Datalog with negation

Serge Abiteboul

INRIA

6 mai 2009
Datalog with negation

Read Chapter 15 of [AHV]

transitive closure

\[T(x, y) \leftarrow G(x, y) \]
\[T(x, y) \leftarrow G(x, z), T(z, y). \]

complement \(CT \) of \(T \) (pairs of disconnected nodes in a graph \(G \))

\[CT(x, y) \leftarrow \neg T(x, y) \]

To simplify, assume an active domain interpretation

datalog\(^{-} \)

allow in bodies of rules, literals of the form \(\neg R_i(u_i) \)

\(\neg = (x, y) \) is denoted by \(x \neq y \)
notation: $J|S$ is restriction of J to S

extend the immediate consequence operator

For K over $sch(P)$, A is $T_P(K)$ if

- $A \in K|edb(P)$, or
- $A \leftarrow A_1, \ldots, A_n$ an instantiation of a rule in P such that
 1. if A_i is a positive literal then $A_i \in K$
 2. if $A_i = \neg B_i$ then $B_i \notin K$

T_P is not inflationary
Problems

T_P may not have any fixpoint

- $P_1 = \{ p \leftarrow \neg p \}$

T_P may have several minimal fixpoints containing \mathbb{I}

- $P_2 = \{ p \leftarrow \neg q, q \leftarrow \neg p \}$
- two minimal fixpoints (containing the \emptyset) : $\{ p \}$ and $\{ q \}$.

Now consider $\{ T_P^i(\emptyset) \}_{i>0}$

T_P has a least fixpoint but sequence diverges

- $P_3 = \{ p \leftarrow \neg r; r \leftarrow \neg p; p \leftarrow \neg p, r \}$
- T_{P_3} has a least fixpoint $\{ p \}$
- $\{ T_{P_3}^i(\emptyset) \}_{i>0}$ alternates between \emptyset and $\{ p, r \}$

T_P has a least fixpoint and $\{ T_P^i(\emptyset) \}_{i>0}$ converges to something else

- $P_4 = \{ p \leftarrow p, q \leftarrow q, p \leftarrow \neg p, q \leftarrow \neg p \}$
- $\{ T_{P_4}^i(\emptyset) \}_{i>0}$ converges to $\{ p, q \}$
- least fixpoint of T_{P_4} is $\{ p \}$.
Rules of the form $P(x, y) \leftarrow P(x, y)$
- change the semantics of program
- force T_P to be inflationnary so force convergence
- correspond to tautologies $p \lor \neg p$
- transitive closure example

Model theoretic semantics: Problems
some programs have no model
some have no least model containing I
when a program has several minimal models, choose between them
Semipositive datalog

only apply negation to \textit{edb} relations

semipositive program that is neither in datalog nor in CALC :

$$T(x, y) \leftarrow \neg G(x, y)$$
$$T(x, y) \leftarrow \neg G(x, z), T(z, y).$$

Intuition : one could eliminate negation from semi-positive programs by adding, for each \textit{edb} relation \(R'\), a new \textit{edb} relation \(\overline{R'}\) holding the complement of \(R'\) (w.r.t. the active domain), and replacing \(\neg R'(x)\) by \(\overline{R'}(x)\).

many nice properties of positive datalog
\(\Sigma_P\) has a unique minimal model \(J\) satisfying \(J|\text{edb}(P) = I\)
\(T_P\) has a unique minimal fixpoint \(J\) satisfying \(J|\text{edb}(P) = I\).

