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Introduction

The topic in general

@ little theory! “fluffy”?

@ technically complex/fun and challenging

@ very important because of the Web

@ uses for a lot of what you learnt in classical databases
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Distributed database systems
company database: provides a unique logical access to all data
company network: allows decentralized processing

contradiction is only apparent:
@ centralized access
@ to physically distributed data

\distributed database systems

Distributed DB: large quantity of structured data residing on several
computers (over a network)

Distributed DBMS: large piece of software that allows to have a unique
logical access to this data

Warning: centralized database is sometimes the best solution
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Two views of distribution

Take a big database and distribute it:
@ put portions on different machines
@ replicate portions
© more reliability and availability
© better performance
Take many small databases and integrate them
@ unique entry point to several resources
© keep them autonomous
© do not interfere with local operations

Issue in both cases: transparency of data location
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Advantages Disadvantages

of distribution of distribution
performance performance
cost cost

reliability complexity
resource sharing inconsistency
load balancing security
autonomy

modularity
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Architectural issues

Transparency: See only what you should see!
@ data independence
© network transparency
© replication transparency
© fragmentation transparency
© model/language transparency
3 dimensions
@ distribution of data — distributed vs. centralized system
@ distribution of control — autonomy
© heterogeneity of systems — hardware, software, network
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Ansi/Sparc architecture revisited

Centralized database — 3 level hierarchy
@ external schema$S
@ conceptual schema
© internal schema
Distributed database — 4 level hierarchy
@ external schemaS
@ global conceptual schema
© local conceptual schema$S
© local internal schemaS
Typology: level of autonomy of the local databases
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An illustration of a problem

@ 8 copies of the same relation on different sites

@ updates come from all sites

@ sites 3 and 5 decide to add $100 to some entity A

@ they send messages to every one

@ site 2,4,6,8 reply OK

@ for some reason sites 1 and 7 do not reply

@ site 5 decides to abort the current transaction

@ how do we manage this activity?

@ how do we recover from failures?

@ transaction, concurrency and recovery in presence of replication
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Organization

@ fragmentation and allocation
© query processing and optimization
© transaction and concurrency control
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Integration, fragmentation and allocation

Bottom-up approach
@ Integration of databases

Top-down approach
@ design the GCS
@ distribute the data to obtain LCS
@ relational model: split relations fragmentation
@ assign fragments to sites: allocation

These issues are clearly not independent
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Example

@ EMPLOYEE RELATION E(enum,name,loc,sal,...)
CURRENCY RELATION C(country,value,...)

12 branches of about same size S1,...,S12

6 arein LA, 4in SF, 2in SB

80% of queries in LA/SF/SB sites refer to EMPLOYEE in
LA/SF/SB

@ 10% queries in LA/SF/SB refer to CURRENCY
@ 3 databases DB-LA, DB-SF, DB-SB

@ on each db, the local employees + a copy of C
°

°

if this is too expensive, merge SF and SB sites

or keep C in SF
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Distributed database design

From centralized db design
@ conceptual schema (GCS here)
© physical schema

New

@ design of fragments
what should be the fragments

@ physical design for fragments
where should they go
storage organization and access paths

Load balancing
@ distribute data and processing
@ move data to processing or processing to data
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Fragments: why, how

WHY?

@ same advantage as distribution: performance, availability,
reliability, locality (put the right data at the right place)

@ granularity: entire relation is a too large unit of distribution
HOW?
@ horizontal o¢(R), 0-¢(R)
@ vertical Mag(R), Nac(R)
© hybrid o¢(R), Nas(o-c(R)), Nac(o-c(R))
© granularity/degree of fragmentation
e.g.: too few fragments: little concurrency

(distributed file systems)
e.g.: too many fragments: overhead in reconstructing relation
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Fragments: where

each fragment on a site: single copy (partitioned db)

replication

@ improves query performance

@ improved reliability

@ cost in updates

@ more complex concurrency control

@ real systems: often partial replication
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Property of fragmentation: reconstructible

reconstructible: no data is lost and one can reconstruct the database

using relational algebra

kind decomposition reconstruction
horizontal o U
vertical M D

simple/complex selection criteria for horizontal fragmentation

What is the data unit?

