Datalog Revival

Serge Abiteboul
INRIA Saclay, College de France, ENS Cachan

Y 4

: informariques,mathémaﬁques

Wy COLLEGE
¥ ¥ DE FRANCE
\",x’ :‘.‘ e L 1530

C A CH AN

FO*

Datalog history — N loop

FO
Started in 77: logic and database workshop -

Simple idea: add recursion to positive FO queries

Blooming in the 80t

datalog™
— Logic programming was hot -

Industry was not interested:

— “No practical applications of recursive query theory ... have been
found to date.” Hellerstein and Stonebraker (Readings in DB Systems)

Quasi dead except local resistance [e.g., A.,Gottlob]

Revival in this century

5/9/12 2

Organization

* Datalog
e Datalog evaluation
e Datalog with negation

e Datalog revival

ion

Datalog

Limitation of relational calculus

G a graph: G(0,1), G(1,2), G(2,3), ... G(10,11)
Is there a path from Oto 11 in the graph?

T
Term = constant or Datalog program =
variable ‘ set of datalog rules

Datalog

G(2,3) fact
T(XI y) < G(X; Z)I T(Z) y) rule

datalog rule : R;(u;) €< R,(u,), ...,R (u,)forn=1
head body

— Each u, is a vector of terms

— Safe: each variable occurring in head must occur in body
— Intentional relation: occurs in the head

— Extensional relation: does not

5/9/12 6

Datalog program

1. G(0,1), G(1,2), G(2,3), ... G(10,11) edb(P) = {G}

2. T(x,y) €< G(x,y) . idb(P) ={T,Ok}
3. T(x,vy) €& G(x, z), T(z, y) __ program P

4,

Ok() < T(O, 11)

Datalog program

1. G(0,1), G(1,2), G(2,3), .. G(10,11)

2. T(x,y) €< G(x,vy) T(10, 11) €< G(10, 11)

3. T(xy)<G(x2),T(z,y) T(6,11) & G(6,1P)TTI101)1)
4. 0Ok() < T(0, 11) ok() < T(0, 11)

Rule 2: v(x)=10 & v(y) = 11 - T(10,11)

Rule 3: v(x)=9, v(z)=10 & v(y)=11 s~ T(9,11)

Rule 3: v(x)=0, v(z)=1 & v(y)=11 =~ T(0,11)
Rule 4: v(x)=0, v(y)=11 = Ok()

5/9/12

Model semantics

View P as a first-order sentence 2 describing the answer
— Associate a formula to each rule

Ri(u;) € Ry(u,), ... R (u,):
VX, oo X (Ry(uy) Ao AR (u,) =R, (u,))
where x,, . . ., X, are the variables occurring in the rule

P={r,..r}3.=r, A .. Ar,

The semantics of P for a database I, denoted P(l), is the
minimum model of 2, containing |

Does it always exist?
How can it be computed?

5/9/12

Example: Transitive closure

G(0,1), G(1,2), G(2,3)
T(x,y) < G(x,y)
T(x,y) €< G(x,2), T(z,y)

Does not Not a model Minimum model Model but not
contain | of the formula containing | minimal

Existence of P(l)

There exists at least one such model: the largest instance
one can build with the constants occurring in | and P is
a model of P that includes| —B(l,P)

P(l) always exists: it is the intersection of all models of P
that include | over the constants occurring in | and P

How can it be computed?

5/9/12 11

Fixpoint semantics

A fact A is an immediate consequence for K and P if
1. Ais an extensional factin K, or

2. for some instantiation A< A, ..., A ofaruleinP,
each A, isin K

Immediate consequence operator:

To(K) = { immediate consequences for K and P }

Note: T, is monotone

5/9/12 12

Fixpoint semantics — continued

P(l) is a fixpoint of T,— That is: T,(P(l)) < P(l)
Indeed, P(l) is the least fixpoint of T, containing |

Yields a means of computing P(l)

| S T,()S T2ANES ... € T,(1) =T, *(1)=P(1) < B(],P)

5/9/12 13

Proof theory

* Proof technique: SLD resolution

e AfactAisin P(l)iff there exists a proof of A

Static analysis

Hard

e Deciding containment (P € P’) is undecidable
* Deciding equivalence is undecidable
* Deciding boundedness is undecidable