These coincide
complement of transitive closure is not a semi-positive program

closure under composition : stratified datalog
stratification of a datalog$^-$ program P

sequence of datalog$^-$ programs P^1, \ldots, P^n and some
mapping σ from idb(P) to [1..n] such that

(i) $\{P^1, \ldots, P^n\}$ is a partition of P
(ii) for each R, all rules defining R are in $P^{\sigma(R)}$
(iii) If $R(u) \leftarrow \ldots R'(v) \ldots$ is a rule in P, and R' is an idb
relation, then $\sigma(R') \leq \sigma(R)$.
(iv) If $R(u) \leftarrow \ldots \neg R'(v) \ldots$ is a rule in P, and R' is an idb
relation, then $\sigma(R') < \sigma(R)$.

each P^i is called a stratum

the stratification of P provides a parsing of P as a sequence
of semipositive subprograms P^1, \ldots, P^n
Stratification examples

stratification of TCcomp

\[T(x, y) \leftarrow G(x, y) \]
\[T(x, y) \leftarrow G(x, z), T(z, y) \]
\[CT(x, y) \leftarrow \neg T(x, y) \]

first stratum: first two rules (defining \(T \))
second stratum: third rule (defining \(CT \) using \(T \))
Stratification examples

\(P_7\) defined by

\[
\begin{align*}
 r_1 & : S(x) \leftarrow R'_1(x), \neg R(x) \\
 r_2 & : T(x) \leftarrow R'_2(x), \neg R(x) \\
 r_3 & : U(x) \leftarrow R'_3(x), \neg T(x) \\
 r_4 & : V(x) \leftarrow R'_4(x), \neg S(x), \neg U(x).
\end{align*}
\]

Then \(P_7\) has 5 distinct stratifications, namely,

\[
\begin{align*}
 \{r_1\}, \{r_2\}, \{r_3\}, \{r_4\} \\
 \{r_2\}, \{r_1\}, \{r_3\}, \{r_4\} \\
 \{r_2\}, \{r_3\}, \{r_1\}, \{r_4\} \\
 \{r_1, r_2\}, \{r_3\}, \{r_4\} \\
 \{r_2\}, \{r_1, r_3\}, \{r_4\}.
\end{align*}
\]

\(P_2 = \{p \leftarrow \neg q, q \leftarrow \neg p\}\)

no stratification
Testing stratification

Precedence graph G_P of P
- vertexes: are the idb's of P
- edge (R', R) with label + if R' is used positively in some rule defining R
- edge (R', R) with label - if R' is used negative in some rule defining R

P is stratifiable iff G_P has no cycle containing a negative edge

Part of proof
P is a program whose precedence graph G_P has no cycle with negative edges
C_1, \ldots, C_n the strongly connected components of G_P
$C_i \prec C_j$: if there is an edge from C_i to some node of C_j
\prec is acyclic

Turn this partial order into a sort C_{i_1}, \ldots, C_{i_n}
This provides a stratification
Stratification : semantics

P a program with stratification $\sigma = P^1, \ldots, P^n$ and I and instance

$I_0 = I$

$I_i = I_{i-1} \cup P^i(I_{i-1}|edb(P^i))$

where P^i is the semipositive semantics

I_n is denoted $\sigma(I)$

Result : independent of the choice of a stratification

we denote it $P^{strat}(I)$

Result : P stratified datalog$^-$ and I

1. $P^{strat}(I)$ is a minimal model of Σ_P
 whose restriction to $edb(P)$ equals I.

2. $P^{strat}(I)$ is a minimal fixpoint of T_P
 whose restriction to $edb(P)$ equals I.

3. $P^{strat}(I)$ is a “supported” model of P relative to I
 ($J \subseteq T_P(J) \cup I$)

limited power
The well-founded semantics

accommodate incompleteness
3-valued instances: true, false, unknown
example: two players game
input K with relation $moves$:

$$K(moves) = \{ \langle b, c \rangle, \langle c, a \rangle, \langle a, b \rangle, \langle a, d \rangle, \langle d, e \rangle, \langle d, f \rangle, \langle f, g \rangle \}$$

each player can move the position following a move edge
a player looses if he/she has no possible move
goal: compute the set of winning states

- \(d \) is winning: move to \(e \)
- \(f \) is winning: move to \(g \)

No winning strategy from \(a \), \(b \), or \(c \). Indeed, a given player can prevent the other from winning, essentially by forcing a non-terminating sequence of moves.

