Reasoning on Web Data Semantics

Marie-Christine Rousset
Université de Grenoble (UJF) et Institut Universitaire de France
Evolution of the Web

Web of text
- Standards and tools:
 - http protocol
 - Search engines
- Underlying techniques:
 - Information retrieval based on word indexes
 - Document world

Web of data
- Standards and tools:
 - URIs, namespaces
 - RDFS, SPARQL query engines
- Underlying techniques:
 - Answering queries on a set of ground facts
 - Database world

Web of knowledge
- Standards and tools:
 - Semantic web
 - Ontologies
 - OWL
- Underlying techniques:
 - Answering queries on a knowledge base
 - Knowledge representation and reasoning world
Evolution of the Web

Current web: Web of text
- Billions of web pages

Is emerging: Web of data
- YAGO, DBPedia, Linked Data
- Billions of RDF triples

Very next step: Web of knowledge
- A flourishing of ontologies and algorithms for ontology-based data access
Main differences illustrated by example

scientists born in Europe who received a Nobel Prize?

Keywords: « scientists, born in Europe, Nobel Prize »

SPARQL query

```sparql
select x where <y, hasName, x> <y, hasWonPrize, NobelPrize> <y, type, Scientist>, <y, bornIn, Europe>
```

Web of text

- a ranked set of web pages likely to contain elements of answer for the user’s query

The Royal Swedish Academy of Sciences awards the Nobel Prize in Physics, the ... listen (help-info)) was born on 21 October 1833 in Stockholm, Sweden, into a The heavy focus on European and Swedish authors has been a subject of ...

Web of data

RDFS store (e.g. YAGO)

- <http://.../marie-curie, hasName, « Marie Curie »>
- <http://.../marie-curie, type, Scientist>
- <http://.../marie-curie, hasWonPrize, NobelPrize>
- <http://.../marie-curie, bornIn, Europe>
- <http://.../einstein, hasName, « Albert Einstein »>
- <http://.../einstein, type, Physicist>
- <http://.../einstein, hasWonPrize, NobelPrize>
- <http://.../einstein, birthPlace, Ulm>
- <Physicist, subClassOf, Scientist>
- <Ulm, locatedIn, Germany>, <Germany, partOf, Europe>
Main differences illustrated by example

Web of text

Web of data

Web of knowledge

Keywords: « scientists, born in Europe, Nobel Prize »

SPARQL query

select x where <y, hasName, x>
<y, hasWonPrize, NobelPrize>
<y, type, Scientist>, <y, bornIn, Europe>

RDFS store (e.g. YAGO)

The Royal Swedish Academy of Sciences awards the Nobel Prize in Physics, the...

The heavy focus on European and Swedish authors has been a subject of...

« Alfred Nobel », « Albert Einstein », « Albert Camus », « Marie Curie »

+ Extraction of named entities
Main differences illustrated by example

scientists born in Europe who received a Nobel Prize?

Keywords: «scientists, born in Europe, Nobel Prize»

SPARQL query

```sparql
select x where <y, hasName, x>
<y, hasWonPrize, NobelPrize>
<y, type, Scientist>, <y, bornIn, Europe>
```

Web of text

a ranked set of web pages likely to contain elements of answer for the user’s query

- The Royal Swedish Academy of Sciences awards the Nobel Prize in Physics, the...
- Alfred Nobel was born on 21 October 1833 in Stockholm, Sweden, into a.....
- The heavy focus on European and Swedish authors has been a subject of...

Wrong answers

+ Extraction of named entities

- «Alfred Nobel»,
- «Albert Einstein»,
- «Albert Camus»,
- «Marie Curie»
Main differences illustrated by example

scientists born in Europe who received a Nobel Prize?

Keywords: « scientists, born in Europe, Nobel Prize »

Web of text

SPARQL query

select x where <y, hasName, x> <y, hasWonPrize, NobelPrize> <y, type, Scientist>, <y, bornIn, Europe>

Web of data

Web of knowledge

a ranked set of web pages likely to contain elements of answer for the user’s query

RDFS store (e.g. YAGO)

The Royal Swedish Academy of Sciences awards the Nobel Prize in Physics, the ... listen (help-info)) was born on 21 October 1833 in Stockholm, Sweden, into a The heavy focus on European and Swedish authors has been a subject of ...

Wrong answers

« Alfred Nobel », « Albert Einstein », « Albert Camus », « Marie Curie »
Main differences illustrated by example

scientists born in Europe who received a Nobel Prize?

