Datalog Revival

Serge Abiteboul INRIA Saclay, Collège de France, ENS Cachan

Datalog history

FO

datalog

loop

tive FO queries

datalog

FO[†]

Started in 77: logic and database workshop

Simple idea: add recursion to positive FO queries

Blooming in the 80th

Logic programming was hot

Industry was not interested:

 "No practical applications of recursive query theory ... have been found to date." Hellerstein and Stonebraker (Readings in DB Systems)

Quasi dead except local resistance [e.g., A., Gottlob]

Revival in this century

Organization

- Datalog
- Datalog evaluation
- Datalog with negation
- Datalog revival
- Conclusion

Datalog

Limitation of relational calculus

G a graph: G(0,1), G(1,2), G(2,3), ... G(10,11) Is there a path from 0 to 11 in the graph?

k-path $\exists x_1... x_k (G(0,x_1) \land G(x_1,x_2) \land ... \land G(x_{k-1},x_k) \land G(x_k,11))$

Path of unbounded length: infinite formula

$$V_{k=1 \text{ to } \infty}$$
 k-path

Term = constant or variable

Datalog program = set of datalog rules

Datalog

$$G(2,3)$$
 fact $T(x, y) \leftarrow G(x, z), T(z, y)$ rule

datalog rule :
$$R_1(u_1) \leftarrow R_2(u_2), \dots, R_n(u_n)$$
 for $n \ge 1$
head body

- Each u_i is a vector of terms
- Safe: each variable occurring in head must occur in body
- Intentional relation: occurs in the head
- Extensional relation: does not

Datalog program

1.
$$G(0,1)$$
, $G(1,2)$, $G(2,3)$, ... $G(10,11)$

2.
$$T(x, y) \leftarrow G(x, y)$$

3.
$$T(x, y) \leftarrow G(x, z), T(z, y)$$

4. Ok()
$$\leftarrow$$
 T(0, 11)

$$edb(P) = \{G\}$$

$$idb(P) = \{T,Ok\}$$

Datalog program

```
G(0,1), G(1,2), G(2,3), ...
                                   G(10,11)
                                     T(10, 11) \leftarrow G(10, 11)
2. T(x, y) \leftarrow G(x, y)
3. T(x, y) \leftarrow G(x, z), T(z, y)
                                    T(\theta, 11) \leftarrow G(\theta, 10)T(110111)
                                      Ok() \leftarrow T(0, 11)
4. Ok() \leftarrow T(0, 11)
Rule 2: v(x)=10 \& v(y) = 11
                                             ☞ T(10,11)
Rule 3: v(x)=9, v(z)=10 & <math>v(y)=11
                                             ☞ T(9,11)
Rule 3: v(x)=0, v(z)=1 & v(y)=11
                                             ☞ T(0,11)
Rule 4: v(x)=0, v(y)=11
                                             @ Ok()
```

Model semantics

View P as a first-order sentence Σ_{p} describing the answer

Associate a formula to each rule

$$R_1(u_1) \leftarrow R_2(u_2), \dots, R_n(u_n):$$

$$\forall x_1, \dots, x_m (R_2(u_2) \land \dots \land R_n(u_n) \Rightarrow R_1(u_1))$$
where x_1, \dots, x_m are the variables occurring in the rule
$$P = \{r_1, \dots, r_n\}, \sum_{P} = r_1 \land \dots \land r_n$$

The semantics of P for a database I, denoted P(I), is the minimum model of Σ_p containing I

Does it always exist?

How can it be computed?

Example: Transitive closure

$$T(x,y) \leftarrow G(x,y)$$

$$T(x,y) \leftarrow G(x,z), T(z,y)$$

G	Р
01	01
12	12
	0 2

Does not contain I

Not a model of the formula

Minimum model containing I

Model but not minimal

Existence of P(I)

There exists at least one such model: the largest instance one can build with the constants occurring in I and P is a model of P that includes I — B(I,P)

P(I) always exists: it is the intersection of all models of P that include I over the constants occurring in I and P

How can it be computed?

Fixpoint semantics

A fact A is an *immediate consequence* for K and P if

- 1. A is an extensional fact in K, or
- 2. for some instantiation $A \leftarrow A_1, \ldots, A_n$ of a rule in P, each A_i is in K

Immediate consequence operator:

T_P(K) = { immediate consequences for K and P }

Note: T_p is monotone

Fixpoint semantics – continued

P(I) is a fixpoint of T_p – That is: $T_p(P(I)) \subseteq P(I)$ Indeed, P(I) is the least fixpoint of T_p containing I

Yields a means of computing P(I)

$$I \subseteq T_p(I) \subseteq T_p^2(I) \subseteq ... \subseteq T_p^i(I) = T_p^{i+1}(I) = P(I) \subseteq B(I,P)$$

Proof theory

- Proof technique: SLD resolution
- A fact A is in P(I) iff there exists a proof of A