This will be the well-founded semantics for \(P_{\text{win}} \):

\[
\text{win}(x) \leftarrow \text{moves}(x, y), \neg \text{win}(y)
\]

(non stratifiable)

“3-valued model” \(J \) of \(P_{\text{win}} \), that agrees with \(K \) on \(\text{moves} \)

- \text{true} \hspace{1cm} \text{win}(d), \text{win}(f)
- \text{false} \hspace{1cm} \text{win}(e), \text{win}(g)
- \text{unknown} \hspace{1cm} \text{win}(a), \text{win}(b), \text{win}(c).

This will provide the well-founded semantics
3-valued instances

assume now that all facts \(R(u) \) are in the program as
\[R(u) \leftarrow \]
A 3-value instance: \(B(P) \rightarrow \{0, 1/2, 1\} \)
\(\mathbf{I}^0 \) false facts, \(\mathbf{I}^{1/2} \) unknown, \(\mathbf{I}^1 \) true
total instance if \(\mathbf{I}^{1/2} = \emptyset \)
E.g.: \(\mathbf{I}(p) = 1, \mathbf{I}(q) = 1, \mathbf{I}(r) = 1/2, \mathbf{I}(s) = 0 \)
written: \(\mathbf{I} = \{p, q, \neg s\} \)
\(\mathbf{I} \prec \mathbf{J} \) iff for each \(A \in B(P), \mathbf{I}(A) \leq \mathbf{J}(A) \)
(equivalently, \(\mathbf{I}^1 \subseteq \mathbf{J}^1 \) and \(\mathbf{I}^0 \supseteq \mathbf{J}^0 \))
Truth value of boolean combination of facts
\[\hat{\mathbf{I}}(\beta \land \gamma) = \min\{\hat{\mathbf{I}}(\beta), \hat{\mathbf{I}}(\gamma)\} \]
\[\hat{\mathbf{I}}(\beta \lor \gamma) = \max\{\hat{\mathbf{I}}(\beta), \hat{\mathbf{I}}(\gamma)\} \]
\[\hat{\mathbf{I}}(\neg \beta) = 1 - \hat{\mathbf{I}}(\beta) \]
\[\hat{\mathbf{I}}(\beta \leftarrow \gamma) = 1 \text{ if } \hat{\mathbf{I}}(\gamma) \leq \hat{\mathbf{I}}(\beta), \text{ and } 0 \text{ otherwise.} \]
careful
\[p \leftarrow q \quad \text{and} \quad p \lor \neg q : \text{possibly different} \]
I satisfies α if $\hat{I}(\alpha) = 1$

win example

\[
\begin{align*}
\text{win}(a) & \leftarrow \text{moves}(a, d), \neg \text{win}(d) \\
\text{win}(a) & \leftarrow \text{moves}(a, b), \neg \text{win}(b)
\end{align*}
\]

first is true for J

$\hat{J}(\neg \text{win}(d)) = 0$, $\hat{J}(\text{moves}(a, d)) = 1$, $\hat{J}(\text{win}(a)) = 1/2$, $1/2 \geq 0$.

second is true

$\hat{J}(\neg \text{win}(b)) = 1/2$, $\hat{J}(\text{moves}(a, b)) = 1$, $\hat{J}(\text{win}(a)) = 1/2$, $1/2 \geq 1/2$

$\hat{J}(\text{win}(a) \lor \neg (\text{moves}(a, b) \land \neg \text{win}(b))) = 1/2$
3-valued minimal model for (extended) datalog

extended : datalog program with 0, 1/2 and 1 as literals in bodies

$3\text{-}T_P$: of a 3-valued instance I and $A \in B(P)$,

- 1 for some instantiation $A \leftarrow \text{body}$ and $\hat{I}(\text{body}) = 1$
- 0 for each instantiation $A \leftarrow \text{body}$ and $\hat{I}(\text{body}) = 0$
- $1/2$ otherwise