Keywords: « scientists, born in Europe, Nobel Prize »

SPARQL query

\[
\text{select } x \text{ where } <y, \text{hasName}, x> <y, \text{hasWonPrize}, \text{NobelPrize}>
\]

Web of text

Web of data

Web of knowledge

RDFS store (e.g. YAGO)

The Royal Swedish Academy of Sciences awards the Nobel Prize in Physics, the ... listen (help-info)) was born on 21 October 1833 in Stockholm, Sweden, into a The heavy focus on European and Swedish authors has been a subject of ...
The real picture

The web is evolving from a web of text to a web of knowledge in a coherent and a smooth way.

- **Web of text**
 - web pages identified by URLs

- **Data layer**
 - RDFS metadata on URLs

- **Knowledge layer**
 - ontologies (semantic constraints)
Lesson learnt from the example

• Answering queries over the web of knowledge requires reasoning
 – Ontological statements can be used to infer new facts and deduce answers that could not be obtained otherwise
 – They are constraints used as deductive rules that infer new facts
 – Subtlety: some inferred facts can be partially known

 From the constraint “a professor teaches at least one master course”
 \[\forall x \ (\text{Professor}(x) \Rightarrow \exists y \ \text{Teaches}(x, y), \text{MasterCourse}(y)) \]
 and the fact:
 \(\text{Professor}(\text{dupond}) \) (RDF syntax: \(<\text{dupond, type, Professor}>\))
 it can be inferred the two following incomplete “facts”:
 \(\text{Teaches}(\text{dupond}, v), \text{MasterCourse}(v) \)
 i.e, in RDF notation, two RDF triples with blank nodes:
 \(<\text{dupond, Teaches, }_v>, <_v, \text{type}, \text{MasterCourse}>\)
Finding inconsistent information on the Web

- **Reasoning**: a tool for checking consistency
 - Some ontological statements can be used as *integrity* constraints
 - “a professor cannot be a lecturer” ; “a course must have a responsible”
 \[
 \forall x \ (\text{Professor}(x) \Rightarrow \neg \text{Lecturer}(x))
 \]
 \[
 \forall x \ (\text{Course}(x) \Rightarrow \exists y \ \text{ResponsibleFor}(y,x))
 \]
 - “a master course is taught by a single teacher”
 \[
 \forall x \ \forall y \ (\text{Course}(x), \text{ResponsibleFor}(y,x) \Rightarrow \text{Professor}(y), \text{Teaches}(y,x))
 \]
 - Subtlety: showing data inconsistency may require *intricate reasoning* on different rules, constraints and facts
 - The facts: Lecturer(jim), Teaches(jim, ue431), MasterCourse(ue431)
 - + the above integrity constraints
 - + the rule \[
 \forall x \ (\text{MasterCourse}(x) \Rightarrow \text{Course}(x))
 \] leads to an inconsistency
Automatic Reasoning

• Not a novel problem
 – Many decidability and complexity results coming from decades of research in the KR&R community
 – Several inference algorithms and implemented reasoners
• The key point
 – first-order-logic is appropriate for knowledge representation
 – but full first-order-logic is not decidable
 no general algorithm that, applied to two any FOL formula, determines whether the first one implies the second one
⇒ the game is to find restrictions to design:
 – decidable fragments of first-order-logic
 – expressive enough for modeling useful knowledge or constraints
Description Logics

• A family of class-based logical languages for which reasoning is decidable
 – Provides algorithms for reasoning on (possibly complex) logical constraints over unary and binary predicates
• This is exactly what is needed for handling ontologies
 – in fact, the OWL constructs come from Description Logics
• A fine-grained analysis of computational complexity with surprising complexity results
 – \mathcal{ALC} is EXPTIME–complete

=> any sound and complete inference algorithm for reasoning on most of the subsets of constraints expressible in OWL may take an exponential time (in the worst-case)

“only professors or lecturers may teach to undergraduate students”
$\forall x \forall y (\text{TeachesTo}(x,y), \text{UndergraduateStudent}(y) \Rightarrow \text{Professor}(x) \lor \text{Lecturer}(x))$

$\exists \text{TeachesTo. UndergraduateStudent } \sqsubseteq \text{Professor } \sqcup \text{Lecturer}$
The same game again...

