal: minimize costs

rough idea – assume

CPU << I/O << communication

approach
minimize communication cost only
reduce to problem of centralized db
then minimize local processing and I/O

problem: this is based on slow communication
e.g., kilobytes per second
LAN : bandwidth same order of magnitude as the disk
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Query processing

A standard possible architecture

Layers
decomposition
SQL on GCS⇒ algebraic query on GCS
localization
algebraic query on GCS⇒ algebraic query on LCS’s
global optimization (focus on communication)
optimize communication
local optimization (I/O and processing)
generate query plans for the local queries
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Query processing

Query processing

Like in centralized query processing
use reducers, access path, join ordering as before
goal is reduction of CPU + IO + communications
size of temporary results is critical if I have to ship them
response time vs. total time
search space is even larger because you have the choice on
where to evaluate an operation
new technique: semi-join
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Query processing

Importance of join ordering

Decide where to perform joins
Determine data transfer
Ex: E@S1 ⋈eno G@S2 ⋈jno J@S3
5 alternatives:

1 E→ S2; join; temporary result→ S3
2 G→ S1; join; TR→ S3
3 G→ S3; join; TR→ S1
4 J→ S2; join; TR→ S1
5 E,J→ S2; join

to choose: need to know sizes of E,G,J, E ⋈ G, J ⋈ G,
we discarded: E→ S3 (not as good as last)
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Query processing

Semi-join

important technique for distributed databases
R(U) and S(V)
definition: R ⊳< S = ΠU (R ⋈ S)
key observation
R ⋈ S = (R ⊳< S) ⋈ S

(R ⊳< S) ⋈ (S ⊳< R)
Semi-join algorith for computating join

▶ send ΠU∩V (S) to site 1
▶ compute R ⊳< S and send it to site 2
▶ compute result
▶ communication cost: size(ΠU (S)) + size(R ⊳< S)
▶ communication for join: size(R)
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Query processing

Is it useful?

size(R)<size(S), R on site 1, S on site 2

size(ΠU∩V (S)) + size(R ⊳< S) vs. size(R)

always more processing

sometimes less communication
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Query processing

Bit vector filtering - Based on Bloom Filter

a technique to compute semi-join

R@1 ⊳< S@2, semi-join on attributes W = U ∩ V

hash function F: tup(W)→ [1..N]

compute F(�W (S)) (subset of [1..N])

send it as a bit vector to site 1

compute R1 = { r in R ∣ F(r) in F(�W (S)) }

Key observation: R ⊳< S ⊆ R1 ⊆ R

send R1 to site 2 and compute result there

false positive: R1 - (R ⊳< S)
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Query processing

Bit vector filtering - Based on Bloom Filter

advantage: less communications
disadvantage: more I/O (e.g., 2 scans of S)
disadvantage vs. semijoin: false positive
possibly large saving in communications if size of projected tuple
is large
variations

▶ compress the bit vector (does not work much)
▶ send bit vectors back and forth (more semi-joins) - rarely effective
▶ use several hash functions with the same bit vector (important

saving)
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Query processing

Details of join algorithms

suppose you want to perform the following algorithm

for each r in R, compute r ⋈ S
R is the external (site 1)
S is the internal relation (site 2)

ship-whole vs. fetch-as-needed

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 36 / 56



Query processing

4 strategies:
1 ship-whole-external

send R to site 2: join can be performed as soon as tuples start
arriving

2 ship-all-internal
send S to site 1: we have to wait until S entirely arrived to process
first r in R

3 fetch-as-needed – semi-join
for each tuple r in R do

send ΠV (r) to site 2
send S ⋈ ΠV (r) to site 1
done

possibly very bad in term of communications
4 send both to a third site

if the relations are sorted by the join attributes, we can proceed in a
pipeline manner - send pages of data
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Query processing

Exemple

G(eno,jno,resp,duration), J(jno,jname,budget)
external J ⋈ internal G on JNO
index on JNO in G

1 ship J good use of index in G
2 ship G better than 1 if size(G) << size(J)

local processing may be expensive
3 semi-join better than 1 if size(G⊳<J) << size(J)

good use of index in G
4 ship-both always bad

If G is much larger and communication is expensive: choose 2
if J is small or if many tuples match, choose strategy 1
otherwise, choose 3
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Query processing

Distributed sorting

Deadlock problems in query processing
R is fragmented in 2 “producers”

p1: 1, 3, ..., 999, 1002, 1004, ..., 2000
p2: 2, 4, ..., 1000, 1001, 1003, ..., 1999

scenario with 2 consumers
p1 and p2: sort, then send odd to c1 and even to c2
c1 and c2: merge

problem: c1 needs to see 1001 to output 1
deadlock if buffers are too small
possible fix: p1 and p2 send dummies regularly to let each site know
about their state
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Transaction