$P = \{ p \leftarrow 1/2 ; p \leftarrow q, 1/2 ; q \leftarrow p, r ; q \leftarrow p, s ; s \leftarrow q ; r \leftarrow 1 \}$

\[3\text{-}T_P(\{ \neg p, \neg q, \neg r, \neg s \}) = \{ \neg q, r, \neg s \} \]
\[3\text{-}T_P(\{ \neg q, r, \neg s \}) = \{ r, \neg s \} \]
\[3\text{-}T_P(\{ r, \neg s \}) = \{ r \} \]
\[3\text{-}T_P(\{ r \}) = \{ r \} \]
Result - 3-extended datalog programs

\[P \text{ 3-extended datalog program} \]

1. \(3-T_P \) is monotonic and the sequence \(\{3-T_P^i(\bot)\}_{i>0} \) is increasing and converges to the least fixpoint of \(3-T_P \)

2. \(P \) has a \textbf{unique} minimal 3-valued model that equals the least fixpoint of \(3-T_P \)

minimal is w.r.t. \(\prec \)
3-stable models of datalog$^\neg$

P a datalog$^\neg$ program, I a 3-valued instance over $\text{sch}(P)$

P' ground version of P given I

$\text{pg}(P,I)$ positivized ground version of P given I : replace each negative literal $\neg A$ by $\hat{I}(\neg A)$ (i.e., 0, 1 or $1/2$)

this is an extended datalog program

We denote its minimal model : $\text{conseq}_P(I)$

A 3-valued instance I over $\text{sch}(P)$ is a 3-stable model of P iff $\text{conseq}_P(I) = I$.
Example: stable model

\[
P
\]

\[
p \leftarrow \neg r
q \leftarrow \neg r, p
s \leftarrow \neg t
t \leftarrow q, \neg s
u \leftarrow \neg t, p, s.
\]

3 3-stable models

\[
I_1 = \{p, q, t, \neg r, \neg s, \neg u\},
I_2 = \{p, q, s, \neg r, \neg t, \neg u\},
I_3 = \{p, q, \neg r\}.
\]
checking I_3

checking I_3 : positivized program

\[
\begin{align*}
p & \leftarrow 1 \\
q & \leftarrow 1, p \\
s & \leftarrow 1/2 \\
t & \leftarrow q, 1/2 \\
u & \leftarrow 1/2, p, s.
\end{align*}
\]

\[
\bot = \{\neg p, \neg q, \neg r, \neg s, \neg t, \neg u\}
\]

\[
3-T_{P'}(\bot) = \{p, \neg q, \neg r, \neg t, \neg u\}
\]

\[
(3-T_{P'})^2(\bot) = \{p, q, \neg r, \neg t\}
\]

\[
(3-T_{P'})^3(\bot) = (3-T_{P'})^4(\bot) = \{p, q, \neg r\}
\]

\[
\text{conseq}_P(I_3) = (3-T_{P'})^3(\bot) = I_3,
\]
each datalog\(\neg\) programs has at least one 3-stable model

\(P\) a datalog\(\neg\) program

The well-founded semantics of \(P\) \(P_{\text{wf}}(\emptyset) = \)

the 3-valued instance consisting of all positive and negative
facts belonging to all 3-stable models of \(P\)

\(P_{\text{wf}}(I) = P_{I}^{\text{wf}}(\emptyset)\)

example, \(P_{\text{win}}^{\text{wf}}(K) = J\)
Fixpoint characterization

previous description of the well-founded semantics
effective but very inefficient
more efficient one: “alternating fixpoint”

idea:

sequence \(\{I_i\}_{i \geq 0} \) of 3-valued instances
alternate between underestimates and overestimates of the
facts known in every 3-stable model of \(P \)