• Find restrictions on the logical constructs and/or the allowed axioms in order to:
 – design sublanguages for which reasoning is in P
 EL, DL-Lite
 – expressive enough for modeling useful constraints over data

• DL-Lite: a good trade-off
 – captures the main constraints used in databases and in software engineering
 – extends RDFS (the formal basis of OWL2 QL profile)
 – specially designed for answering queries over ontologies to be FOL-reducible
FOL-reducibility

Query answering and data consistency checking can be performed in two separate steps:

• a query reformulation step
 – reasoning on the ontology (and the queries)
 – independent of the data
⇒ a set of queries: the reformulations of the input query

• an evaluation step
 – of the (SPARQL) query reformulations on the (RDF) data
 – independent of the ontology
⇒ Main advantage
 – makes possible to use an SQL or SPARQL engine
 – thus taking advantage of well-established query optimization strategies supported by standard relational DBMS
Illustration

ontological constraints

\[
< y, type, z >, < z, subClassof, w > \Rightarrow < y, type, w >
< y, birthPlace, z >, < z, LocatedIn, u >, < u, partOf, v > \Rightarrow < y, bornIn, v >
\]

......

Query Reformulation

query

\[
select \ x \ where \ < y, hasName, x >
< y, hasWonPrize, NobelPrize >
< y, type, Scientist >, < y, bornIn, Europe >
\]

......

\[
select \ x \ where \ < y, hasName, x >
< y, hasWonPrize, NobelPrize >
< y, type, chemist >, < chemist, subClassOf, scientist >
< y, birthPlace, z >, < z, LocatedIn, u >, < u, partOf, Europe >
\]

......

SPARQL evaluation

RDFS store (e.g. YAGO)

\[
< http://.../marie-curie, hasName, « Marie Curie » >
< http://.../marie-curie, type, Scientist >
< http://.../marie-curie, hasWonPrize, NobelPrize >
< http://.../marie-curie, bornIn, Europe >
< http://.../einstein, hasName, « Albert Einstein » >
< http://.../einstein, type, Physicist >
< http://.../einstein, hasWonPrize, NobelPrize >
< http://.../einstein, birthPlace, Ulm >
< Physicist, subClassOf, Scientist >
< Ulm, LocatedIn, Germany >,
< Germany, partOf, Europe >
\]
DL-Lite by example

Professor ⊑ ⊑ ∃ Teaches

∀x (Professor(x) ⇒ ∃y Teaches(x,y))

∃ Teaches⁻ ⊑ ⊑ Course

∀x∀y (Teaches(x,y) ⇒ Course(y))

ResponsibleFor ⊑ ⊑ Teaches

∀x∀y (ResponsibleFor(x,y) ⇒ Teaches(x,y))

(funct ResponsibleFor⁻)

∀x∀y∀z(ResponsibleFor(y,x)∧ResponsibleFor(z,x) ⇒ y=z)

Lecturer ⊑ ¬ (∃ResponsibleFor)

∀x ∀y (Lecturer(x) ∧ ResponsibleFor(x,y) ⇒ ⊥)
DL-Lite: a frontier for FOL reducibility

- The **reasoning step** is **polynomial** in the size of the ontology
- The **evaluation step** has the same **data complexity** as standard evaluation of conjunctive queries over relational databases
 - in $\mathsf{AC^0}$ (strictly contained in LogSpace and thus in P)
- The interaction between relation inclusion constraints and functionality constraints makes reasoning in DL-Lite **P-complete in data complexity**
 - $\mathsf{DL-Lite}_A$ is **FOL-reducible**
 - full $\mathsf{DL-Lite}$ is **not FOL-reducible**
 - reformulating a query may require recursion (Datalog)
Decentralized ontology-based data access

[IJCAI 2009], joint work with F. Goasdoué, N. Abdallah
Conclusion

• The scalability of reasoning on Web data requires light-weight ontologies
• RDFS is not expressive enough to express useful constraints
• Forget about (most of fragments) of OWL
 \[\Rightarrow\text{extend RDFS with constraints expressible in a logic for which data management is FOL reducible}\]
 – DL-Lite\textsubscript{A} is an example of such a logic
 – (some fragments of) Datalog+ too
References

Web data management,
Abiteboul, Manolescu, Rigaux, Rousset, Senellart
webdam.inria.fr/Jorge

Decentralized reasoning in DL-Lite
Abdallah, Goasdoué, Rousset
IJCAI 2009

Reasoning for reference reconciliation
Sais, Pernelle, Rousset
IJCAI 2007

Trust for resource finding in semantic P2P networks
Atencia, Euzenat, Pirro, Rousset
ISWC 2011
MERCI