@ in horizontal: entity is a tuple
(each tin R is in some fragment)

@ in vertical: entity is a portion of tuple (a property)
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Property of fragmentation: disjointness

disjointness facilitates the task: an entity is present in only one
fragment

most frequently asked queries: osa<30(R), 020<sal( R)
candidate fragments: ogz<30(R), 020<sal( R) — non disjoint
alternative ogz<—20(R), 020<sai<30(R), 030<=sal( R) — disjoint

disjoint vs. non-disjoint
@ disjoint is nice and facilitates updates

@ non-disjoint may speed-up some queries
some form of replication
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Fragmentation

How do we get reconstructible and disjoint?

@ generate these “automatically”
@ often done “manually” by the DBA & checked

3 main techniques

@ primary horizontal decomposition
@ derived horizontal decomposition
© vertical decomposition
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Derived horizontal decomposition
@ E(enum,name,sal,loc,...)

@ J(enum,project)

horizontal decomposition of E: loc=SA and loc=SB
FAQ: given some emp name, list his/her projects

enum | name | loc | sal enum | name | loc | sal
E 5 john | sa |10 E 12 manon | sb | 20
18 sally |sa |12 2l 4 bob | sb |12
enum | project
S dat'a bases enum | project enum | project
8 visi
J J 5 data bases J 12 data base
1 . 2
12 data bases 8 visi 4 www
4 www
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Derived horizontal decomposition

R decomposed to F,...,F,
S decomposed to S < Fq, ..
condition for this to work:

reconstruction S = J(S<F))
disjoint (i #j)  (S><Fi) N (Sp<Fj) =0

.S < Fp

@ conceptual modelling

@ link between Rand S

@ R is the owner of R and S the member
@ S has a foreign key X from R

@ meansthat X is akey in R

@ foreachtupletinS, t[X]isin R
@ sufficient condition for reconstruction and disjoint

Distributed databases April 29, 2010
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Vertical fragmentation

normalization: split relation vertically for semantic reasons
vertical fragment: split more for distribution reasons
Example: E(enum,name,loc,sal)

@ E1(enum,name,loc)
@ E2(enum;,sal)
Reconstruction - lossless join: R = > R;
@ sufficient condition: key X is repeated in each fragment
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Allocation (no replication)

@ Where to put the fragments in absence of replication
@ Optimization problem
@ develop a cost/performance model
@ minimize cost: storage, processing, communication
© maximize performance: best response time, largest system
throughput

@ Very complex problem in general

@ If the solution does not meet the requirements (too slow), replicate
resources
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Replication

@ replicate data
@ trade-off query (faster) vs. update (slower)

» actually a query may also become slower since we cannot read a
replicate until all updates are performed

@ what to replicate and where
@ again a complex optimization problem
@ use a greedy approach

while not stable do
for each possible replication of some fragment
what is the benefit?
what is the cost?
replicate one such that
(benefit — cost) > 0
(benefit — cost) is maximal
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Replication in materialized views

@ instead of replicating a relation, materialize a view
@ frequent in distributed environment
» make data available locally (local copy)
@ Update propagation
» update db: propagate to materialized views
» update view: propagate/translate to a database update
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Integrity control in distributed contexts

@ intra fragment: like in centralized case
@ inter fragment: requires messages — expensive
@ Example: G and J on two different sites

» G(eno,jno,resp,duration), J(jno,jname,budget)
» constraint: Vg € G (3j € J (g.jno = j.jno))
» trigger on insert-in-G(42,32,“programmer”,12)
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Query processing
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Query processing

what is the problem?
@ a query arrives at site i and uses data from sites j and k

query on the GCS = program on the local physical schemas

Example
G(eno,jno,resp,duration), E(eno,enametitle)

@ E41@8 = 0gpoc—a5(E), ExQ@4 = 0gpo=a5(E)
o G1@1 = Jeno<:45(G), Gz@2 = Ueno>45(G)

query at site 5:
select ename
fromE, G
where E.eno = G.eno
and resp = “manager”
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Exemple - continued

Mename ( O resp="manager" AE.eno=G.eno ( E x G) )
M ename( E Meno (U resp="manager" ( G) ) )

strategy1: send all to site 5 and compute
strategy2: proj/sel in G; then send to site 3 compute join in site 3

same thing for G, and site 4

send both results to site 5 and compute union
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Goal: minimize costs

rough idea — assume
CPU << I/0 << communication

approach
@ minimize communication cost only

@ reduce to problem of centralized db
then minimize local processing and I/O

problem: this is based on slow communication
@ e.g., kilobytes per second
@ LAN : bandwidth same order of magnitude as the disk
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A standard possible architecture