— There exists k such that for any I, the fixpoint converges in less than k
stages

* So, optimization is hard

5/9/12 15

Datalog evaluation by example

More complicated example:
Reverse same generation

up flat down

a e g f I f
a f m n m f
f m m 0 g b
g n P m h C
h n | d
I 0 o K
j o

rsg(x,y) < flat(x,y)
rsg(x,y) < up(x,x1),rsg(y1,x1),down(yl,y)

5/9/12 17

rsg(x,y) < flat(x,y)
rsg(x,y) < up(x,x1),rsg(yl,x1),down(yl,y)

I m n 0 p
dd .
e f g h [j k

B 3 3 @
o 3o >

Naive algorithm

Fixpoint
rsg, = <&
rsg.,, = flat U rsg, U m ,(0,.4(05.(up x rsgi. x down)))

Program

sg:=0;

Semi-naive

A (x, y) € flat(x, y)
Ai+1(X, y) & up(X, X1); A,(VL X1)) down(yl, y)
Compute UA

Program
— Converges to the answer
— Not recursive & not a datalog program
— Still redundant —to avoid it:

Ai1(x, y) < up(x, x1), Alyl, x1), down(yl, y), =A(x, y)

5/9/12

20

rsg(x,y) < flat(x,y)
rsg(x,y) < up(x,x1),rsg(yl,x1),down(yl,y)

Semi-naive (end)

More complicated if the rules are not linear
T(x, y) & G(x, y)
T(x,y) €< T(x, 2), T(z, y)

« Ai(x,y) & G(x,y)
e anci:= A1

o tempisi(x, y) € Ai(x, z), anci(z, y)
e tempisi(X, y) € anci(x, z), Ai(z, y)
e Ai+1 :=tempi+1- anci

e anci+1:=anci U A

5/9/12

22

And beyond

Start from a program and a query
rsg(x,y) < flat(x,y)
rsg(x,y) € up(x,x1),rsg(y1,x1),down(yl,y)
query(y) < rsg(a, y)
Optimize to avoid deriving useless facts
Two competing techniques that are roughly equivalent
— Query-Sub-Query
— Magic Sets

5/9/12

23

Magic Set

rsg”(x, y) €input_rsg®(x), flat(x, y)
rsgfb(x, y) €input_rsg™(y), flat(x, y)
sup31(x, x1) €input_rsg”'(x), up(x, x1)
sup32(x, y1) €sup31(x, x1), rsg™(y1, x1)
rsg(x, y) €sup32(x, y1), down(yl, y)
supd1(y, y1) €input_rsg™(y), down(yl, y)
sup42(y, x1) €supdl(y, y1), rsg”(yl, x1)
rsg™(x, y) €supd2(y, x1), up(x, x1)
input_rsg”’(x1) €-sup31(x, x1)
input_rsg™(y1)€&sup4i(y, y1)

Seed input_rsg”(a) €

Query query(y) €rsg”(a, y)

5/9/12

24

QSQ at work

rsg®i(x,y)

flat(x,y)

supy(x) sup,(xy)

a
flat(x,y)
(y) (x,y)
e g f
f
input-rsgdf

5/9/12

Subqueries
rsgfb(ylle)
rsgfb(yllf)

rsg”'(x,y)
Up(X,Xl), rsgfb(yllxl)/ down(ylly)

supy(x) sup,(x,x;) sup,(x,y;) sups(x,y)
a ae a g ab
af

rsg™(x,y)
down(y,,y)srsg®(y,,x;),1up(x,x,)

supy(y) supy(y,y;) sup,(y,x;) sups(x,y)

e
f

input-rsg™® ans-rsgdf ans-rsgf®

ab g f

25

SLD-resolution by example

< query(y) query(y) € rsg(a, y)
< rsg(a,y) rsg(x,y) € up(x,x1), rsg(yl,x1), down(yl,y)
< rup(a,x1), rsg(yl,x1), down(yl,y) up(a,f)
< rsg(yl,f), down(yl,y) rsg(x,y) < flat(x,

y=Db is an answer

Datalog™ by example

More complicated

Some TP are not monotone

Some Tp have no fixpoint
containing |
— Pi={p & -p}
— O-2>{p}=> D> {p}—>..

Some Ty have several minimal
fixpoints containing |
— P:={p<& -q,q < -p}

— Two minimal fixpoints:
{p}and {q}.