SEQUENCE

\[
\begin{align*}
I_0 &= \perp \quad \text{(all facts are false)} \\
I_{i+1} &= \text{conseq}_P(I_i)
\end{align*}
\]

each \(I_i \) is a total instance

observe that \(\text{conseq}_P \) is antimonotonic,
\(I \preceq J \) implies \(\text{conseq}_P(J) \preceq \text{conseq}_P(I) \)

since \(\perp \preceq I_1 \) and \(\perp \preceq I_2 \),

\[
I_0 \preceq I_2 \ldots \preceq I_{2i} \preceq I_{2i+2} \preceq \ldots \preceq I_{2i+1} \preceq I_{2i-1} \preceq \ldots \preceq I_1
\]
Fixpoint: examples

\[P : \]
\[
P \leftarrow \neg r
\]
\[
q \leftarrow \neg r, p
\]
\[
s \leftarrow \neg t
\]
\[
t \leftarrow q, \neg s
\]
\[
u \leftarrow \neg t, p, s.
\]

\[I_0 = \bot = \{ \neg p, \neg q, \neg r, \neg s, \neg t, \neg u \} \]
\[I_1 = \{ p, q, \neg r, s, t, u \} \]
\[I_2 = \{ p, q, \neg r, \neg s, \neg t, \neg u \} \]
\[I_3 = \{ p, q, \neg r, s, t, u \} \]
\[I_4 = \{ p, q, \neg r, \neg s, \neg t, \neg u \} \]
Fixpoint: examples

\(P_{\text{win}} \) and input \(K \)

for \(I_0 \), all move atoms are \textbf{false}

for each \(j \geq 1 \), \(I_j \)(moves) = \(K \)(moves)

\[
\begin{align*}
I_1 &= \{ \text{win}(a), \text{win}(b), \text{win}(c), \text{win}(d), \neg\text{win}(e), \text{win}(f), \neg\text{win}(f) \} \\
I_2 &= \{ \neg\text{win}(a), \neg\text{win}(b), \neg\text{win}(c), \text{win}(d), \neg\text{win}(e), \text{win}(f), \neg\text{win}(f) \} \\
I_3 &= I_1 \\
I_4 &= I_2
\end{align*}
\]
there are finitely many 3-valued instances for a given \(P \)
these two sequences converge
\(I_* : \) limit of increasing \(\{ I_{2i} \}_{i \geq 0} \)
\(I^* : \) limit of decreasing \(\{ I_{2i+1} \}_{i \geq 0} \)
\(I_* \prec I^* \)

\em conseq_\!_P (I_*) = I^* \) and \(conseq_\!_P (I^*) = I_* \)

\(I^* \) : 3-valued instance with facts known in both

\[
I^*(A) = \begin{cases}
1 & \text{if } I_*(A) = I^*(A) = 1 \\
0 & \text{if } I_*(A) = I^*(A) = 0 \text{ and} \\
1/2 & \text{otherwise.}
\end{cases}
\]
Theorem: $I^* = P^{wf}(\emptyset)$

Theorem

P stratified datalog$^-$ program,

for each 2-valued instance I over $edb(P)$, $P^{wf}(I) = P^{strat}(I)$.
Example

input: binary relation G + a unary relation $good$

$$bad(x) \leftarrow G(y, x), \neg good(y)$$
$$answer(x) \leftarrow \neg bad(x)$$

$K(G) = \{\langle b, c \rangle, \langle c, b \rangle, \langle c, d \rangle, \langle a, d \rangle, \langle a, e \rangle\}$, and
$K(good) = \{\langle a \rangle\}$.

as usual, we add the facts to program as unit clause $I_0 = \bot$ (containing all negated atoms).

omitting facts in good and G

<table>
<thead>
<tr>
<th></th>
<th>bad</th>
<th>$answer$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_0</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>I_1</td>
<td>${\neg a, b, c, d, e}$</td>
<td>${a, b, c, d, e}$</td>
</tr>
<tr>
<td>I_2</td>
<td>${\neg a, b, c, d, \neg e}$</td>
<td>${a, \neg b, \neg c, \neg d, \neg e}$</td>
</tr>
<tr>
<td>I_3</td>
<td>${\neg a, b, c, d, \neg e}$</td>
<td>${a, \neg b, \neg c, \neg d, e}$</td>
</tr>
<tr>
<td>I_4</td>
<td>${\neg a, b, c, d, \neg e}$</td>
<td>${a, \neg b, \neg c, \neg d, e}$</td>
</tr>
</tbody>
</table>

$I_* = I_* = I_* = I_3 = I_4$
Merci