Layers

@ decomposition
SQL on GCS = algebraic query on GCS

@ localization
algebraic query on GCS =- algebraic query on LCS’s

@ global optimization (focus on communication)
optimize communication

@ local optimization (/0O and processing)
generate query plans for the local queries
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Query processing

Like in centralized query processing

use reducers, access path, join ordering as before

goal is reduction of CPU + IO + communications

size of temporary results is critical if | have to ship them
response time vs. total time

search space is even larger because you have the choice on
where to evaluate an operation

@ new technique: semi-join
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Importance of join ordering

Decide where to perform joins
Determine data transfer
Ex: E@S1 Mepo G@S2 X0 J@S3

5 alternatives:

@ E — S2;join; temporary result — S3
@ G - S1;join; TR — S3

@ G — S3;join; TR — S1

Q J— S2;join; TR — St

@ E.J — S2;join

to choose: need to know sizes of E,G,J, EX G, d X G,

we discarded: E — S3 (not as good as last)
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Semi-join

@ important technique for distributed databases
@ R(U) and S(V)
@ definition: R< S =TMy(R X S)
@ key observation
RXS=(Rp<S)XS
(R< S) X (S < R)

@ Semi-join algorith for computating join

send My~ v(S) to site 1

compute R < S and send it to site 2

compute result

communication cost: size([My(S)) + size(R < S)
communication for join: size(R)

vV vy vy VvYy
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Is it useful?

size(R)<size(S), R on site 1, S on site 2

size(Myv(S)) + size(R < S) vs. size(R)

always more processing

sometimes less communication
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Bit vector filtering - Based on Bloom Filter
a technique to compute semi-join

R@1 < S@2, semi-join on attributes W= UnN V

hash function F: tup(W) — [1..N]

compute F(rw(S)) (subset of [1..N])

send it as a bit vector to site 1

compute R1 = {rin R | F(r) in F(mw(S)) }

Key observation: R>< S € R1 C R

send R1 to site 2 and compute result there

false positive: R1 - (R < S)
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Bit vector filtering - Based on Bloom Filter

@ advantage: less communications
@ disadvantage: more /O (e.g., 2 scans of S)
@ disadvantage vs. semijoin: false positive

@ possibly large saving in communications if size of projected tuple
is large
@ variations

» compress the bit vector (does not work much)

» send bit vectors back and forth (more semi-joins) - rarely effective

» use several hash functions with the same bit vector (important
saving)
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Details of join algorithms

suppose you want to perform the following algorithm

for each rin R, compute r X' S

@ R is the external (site 1)

@ S is the internal relation (site 2)
ship-whole vs. fetch-as-needed
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4 strategies:

@ ship-whole-external
send R to site 2: join can be performed as soon as tuples start
arriving
© ship-all-internal
send S to site 1: we have to wait until S entirely arrived to process
firstrin R
© fetch-as-needed — semi-join
for each tuple rin R do
send lMy(r) to site 2
send S X My(r) to site 1
done
possibly very bad in term of communications
© send both to a third site

if the relations are sorted by the join attributes, we can proceed in a
pipeline manner - send pages of data
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Exemple

G(eno,jno,resp,duration), J(jno,jname,budget)
external J X internal G on JNO
index on JNO in G

1shipJ  good use of index in G

2ship G better than 1 if size(G) << size(J)
local processing may be expensive

3 semi-join better than 1 if size(Gr<J) << size(J)
good use of index in G

4 ship-both always bad

@ If G is much larger and communication is expensive: choose 2

e if J is small or if many tuples match, choose strategy 1
@ otherwise, choose 3
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Distributed sorting

Deadlock problems in query processing
R is fragmented in 2 “producers”

p1:1, 3, ..,999, 1002, 1004, ...,2000
p2: 2, 4, ..,1000, 1001, 1003, ..., 1999

scenario with 2 consumers
p1 and p2: sort, then send odd to ¢1 and even to c2
c1 and c2: merge

problem: c1 needs to see 1001 to output 1

deadlock if buffers are too small

possible fix: p1 and p2 send dummies regularly to let each site know
about their state
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Transaction and concurrency control
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Transaction as in the centralized case

actions: r[x], w[x]
partial order on the operations

Note: each write is an arbitrary function of all previous reads of the
transaction

conflicting operations

read+[x] writes[x]
write4[x] reads[x]
write4[x] writes[x]

schedule: indicates how a set of transactions was executed
serial schedule: one transaction runs first, then another one...
serializable/correct schedule: equivalent to a serial schedule