5/9/12

Some Ty have a least fixpoint but
sequence diverges

— Ps={p&-r;r&-p;p<&-p,r}
— alternates between @ and {p, r}
— But {p} is a least fixpoint

Model semantics

— Some programs have no model
containing |

— Some program have several
minimal models containing

28

First fix: stratification

Impose condition on the syntax
— Stratified programs

datalog

P‘ datalog
‘ datalog

e, g are

Well-founded by example:
2-player game

loosing

move graph:
(relation K)

re is a pebble in a node

ate playing

d,f are

Winning position LU

move graph:
(relation K)

e is a pebble in a node

a,b,c

No winner no looser unknown

move graph:
(relation K)

e is a pebble in a node

Program to specify
the winning/loosing positions

win(x) € move(x, y),~win(y)

Well-founded semantics: find the instance J that
agrees with K on move and
satisfies the formula corresponding to the rule

Instance J — three-valued instance
win(d),win(f) are true
win(e),win(g) are false
win(a),win(b),win(c) are unknown

Fixpoint semantics based on 3-valued logic

5/9/12

33

Fixpoint computation

* win(x) € move(x, y),~win(y)

Complexity and expressivity

 Datalog and Datalog™evaluations are easy
 DatalogC Ptime

In the data

Inclusion in ptime: polynomial number of stages; each stage in ptime
Strict: Expresses only monotone queries;

But does not even express all PTIME monotone queries

 Datalog™ with well-founded semantics = fixpoint C Ptime
— In the data
— On ordered databases, it is exactly PTIME

5/9/12

35

Datalog revival

Datalog revival

Datalog needs to be extended to be useful

Updates, value creation, nondeterminism

Skolem
Constraints
Time
Distribution
Trees
Aggregations
Delegation

5/9/12

e.g. A., Vianu]

e.g. Gottlob]

e.g. Revesz]

e.g. Chomicki]

e.g. ActiveXML]

e.g. ActiveXML]

e.g. Consens and Mendelzon]

e.g. Webdamlog]

37

Datalog revival: different domains

Declarative networking e.g.
Data integration and exchange e.g.
Program verification e.g.
Data extraction from the Web e.g.
Knowledge representation e.g.
Artifact and workflows [e.g.

Web data management [e.g.

5/9/12

Lou et al]

Clio, Orchestra]
Semmle]
Gottlob, Lixto]
Gottlob]

ActiveXML]
Webdamlog]

’

Declarative networking

Traditional vs. declarative

Network state Distributed database
Network protocol Datalog program
Messages Messages

Series of languages/systems from Hellerstein groups in Berkeley
— Overlog, bloom, dedalus, bud...
— Performance: scalability

Many systems have been developed

Internet routing
Overlay networks
Sensor networks

5/9/12 39

Data integration

V Eid, Name, Addr
(employee(Eid, Name, Addr) =
3 Ssn (name(Ssn, Name) A address(Ssn, Addr)))

Use “inverse” rules with Skolem

name(ssn(Name, Addr), Name) & employee(X, Name, Addr)
address(ssn(Name, Addr), Addr) & employee(X, Name, Addr)

Possibly infinite chase and issues with termination

5/9/12 40

Program analysis

Analyze the possible runs of a program
Recursion

Lots of possible runs — lots of data
— Optimization techniques are essential
— Semi-naive, Magic Sets, Typed-based optimization

Data extraction

e Georg’s talk next

Conclusion

Issues

Give precise semantics to the extensions

Some challenges for the Web

e Scaling to large volumes Berkeley’s works

e Datalog with distribution

: : b
e Datalog with uncertainty Webdamlog

* Datalog with inconsistencies

5/9/12 44

Y 4

informatiques #” mathématiques

COLLEGE
DE FRANCE

1530

C A CH A N

Georg Gottlob,

* Professor at Oxford University & TU Wien
 Research: database, Al, logic and complexity

* Fellow of St John's and Ste Anne’s College,
Oxford

 Fellow: ACM, ECCAI, Royal Society
 Academy: Austrian, German, Europaea

* Program chair: IJCAI, PODS...

* Founder of Lixto, a company on web data
extraction

 ERC Advanced Investigator's Grant (DIADEM)

5/9/12 46