Transaction and concurrency control
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Transaction

Transaction as in the centralized case

actions: r[x], w[x]

partial order on the operations

Note: each write is an arbitrary function of all previous reads of the
transaction

conflicting operations

read1[x] write2[x]
write1[x] read2[x]
write1[x] write2[x]

schedule: indicates how a set of transactions was executed

serial schedule: one transaction runs first, then another one...

serializable/correct schedule: equivalent to a serial schedule

Schedule is serializable iff its graph is acyclic
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Transaction

As before

two main techniques
1 2 Phase Locking

1 a transaction need a read/write lock before reading/writing an entity
2 once a transaction released a lock, it cannot acquire more locks
3 2PL can produce deadlocks (abort transaction)

2 Timestamping
1 Put your timestamp on entities you update
2 If you access an entity with a younger timestamp than you, abort
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Transaction

Distributed concurrency control

non-replicated databases
notion of serializability extends easily
techniques such as 2PL and TS
deadlock management is harder

replicated databases: more complicated scheduling
one-copy-serializable

Read-One-Write-All ROWA
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Transaction

CC without replication

one local scheduler at each site

global scheduler = union of local schedulers

local locks

serializability theory extends to this context

2PL guarantees serialiazability/correctness
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Transaction

Problem 1: deadlock management

Technique 1: Prevention

e.g., use a predefined ordering of resources (impractical)
e.g., analysis of code: difficult to know which data will be used
safe, no redo or rollback necessary
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Transaction

Technique 2: Avoidance

e.g., time-out
e.g., priorities (e.g., timestamp)
Tj locks A, Ti request A
wait-die

if Ti higher priority then Ti waits
else Ti aborts

wound-wait

if Ti higher priority then Tj aborts
else Ti waits
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Transaction

Technique 3: Detection

most used kind

detect cycles and break them by aborting some transaction

main tool: Maintain the distributed Wait-for-graph
cycle⇒ deadlock

abort to break cycles
issue as in centralized case: choose the victim
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Transaction

Cycle detection

difficulty: the graph is distributed and dynamic

Centralyzed cycle detection

one site receives local wait-for-graphs
construct global wait-for-graph and detect cycles
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Transaction

Distributed deadlock detection
wait(i): the process that is blocking process i
message: probe(i,j,k) send by process j to process k to let it know that
process i is blocked by k
algorithm

when i requests a resource that is used by j
wait(i) := j
probe(i,i,j)
when k receives probe(i,j,k) (from j)

if k is waiting then if k = i then deadlock detected
else probe(i,k,wait(k))

more complicated: processes should be “released”
possibility of false alarm: the deadlock is not real but the release did
not arrive in time
make sure the releases have been treated before sending a probe
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Transaction

Problem 2: replicated data

serializable does not work anymore
x duplicated at site 1 and 2
two transactions:

T1: read(x); x:=x+5; write(x); commit
T2: read(x); x:=x*10; write(x); commit

2 local schedules:
S1: R1(x),W1(x),C1,R2(x),W2(x),C2
S2: R2(x),W2(x),C2,R1(x),W1(x),C1

each is serial
suppose that x = 1 before
after x@s1 is 60 and x@s2 is 15
there should be some consistency between the two schedules
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Transaction

One-copy serializable

Definition of correctness

schedule should be equivalent to a serial schedule
on a database with a single copy

implies: two conflicting operations should be in the same relative order
in all local schedules where they appear together

Read-once/write-all ROWA
a read(x) operation is translated to read(xi ) for some copy of x
a write(x) is transalated to

{ write(xi ) ∣ for all copies of x }
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Transaction

One-copy serializable - continued

ideal world: consider all write to be simultaneous

guarantees one-copy serializable

reality: some write may fail (one copy is not available)→ block the
transaction

alternative: write-all-available

when a site recovers, it should update its data before serving data
(otherwise, it may serve out-of-date data)
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Transaction

CC with replicated data: centralized 2PL

Centralized 2PL

one site keeps all the lock tables and
is responsible for granting locks
advantage: simple and works OK
disadvantage: the central LM is a potential bottleneck
if it fails⇒ everything stops
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Transaction

CC with replicated data: primary copy 2PL

Primary copy 2PL

each entity is assigned a primary site
lock is managed there
reduces the bottleneck of the centralized 2PL
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Transaction

CC with replicated data: distributed 2PL

Distributed 2PL
each site has a lock manager and locks for data item it stores
ROWA replica protocol
lock request
→ involved lock managers
→ participating processors
advantage for reads:
to read local data, need only a local lock
disadvantage: to write, need to obtain locks from all copies
need to maintain a catalog of all copies
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Transaction

Nested transactions - autonomous systems

transaction on the global database

subtransactions in local databases

problem: no control on the TM of local databases
problems with serializability
problems with deadlock detection
problems with failure recovery
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