Static analysis

Hard

- Deciding containment $(P \subseteq P')$ is undecidable
- Deciding equivalence is undecidable
- Deciding boundedness is undecidable
 - There exists k such that for any I, the fixpoint converges in less than k stages

So, optimization is hard

Datalog evaluation by example

More complicated example: Reverse same generation

```
down
                   flat
up
a
    e
                   g
                   m
    m
                   m
    n
    n
    0
    0
```

```
rsg(x,y) \leftarrow flat(x,y)

rsg(x,y) \leftarrow up(x,x1),rsg(y1,x1),down(y1,y)
```

$$rsg(x,y) \leftarrow flat(x,y)$$

 $rsg(x,y) \leftarrow up(x,x1),rsg(y1,x1),down(y1,y)$

m m m b a a a

Naive algorithm

```
Fixpoint
      rsg_0 = \emptyset
      rsg_{i+1} = flat \cup rsg_i \cup \pi_{16}(\sigma_{2=4}(\sigma_{3=5}(up \times rsg_i \times down)))
Program
      rsg := \emptyset;
      repeat
         rsg := flat \cup rsg \cup \pi_{16}(\sigma_{2=4}(\sigma_{3=5}(up \times rsg \times down)))
      until fixpoint
```

Semi-naive

$$\Delta_1(x, y) \leftarrow \text{flat}(x, y)$$

$$\Delta_{i+1}(x, y) \leftarrow \text{up}(x, x1), \Delta_i(y1, x1), \text{down}(y1, y)$$
Compute $\bigcup \Delta_i$

Program

- Converges to the answer
- Not recursive & not a datalog program
- Still redundant to avoid it:

$$\Delta_{i+1}(x, y) \leftarrow up(x, x1), \Delta_i(y1, x1), down(y1, y), \neg \Delta_i(x, y)$$

$$rsg(x,y) \leftarrow flat(x,y)$$

 $rsg(x,y) \leftarrow up(x,x1),rsg(y1,x1),down(y1,y)$

5/9/12

21

Semi-naïve (end)

More complicated if the rules are not linear

$$T(x, y) \leftarrow G(x, y)$$

 $T(x, y) \leftarrow T(x, z), T(z, y)$

- $\Delta_1(x, y) \leftarrow G(x, y)$
- anc₁ := Δ_1
- temp_{i+1}(x, y) $\leftarrow \Delta_i(x, z)$, anc_i(z, y)
- temp_{i+1}(x, y) \leftarrow anc_i(x, z), Δ _i(z, y)
- $\Delta_{i+1} := temp_{i+1} anc_i$
- anc_{i+1} := anc_i $\bigcup \Delta_{i+1}$

And beyond

Start from a program and a query

```
rsg(x,y) \leftarrow flat(x,y)

rsg(x,y) \leftarrow up(x,x1),rsg(y1,x1),down(y1,y)

query(y) \leftarrow rsg(a, y)
```

Optimize to avoid deriving useless facts

Two competing techniques that are roughly equivalent

- Query-Sub-Query
- Magic Sets

Magic Set

```
rsg^{bf}(x, y) \leftarrow input_rsg^{bf}(x), flat(x, y)
     rsgfb(x, y) \leftarrow input_rsgfb(y), flat(x, y)
    sup31(x, x1) \leftarrow input_rsg^{bf}(x), up(x, x1)
    \sup 32(x, y1) \leftarrow \sup 31(x, x1), \operatorname{rsg}^{fb}(y1, x1)
    rsg^{bf}(x, y) \leftarrow sup32(x, y1), down(y1, y)
    sup41(y, y1) \leftarrow input_rsg^{fb}(y), down(y1, y)
    \sup 42(y, x1) \leftarrow \sup 41(y, y1), \operatorname{rsg}^{bf}(y1, x1)
     rsg^{fb}(x, y) \leftarrow sup42(y, x1), up(x, x1)
    input rsg^{bf}(x1) \leftarrow sup31(x, x1)
    input_rsgfb(y1) \leftarrow sup41(y, y1)
Seed input_rsg<sup>bf</sup>(a) ←
Query query(y) \leftarrow rsg<sup>bf</sup>(a, y)
```

QSQ at work

Subqueries

SLD-resolution by example

```
\leftarrow query(y)
                                                            query(y) \leftarrow rsg(a, y)
                              rsg(x,y) \leftarrow up(x,x1), rsg(y1,x1), down(y1,y)
\leftarrow rsg(a,y)
\leftarrow rup(a,x1), rsg(y1,x1), down(y1,y)
                                                                               up(a,f)
\leftarrow rsg(y1,f), down(y1,y)
                                                               rsg(x,y) \leftarrow flat(x,y)
\leftarrow flat(y1,f), down(y1,y)
                                                                              flat(g,f)
\leftarrow down(g,y)
                                                                           down(g,b)
                                                        y=b is an answer
```

26

Datalog by example

Accept negative literal in body Complement of transitive closure $CompG(x,y) \leftarrow \neg G(x,y)$

More complicated

Some T_P are not monotone

Some T_P have no fixpoint containing I

$$- P_1 = \{p \leftarrow \neg p\}$$

$$-\varnothing \rightarrow \{p\} \rightarrow \varnothing \rightarrow \{p\} \rightarrow ...$$

Some T_P have several minimal fixpoints containing I

$$- P_2 = \{p \leftarrow \neg q, q \leftarrow \neg p\}$$

Two minimal fixpoints:{p} and {q}.