Schedule is serializable iff its graph is acyclic
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As before

two main techniques

@ 2 Phase Locking
© atransaction need a read/write lock before reading/writing an entity
@ once a transaction released a lock, it cannot acquire more locks
© 2PL can produce deadlocks (abort transaction)

© Timestamping
@ Put your timestamp on entities you update
@ If you access an entity with a younger timestamp than you, abort
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Distributed concurrency control

non-replicated databases
@ notion of serializability extends easily
@ techniques such as 2PL and TS
@ deadlock management is harder
replicated databases: more complicated scheduling
@ one-copy-serializable

@ Read-One-Write-All| ROWA

April 29, 2010
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CC without replication
one local scheduler at each site
global scheduler = union of local schedulers

local locks

serializability theory extends to this context

2PL guarantees serialiazability/correctness
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Problem 1: deadlock management

Technique 1: Prevention

@ e.g., use a predefined ordering of resources (impractical)
@ e.g., analysis of code: difficult to know which data will be used
@ safe, no redo or rollback necessary
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Technique 2: Avoidance

e.g., time-out

e.g., priorities (e.g., timestamp)
T; locks A, T; request A
wait-die

if T; higher priority then T; waits
else T; aborts

@ wound-wait

if T; higher priority then T, aborts
else T; waits
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Technique 3: Detection

most used kind

detect cycles and break them by aborting some transaction

main tool: Maintain the distributed Wait-for-graph
@ cycle = deadlock
abort to break cycles
@ issue as in centralized case: choose the victim
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Cycle detection

difficulty: the graph is distributed and dynamic

Centralyzed cycle detection

@ one site receives local wait-for-graphs
@ construct global wait-for-graph and detect cycles
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Distributed deadlock detection

wait(i): the process that is blocking process i
message: probe(i,j,k) send by process j to process k to let it know that
process i is blocked by k

algorithm
@ when i requests a resource that is used by j
wait(i) :=j
probe(i,i,j)

@ when K receives probe(i,j,k) (from j)

if k is waiting then if k = i then deadlock detected
else probe(i,k,wait(k))

more complicated: processes should be “released”

possibility of false alarm: the deadlock is not real but the release did
not arrive in time

make sure the releases have been treated before sending a probe
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Problem 2: replicated data

serializable does not work anymore
x duplicated at site 1 and 2
two transactions:

@ T1: read(x); x:=x+5; write(x); commit
@ T2: read(x); x:=x*10; write(x); commit
2 local schedules:
@ S1: R1(x),W1(x),C1,R2(x),W2(x),C2
@ S2: R2(x),W2(x),C2,R1(x),W1(x),C1
each is serial
suppose that x = 1 before

after x@s1 is 60 and x@s2 is 15
there should be some consistency between the two schedules
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One-copy serializable

Definition of correctness

schedule should be equivalent to a serial schedule
on a database with a single copy

implies: two conflicting operations should be in the same relative order
in all local schedules where they appear together

| Read-once/write-all | ROWA

a read(x) operation is translated to read(x;) for some copy of x
a write(x) is transalated to
{ write(x;) | for all copies of x }

Serge Abiteboul (INRIA) Distributed databases April 29, 2010 51/56




One-copy serializable - continued
ideal world: consider all write to be simultaneous
guarantees one-copy serializable

reality: some write may fail (one copy is not available) — block the
transaction

alternative: write-all-available

when a site recovers, it should update its data before serving data
(otherwise, it may serve out-of-date data)
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CC with replicated data: centralized 2PL

Centralized 2PL

@ one site keeps all the lock tables and
is responsible for granting locks

@ advantage: simple and works OK

@ disadvantage: the central LM is a potential bottleneck
if it fails = everything stops
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CC with replicated data: primary copy 2PL

Primary copy 2PL

@ each entity is assigned a primary site
@ lock is managed there
@ reduces the bottleneck of the centralized 2PL
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CC with replicated data: distributed 2PL

Distributed 2PL
@ each site has a lock manager and locks for data item it stores
@ ROWA replica protocol

@ lock request
— involved lock managers
— participating processors

@ advantage for reads:
to read local data, need only a local lock

@ disadvantage: to write, need to obtain locks from all copies
@ need to maintain a catalog of all copies
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Nested transactions - autonomous systems

transaction on the global database

subtransactions in local databases

problem: no control on the TM of local databases
@ problems with serializability
@ problems with deadlock detection

@ problems with failure recovery
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