Reasoning on Web Data Semantics

Marie-Christine Rousset
Université de Grenoble (UJF) et Institut Universitaire de France

Evolution of the Web

Web of text

Web of data

Web of knowledge

Standards and tools

http protocol Search engines

Standards and tools

URIs, namespaces RDFS, SPARQL query engines

Standards and tools

Semantic web

- -Ontologies
- -OWL

Underlying techniques

- Information retrieval based on word indexes
- Document world

Underlying techniques

- Answering queries on a set of ground facts
- Database world

Underlying techniques

- Answering queries on a knowledge base
- Knowledge representation and reasoning world

Evolution of the Web

scientists born in
Europe who received
a Nobel Prize?

Keywords: « scientists, born in Europe, Nobel Prize »

SPARQL query

select x where <y, hasName, x>
<y, hasWonPrize, NobelPrize>
<y, type, Scientist>, <y, bornIn, Europe>

Web of text

Web of data

Web of knowledge

a ranked set of web pages likely to contain elements of answer for the user's query

The Royal Swedish Academy of *Sciences* awards the *Nobel Prize* in Physics, the ... listen (help·info)) was *born* on 21 October 1833 in Stockholm, Sweden, into a The heavy focus on *European* and Swedish authors has been a subject of ...

RDFS store (e.g. YAGO)

http://.../marie-curie, hasName, « Marie Curie »>

<http://.../marie-curie, type, Scientist>

http://.../marie-curie, hasWonPrize, NobelPrize>

http://.../marie-curie, bornIn, Europe>

http://.../einstein, http://.../einstein, hasName, « Albert Einstein »>

<http://.../einstein, type, Physicist>

http://.../einstein, hasWonPrize, NobelPrize>

http://.../einstein, birthPlace, Ulm>

<Physicist, subClassOf, Scientist> <Ulm, locatedIn, Germany>,

<Germany, partOf, Europe>

Main differences illustrated by example

scientists born in
Europe who received
a Nobel Prize ?

Keywords: « scientists, born in Europe, Nobel Prize »

SPARQL querv

select x where <y, hasName, x>
<y, hasWonPrize, NobelPrize>
<y, type, Scientist>, <y, bornIn, Europe>

Web of text

Web of data

Web of knowledge

a ranked set of web pages likely to contain elements of answer for the user's query

The Royal Swedish Academy of *Sciences* awards the *Nobel Prize* in Physics, the ... listen (help·info)) was *born* on 21 October 1833 in Stockholm, Sweden, into a The heavy focus on *European* and Swedish authors has been a subject of ...

+ Extraction of named entities

RDFS store (e.g. YAGO)

http://.../marie-curie, hasName, « Marie Curie »>

<http://.../marie-curie, type, Scientist>

http://.../marie-curie, hasWonPrize, NobelPrize>

http://.../marie-curie, bornIn, Europe>

http://.../einstein, hasName, « Albert Einstein »>

<http://.../einstein, type, Physicist>

http://.../einstein, hasWonPrize, NobelPrize>

http://.../einstein, birthPlace, Ulm>

<Physicist, subClassOf, Scientist>

<Ulm, locatedIn, Germany>,

<Germany, partOf, Europe>

«Alfred Nobel », « Albert Einstein », « Albert Camus », « Marie Curie »

Lesson learnt from the example

- Answering queries over the web of knowledge requires reasoning
 - Ontological statements can be used to infer new facts and deduce answers that could not be obtained otherwise
 - They are constraints used as deductive rules that infer new facts

```
— Subtlety: some inferred facts can be partially known
From the constraint "a professor teaches at least one master course"
∀x (Professor(x) => ∃ y Teaches(x,y), MasterCourse(y))
and the fact:
Professor(dupond) (RDF syntax: <dupond, type, Professor>)
it can be inferred the two following incomplete "facts":
Teaches(dupond, v), MasterCourse(v)
i.e, in RDF notation, two RDF triples with blank nodes:
<dupond, Teaches, _v> , <_v, type, MasterCourse>
```

Finding inconsistent information on the Web

- Reasoning: a tool for checking consistency
 - Some ontological statements can be used as integrity constraints

Subtlety: showing data inconsistency may require intricate
 reasoning on different rules, constraints and facts

```
The facts: Lecturer (jim), Teaches(jim, ue431), MasterCourse(ue431)
```

- + the above integrity constraints
- + the rule $\forall x$ (MasterCourse(x) => Course(x)) leads to an inconsistency

Automatic Reasoning

- Not a novel problem
 - Many decidability and complexity results coming from decades of research in the KR&R community
 - Several inference algorithms and implemented reasoners
- The key point
 - first-order-logic is appropriate for knowledge representation
 - but <u>full</u> first-order-logic is not decidable
 no general algorithm that, applied to two any FOL formula, determines
 whether the first one implies the second one
- \Rightarrow the game is to find restrictions to design:
 - decidable fragments of first-order-logic
 - expressive enough for modeling useful knowledge or constraints