Some T_P have a least fixpoint but sequence diverges

$$-$$
 P₃ = {p ← ¬r; r ← ¬p; p ← ¬p, r}

- alternates between ∅ and {p, r}
- But {p} is a least fixpoint

Model semantics

- Some programs have no model containing I
- Some program have several minimal models containing

First fix: stratification

Impose condition on the syntax

Stratified programs

Consider more complex semantics

- Many such proposals
- Well-founded semantics based on 3-valued logic

Well-founded by example: 2-player game

move graph: (relation K)

There is a pebble in a node

2 players alternate playing

A player moves the pebble following an edge

A player who cannot move loses

Winning position

move graph: (relation K)

There is a pebble in a node

2 players alternate playing

A player moves the pebble following an edge

A player who cannot move loses

No winner no looser

move graph: (relation K)

There is a pebble in a node
2 players alternate playing
A player moves the pebble following an edge

A player who cannot move loses

Program to specify the winning/loosing positions

 $win(x) \leftarrow move(x, y), \neg win(y)$

Well-founded semantics: find the instance J that agrees with K on move and satisfies the formula corresponding to the rule

```
Instance J – three-valued instance
```

win(d), win(f) are true

win(e), win(g) are false

win(a), win(b), win(c) are unknown

Fixpoint semantics based on 3-valued logic

Fixpoint computation

• win(x) \leftarrow move(x, y),¬win(y)

I₀: win is always false

I₁: win: a, b, c, d, f

• l₂: win: d, f

• l₃: win: a, b, c, d, f

• I₄: win: d, f

Complexity and expressivity

- Datalog and Datalog evaluations are easy
- Datalog ⊂ Ptime
 - In the data
 - Inclusion in ptime: polynomial number of stages; each stage in ptime
 - Strict: Expresses only monotone queries;
 - But does not even express all PTIME monotone queries
- Datalog¬ with well-founded semantics = fixpoint ⊂ Ptime
 - In the data
 - On ordered databases, it is exactly PTIME

Datalog revival

Datalog revival

Datalog needs to be extended to be useful

Updates, value creation, nondeterminism

[e.g. A., Vianu]

Skolem [e.g. Gottlob]

Constraints [e.g. Revesz]

Time [e.g. Chomicki]

Distribution [e.g. *ActiveXML*]

Trees [e.g. ActiveXML]

Aggregations [e.g. Consens and Mendelzon]

Delegation [e.g. Webdamlog]

Datalog revival: different domains

Declarative networking

Data integration and exchange

Program verification

Data extraction from the Web

Knowledge representation

Artifact and workflows

Web data management

[e.g. Lou et al]

[e.g. Clio, Orchestra]

[e.g. Semmle]

[e.g. Gottlob, Lixto]

[e.g. Gottlob]

[e.g. ActiveXML]

[e.g. Webdamlog]

Declarative networking

Traditional vs. declarative

Network state Distributed database

Network protocol Datalog program

Messages Messages

Series of languages/systems from Hellerstein groups in Berkeley

- Overlog, bloom, dedalus, bud...
- Performance: scalability

Many systems have been developed

Internet routing

Overlay networks

Sensor networks

...

Data integration

```
∀ Eid, Name, Addr

( employee(Eid, Name, Addr) ⇒

∃ Ssn ( name(Ssn, Name) ∧ address(Ssn, Addr) ) )
```

Use "inverse" rules with Skolem

```
name(ssn(Name, Addr), Name) ← employee(X, Name, Addr) address(ssn(Name, Addr), Addr) ← employee(X, Name, Addr)
```

Possibly infinite chase and issues with termination

Program analysis

Analyze the possible runs of a program Recursion

Lots of possible runs – lots of data

- Optimization techniques are essential
- Semi-naïve, Magic Sets, Typed-based optimization

Data extraction

Georg's talk next

5/9/12 42

Conclusion

Issues

Give precise semantics to the extensions

Some challenges for the Web

- Scaling to large volumes
- Datalog with distribution
- Datalog with uncertainty
- Datalog with inconsistencies

Berkeley's works

Webdamlog •

Georg Gottlob,

- Professor at Oxford University & TU Wien
- Research: database, AI, logic and complexity
- Fellow of St John's and Ste Anne's College, Oxford
- Fellow: ACM, ECCAI, Royal Society
- Academy: Austrian, German, Europaea
- Program chair: IJCAI, PODS...
- Founder of Lixto, a company on web data extraction
- ERC Advanced Investigator's Grant (DIADEM)

5/9/12 46