Description Logics

- A family of class-based logical languages for which reasoning is decidable
 - Provides algorithms for reasoning on (possibly complex) logical constraints over unary and binary predicates
- This is exactly what is needed for handling ontologies
 - in fact, the OWL constructs come from Description Logics
- A fine-grained analysis of computational complexity with surprising complexity results
 - ALC is EXPTIME-complete
 - =>any sound and complete inference algorithm for reasoning on most of the subsets of constraints expressible in OWL may take an exponential time (in the worst-case)

"only professors or lecturers may teach to undergraduate students" $\forall x \forall y \text{ (TeachesTo}(x,y), \text{ UndergraduateStudent}(y) => \text{ Professor}(x) \lor \text{Lecturer}(x))$

 \exists Teaches To. Under graduate Student \sqsubseteq Professor \sqcup Lecturer

The same game again...

- Find restrictions on the logical constructs and/or the allowed axioms in order to:
 - design sublanguages for which reasoning is in P

EL, **DL-Lite**

expressive enough for modeling useful constraints over data

DL-Lite: a good trade-off

- captures the main constraints used in databases and in software engineering
- extends RDFS (the formal basis of OWL2 QL profile)
- specially designed for answering queries over ontologies to be FOL-reducible

FOL-reducibility

Query answering and data consistency checking can be performed in two separate steps:

- a query reformulation step
 - reasoning on the ontology (and the queries)
 - independent of the data
- ⇒ a set a queries: the reformulations of the input query
- an evaluation step
 - of the (SPARQL) query reformulations on the (RDF) data
 - independent of the ontology
- ⇒ Main advantage
 - makes possible to use an SQL or SPARQL engine
 - thus taking advantage of well-established query optimization strategies supported by standard relational DBMS

Illustration

query

select x where <y, hasName , x>
<y, hasWonPrize, NobelPrize>
<y, type, Scientist>, <y, bornIn, Europe>

ontological constraints

<y, type, z>, <z, subClassof, w> \Rightarrow <y, type w> <y, birthPlace, z>, <z, LocatedIn, u>, <u, partOf, v> \Rightarrow <y, bornIn, v>

Query Reformulation

```
select x where <y, hasName , x> .....
<y, hasWonPrize, NobelPrize>
<y, type, physicist>, <physicist, subClassOf, scientist>
<y, birthPlace, z>, <z, LocatedIn, u>, <u, partOf, Europe>
```

SPARQL evaluation

RDFS store (e.g. YAGO)

```
<a href="http://.../marie-curie">
<a href="http://.../einstein">
<a href="http://.../einste
```

DL-Lite by example

```
Professor □ ∃ Teaches
           \forall x (Professor(x) \Rightarrow \exists y Teaches(x,y))
∃ Teaches<sup>-</sup> ⊑ Course
           \forall x \forall y \text{ (Teaches}(x,y) \Rightarrow \text{Course}(y))
ResponsibleFor ⊆ Teaches
           \forall x \forall y \text{ (ResponsibleFor}(x,y) \Rightarrow \text{Teaches}(x,y))
(funct ResponsableFor-)
    \forall x \forall y \forall z (ResponsibleFor(y,x) \land ResponsibleFor(z,x) \Rightarrow y=z)
Lecturer \sqsubseteq \neg (\exists Responsible For)
    \forall x \forall y (Lecturer(x) \land ResponsibleFor(x,y) \Rightarrow \bot)
```

DL-Lite: a frontier for FOL reducibility

- The reasoning step is polynomial in the size of the ontology
- The evaluation step has the same data complexity as standard evaluation of conjunctive queries over relational databases
 - in ACo (strictly contained in LogSpace and thus in P)
- The interaction between relation inclusion constraints and functionality constraints makes reasoning in DL-Lite P-complete in data complexity
 - DL-Lite_△ is FOL-reducible
 - full DL-Lite is not FOL-reducible
 - reformulating a query may require recursion (Datalog)

Decentralized ontology-based data access

Conclusion

- The scalability of reasoning on Web data requires light-weight ontologies
- RDFS is not expressive enough to express useful constraints
- Forget about (most of fragments) of OWL
- ⇒extend RDFS with constraints expressible in a logic for which data management is FOL reducible
 - DL-Lite_A is an example of such a logic
 - (some fragments of) Datalog⁺⁻ too

References

Web data management,
Abiteboul, Manolescu, Rigaux, Rousset, Senellart
webdam.inria.fr/Jorge

Decentralized reasoning in DL-Lite Abdallah, Goasdoué, Rousset IJCAI 2009

Reasoning for reference reconciliation Sais, Pernelle, Rousset IJCAI 2007

Trust for resource finding in semantic P2P networks
Atencia, Euzenat, Pirro, Rousset
ISWC 2011

MERCI

UNIVERSITÉ DE GRENOBLE

